|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > srascaOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of srasca 21184 as of 12-Nov-2024. The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 12-Nov-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | 
| srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | 
| Ref | Expression | 
|---|---|
| srascaOLD | ⊢ (𝜑 → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | scaid 17360 | . . . . 5 ⊢ Scalar = Slot (Scalar‘ndx) | |
| 2 | 5re 12354 | . . . . . . 7 ⊢ 5 ∈ ℝ | |
| 3 | 5lt6 12448 | . . . . . . 7 ⊢ 5 < 6 | |
| 4 | 2, 3 | ltneii 11375 | . . . . . 6 ⊢ 5 ≠ 6 | 
| 5 | scandx 17359 | . . . . . . 7 ⊢ (Scalar‘ndx) = 5 | |
| 6 | vscandx 17364 | . . . . . . 7 ⊢ ( ·𝑠 ‘ndx) = 6 | |
| 7 | 5, 6 | neeq12i 3006 | . . . . . 6 ⊢ ((Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 5 ≠ 6) | 
| 8 | 4, 7 | mpbir 231 | . . . . 5 ⊢ (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) | 
| 9 | 1, 8 | setsnid 17246 | . . . 4 ⊢ (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) = (Scalar‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) | 
| 10 | 5lt8 12461 | . . . . . . 7 ⊢ 5 < 8 | |
| 11 | 2, 10 | ltneii 11375 | . . . . . 6 ⊢ 5 ≠ 8 | 
| 12 | ipndx 17375 | . . . . . . 7 ⊢ (·𝑖‘ndx) = 8 | |
| 13 | 5, 12 | neeq12i 3006 | . . . . . 6 ⊢ ((Scalar‘ndx) ≠ (·𝑖‘ndx) ↔ 5 ≠ 8) | 
| 14 | 11, 13 | mpbir 231 | . . . . 5 ⊢ (Scalar‘ndx) ≠ (·𝑖‘ndx) | 
| 15 | 1, 14 | setsnid 17246 | . . . 4 ⊢ (Scalar‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) = (Scalar‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | 
| 16 | 9, 15 | eqtri 2764 | . . 3 ⊢ (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) = (Scalar‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | 
| 17 | ovexd 7467 | . . . 4 ⊢ (𝜑 → (𝑊 ↾s 𝑆) ∈ V) | |
| 18 | 1 | setsid 17245 | . . . 4 ⊢ ((𝑊 ∈ V ∧ (𝑊 ↾s 𝑆) ∈ V) → (𝑊 ↾s 𝑆) = (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉))) | 
| 19 | 17, 18 | sylan2 593 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉))) | 
| 20 | srapart.a | . . . . . 6 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
| 21 | 20 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | 
| 22 | srapart.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
| 23 | sraval 21175 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
| 24 | 22, 23 | sylan2 593 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | 
| 25 | 21, 24 | eqtrd 2776 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | 
| 26 | 25 | fveq2d 6909 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (Scalar‘𝐴) = (Scalar‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) | 
| 27 | 16, 19, 26 | 3eqtr4a 2802 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) | 
| 28 | 1 | str0 17227 | . . 3 ⊢ ∅ = (Scalar‘∅) | 
| 29 | reldmress 17277 | . . . . 5 ⊢ Rel dom ↾s | |
| 30 | 29 | ovprc1 7471 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝑊 ↾s 𝑆) = ∅) | 
| 31 | 30 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = ∅) | 
| 32 | fv2prc 6950 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅) | |
| 33 | 20, 32 | sylan9eqr 2798 | . . . 4 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅) | 
| 34 | 33 | fveq2d 6909 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (Scalar‘𝐴) = (Scalar‘∅)) | 
| 35 | 28, 31, 34 | 3eqtr4a 2802 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) | 
| 36 | 27, 35 | pm2.61ian 811 | 1 ⊢ (𝜑 → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 Vcvv 3479 ⊆ wss 3950 ∅c0 4332 〈cop 4631 ‘cfv 6560 (class class class)co 7432 5c5 12325 6c6 12326 8c8 12328 sSet csts 17201 ndxcnx 17231 Basecbs 17248 ↾s cress 17275 .rcmulr 17299 Scalarcsca 17301 ·𝑠 cvsca 17302 ·𝑖cip 17303 subringAlg csra 21171 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-sets 17202 df-slot 17220 df-ndx 17232 df-ress 17276 df-sca 17314 df-vsca 17315 df-ip 17316 df-sra 21173 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |