Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > srascaOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of srasca 20437 as of 12-Nov-2024. The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 12-Nov-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
Ref | Expression |
---|---|
srascaOLD | ⊢ (𝜑 → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaid 17015 | . . . . 5 ⊢ Scalar = Slot (Scalar‘ndx) | |
2 | 5re 12052 | . . . . . . 7 ⊢ 5 ∈ ℝ | |
3 | 5lt6 12146 | . . . . . . 7 ⊢ 5 < 6 | |
4 | 2, 3 | ltneii 11080 | . . . . . 6 ⊢ 5 ≠ 6 |
5 | scandx 17014 | . . . . . . 7 ⊢ (Scalar‘ndx) = 5 | |
6 | vscandx 17019 | . . . . . . 7 ⊢ ( ·𝑠 ‘ndx) = 6 | |
7 | 5, 6 | neeq12i 3012 | . . . . . 6 ⊢ ((Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 5 ≠ 6) |
8 | 4, 7 | mpbir 230 | . . . . 5 ⊢ (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) |
9 | 1, 8 | setsnid 16900 | . . . 4 ⊢ (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) = (Scalar‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) |
10 | 5lt8 12159 | . . . . . . 7 ⊢ 5 < 8 | |
11 | 2, 10 | ltneii 11080 | . . . . . 6 ⊢ 5 ≠ 8 |
12 | ipndx 17030 | . . . . . . 7 ⊢ (·𝑖‘ndx) = 8 | |
13 | 5, 12 | neeq12i 3012 | . . . . . 6 ⊢ ((Scalar‘ndx) ≠ (·𝑖‘ndx) ↔ 5 ≠ 8) |
14 | 11, 13 | mpbir 230 | . . . . 5 ⊢ (Scalar‘ndx) ≠ (·𝑖‘ndx) |
15 | 1, 14 | setsnid 16900 | . . . 4 ⊢ (Scalar‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) = (Scalar‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
16 | 9, 15 | eqtri 2768 | . . 3 ⊢ (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) = (Scalar‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
17 | ovexd 7304 | . . . 4 ⊢ (𝜑 → (𝑊 ↾s 𝑆) ∈ V) | |
18 | 1 | setsid 16899 | . . . 4 ⊢ ((𝑊 ∈ V ∧ (𝑊 ↾s 𝑆) ∈ V) → (𝑊 ↾s 𝑆) = (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉))) |
19 | 17, 18 | sylan2 593 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉))) |
20 | srapart.a | . . . . . 6 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
21 | 20 | adantl 482 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
22 | srapart.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
23 | sraval 20428 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
24 | 22, 23 | sylan2 593 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
25 | 21, 24 | eqtrd 2780 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
26 | 25 | fveq2d 6773 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (Scalar‘𝐴) = (Scalar‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
27 | 16, 19, 26 | 3eqtr4a 2806 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
28 | 1 | str0 16880 | . . 3 ⊢ ∅ = (Scalar‘∅) |
29 | reldmress 16933 | . . . . 5 ⊢ Rel dom ↾s | |
30 | 29 | ovprc1 7308 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝑊 ↾s 𝑆) = ∅) |
31 | 30 | adantr 481 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = ∅) |
32 | fv2prc 6809 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅) | |
33 | 20, 32 | sylan9eqr 2802 | . . . 4 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅) |
34 | 33 | fveq2d 6773 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (Scalar‘𝐴) = (Scalar‘∅)) |
35 | 28, 31, 34 | 3eqtr4a 2806 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
36 | 27, 35 | pm2.61ian 809 | 1 ⊢ (𝜑 → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 Vcvv 3431 ⊆ wss 3892 ∅c0 4262 〈cop 4573 ‘cfv 6431 (class class class)co 7269 5c5 12023 6c6 12024 8c8 12026 sSet csts 16854 ndxcnx 16884 Basecbs 16902 ↾s cress 16931 .rcmulr 16953 Scalarcsca 16955 ·𝑠 cvsca 16956 ·𝑖cip 16957 subringAlg csra 20420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-er 8473 df-en 8709 df-dom 8710 df-sdom 8711 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-nn 11966 df-2 12028 df-3 12029 df-4 12030 df-5 12031 df-6 12032 df-7 12033 df-8 12034 df-sets 16855 df-slot 16873 df-ndx 16885 df-ress 16932 df-sca 16968 df-vsca 16969 df-ip 16970 df-sra 20424 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |