Step | Hyp | Ref
| Expression |
1 | | scaid 17258 |
. . . . 5
β’ Scalar =
Slot (Scalarβndx) |
2 | | 5re 12295 |
. . . . . . 7
β’ 5 β
β |
3 | | 5lt6 12389 |
. . . . . . 7
β’ 5 <
6 |
4 | 2, 3 | ltneii 11323 |
. . . . . 6
β’ 5 β
6 |
5 | | scandx 17257 |
. . . . . . 7
β’
(Scalarβndx) = 5 |
6 | | vscandx 17262 |
. . . . . . 7
β’ (
Β·π βndx) = 6 |
7 | 5, 6 | neeq12i 2999 |
. . . . . 6
β’
((Scalarβndx) β ( Β·π
βndx) β 5 β 6) |
8 | 4, 7 | mpbir 230 |
. . . . 5
β’
(Scalarβndx) β ( Β·π
βndx) |
9 | 1, 8 | setsnid 17140 |
. . . 4
β’
(Scalarβ(π
sSet β¨(Scalarβndx), (π βΎs π)β©)) = (Scalarβ((π sSet β¨(Scalarβndx),
(π βΎs
π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©)) |
10 | | 5lt8 12402 |
. . . . . . 7
β’ 5 <
8 |
11 | 2, 10 | ltneii 11323 |
. . . . . 6
β’ 5 β
8 |
12 | | ipndx 17273 |
. . . . . . 7
β’
(Β·πβndx) = 8 |
13 | 5, 12 | neeq12i 2999 |
. . . . . 6
β’
((Scalarβndx) β (Β·πβndx)
β 5 β 8) |
14 | 11, 13 | mpbir 230 |
. . . . 5
β’
(Scalarβndx) β
(Β·πβndx) |
15 | 1, 14 | setsnid 17140 |
. . . 4
β’
(Scalarβ((π
sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©)) =
(Scalarβ(((π sSet
β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
16 | 9, 15 | eqtri 2752 |
. . 3
β’
(Scalarβ(π
sSet β¨(Scalarβndx), (π βΎs π)β©)) = (Scalarβ(((π sSet β¨(Scalarβndx),
(π βΎs
π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
17 | | ovexd 7436 |
. . . 4
β’ (π β (π βΎs π) β V) |
18 | 1 | setsid 17139 |
. . . 4
β’ ((π β V β§ (π βΎs π) β V) β (π βΎs π) = (Scalarβ(π sSet β¨(Scalarβndx),
(π βΎs
π)β©))) |
19 | 17, 18 | sylan2 592 |
. . 3
β’ ((π β V β§ π) β (π βΎs π) = (Scalarβ(π sSet β¨(Scalarβndx), (π βΎs π)β©))) |
20 | | srapart.a |
. . . . . 6
β’ (π β π΄ = ((subringAlg βπ)βπ)) |
21 | 20 | adantl 481 |
. . . . 5
β’ ((π β V β§ π) β π΄ = ((subringAlg βπ)βπ)) |
22 | | srapart.s |
. . . . . 6
β’ (π β π β (Baseβπ)) |
23 | | sraval 21012 |
. . . . . 6
β’ ((π β V β§ π β (Baseβπ)) β ((subringAlg
βπ)βπ) = (((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
24 | 22, 23 | sylan2 592 |
. . . . 5
β’ ((π β V β§ π) β ((subringAlg βπ)βπ) = (((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
25 | 21, 24 | eqtrd 2764 |
. . . 4
β’ ((π β V β§ π) β π΄ = (((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
26 | 25 | fveq2d 6885 |
. . 3
β’ ((π β V β§ π) β (Scalarβπ΄) = (Scalarβ(((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©))) |
27 | 16, 19, 26 | 3eqtr4a 2790 |
. 2
β’ ((π β V β§ π) β (π βΎs π) = (Scalarβπ΄)) |
28 | 1 | str0 17120 |
. . 3
β’ β
=
(Scalarββ
) |
29 | | reldmress 17173 |
. . . . 5
β’ Rel dom
βΎs |
30 | 29 | ovprc1 7440 |
. . . 4
β’ (Β¬
π β V β (π βΎs π) = β
) |
31 | 30 | adantr 480 |
. . 3
β’ ((Β¬
π β V β§ π) β (π βΎs π) = β
) |
32 | | fv2prc 6926 |
. . . . 5
β’ (Β¬
π β V β
((subringAlg βπ)βπ) = β
) |
33 | 20, 32 | sylan9eqr 2786 |
. . . 4
β’ ((Β¬
π β V β§ π) β π΄ = β
) |
34 | 33 | fveq2d 6885 |
. . 3
β’ ((Β¬
π β V β§ π) β (Scalarβπ΄) =
(Scalarββ
)) |
35 | 28, 31, 34 | 3eqtr4a 2790 |
. 2
β’ ((Β¬
π β V β§ π) β (π βΎs π) = (Scalarβπ΄)) |
36 | 27, 35 | pm2.61ian 809 |
1
β’ (π β (π βΎs π) = (Scalarβπ΄)) |