Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > srascaOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of srasca 20496 as of 12-Nov-2024. The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 12-Nov-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
Ref | Expression |
---|---|
srascaOLD | ⊢ (𝜑 → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaid 17074 | . . . . 5 ⊢ Scalar = Slot (Scalar‘ndx) | |
2 | 5re 12110 | . . . . . . 7 ⊢ 5 ∈ ℝ | |
3 | 5lt6 12204 | . . . . . . 7 ⊢ 5 < 6 | |
4 | 2, 3 | ltneii 11138 | . . . . . 6 ⊢ 5 ≠ 6 |
5 | scandx 17073 | . . . . . . 7 ⊢ (Scalar‘ndx) = 5 | |
6 | vscandx 17078 | . . . . . . 7 ⊢ ( ·𝑠 ‘ndx) = 6 | |
7 | 5, 6 | neeq12i 3008 | . . . . . 6 ⊢ ((Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 5 ≠ 6) |
8 | 4, 7 | mpbir 230 | . . . . 5 ⊢ (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) |
9 | 1, 8 | setsnid 16959 | . . . 4 ⊢ (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) = (Scalar‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) |
10 | 5lt8 12217 | . . . . . . 7 ⊢ 5 < 8 | |
11 | 2, 10 | ltneii 11138 | . . . . . 6 ⊢ 5 ≠ 8 |
12 | ipndx 17089 | . . . . . . 7 ⊢ (·𝑖‘ndx) = 8 | |
13 | 5, 12 | neeq12i 3008 | . . . . . 6 ⊢ ((Scalar‘ndx) ≠ (·𝑖‘ndx) ↔ 5 ≠ 8) |
14 | 11, 13 | mpbir 230 | . . . . 5 ⊢ (Scalar‘ndx) ≠ (·𝑖‘ndx) |
15 | 1, 14 | setsnid 16959 | . . . 4 ⊢ (Scalar‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) = (Scalar‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
16 | 9, 15 | eqtri 2764 | . . 3 ⊢ (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) = (Scalar‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
17 | ovexd 7342 | . . . 4 ⊢ (𝜑 → (𝑊 ↾s 𝑆) ∈ V) | |
18 | 1 | setsid 16958 | . . . 4 ⊢ ((𝑊 ∈ V ∧ (𝑊 ↾s 𝑆) ∈ V) → (𝑊 ↾s 𝑆) = (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉))) |
19 | 17, 18 | sylan2 594 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉))) |
20 | srapart.a | . . . . . 6 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
21 | 20 | adantl 483 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
22 | srapart.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
23 | sraval 20487 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
24 | 22, 23 | sylan2 594 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
25 | 21, 24 | eqtrd 2776 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
26 | 25 | fveq2d 6808 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (Scalar‘𝐴) = (Scalar‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
27 | 16, 19, 26 | 3eqtr4a 2802 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
28 | 1 | str0 16939 | . . 3 ⊢ ∅ = (Scalar‘∅) |
29 | reldmress 16992 | . . . . 5 ⊢ Rel dom ↾s | |
30 | 29 | ovprc1 7346 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝑊 ↾s 𝑆) = ∅) |
31 | 30 | adantr 482 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = ∅) |
32 | fv2prc 6846 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅) | |
33 | 20, 32 | sylan9eqr 2798 | . . . 4 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅) |
34 | 33 | fveq2d 6808 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (Scalar‘𝐴) = (Scalar‘∅)) |
35 | 28, 31, 34 | 3eqtr4a 2802 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
36 | 27, 35 | pm2.61ian 810 | 1 ⊢ (𝜑 → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 Vcvv 3437 ⊆ wss 3892 ∅c0 4262 〈cop 4571 ‘cfv 6458 (class class class)co 7307 5c5 12081 6c6 12082 8c8 12084 sSet csts 16913 ndxcnx 16943 Basecbs 16961 ↾s cress 16990 .rcmulr 17012 Scalarcsca 17014 ·𝑠 cvsca 17015 ·𝑖cip 17016 subringAlg csra 20479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-sets 16914 df-slot 16932 df-ndx 16944 df-ress 16991 df-sca 17027 df-vsca 17028 df-ip 17029 df-sra 20483 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |