MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sraip Structured version   Visualization version   GIF version

Theorem sraip 20364
Description: The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
Assertion
Ref Expression
sraip (𝜑 → (.r𝑊) = (·𝑖𝐴))

Proof of Theorem sraip
StepHypRef Expression
1 ovex 7288 . . . 4 ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V
2 fvex 6769 . . . 4 (.r𝑊) ∈ V
3 ipid 16967 . . . . 5 ·𝑖 = Slot (·𝑖‘ndx)
43setsid 16837 . . . 4 ((((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V ∧ (.r𝑊) ∈ V) → (.r𝑊) = (·𝑖‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
51, 2, 4mp2an 688 . . 3 (.r𝑊) = (·𝑖‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
6 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
76adantl 481 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
8 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
9 sraval 20353 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
108, 9sylan2 592 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
117, 10eqtrd 2778 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
1211fveq2d 6760 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (·𝑖𝐴) = (·𝑖‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
135, 12eqtr4id 2798 . 2 ((𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = (·𝑖𝐴))
143str0 16818 . . 3 ∅ = (·𝑖‘∅)
15 fvprc 6748 . . . 4 𝑊 ∈ V → (.r𝑊) = ∅)
1615adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = ∅)
17 fv2prc 6796 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
186, 17sylan9eqr 2801 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
1918fveq2d 6760 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (·𝑖𝐴) = (·𝑖‘∅))
2014, 16, 193eqtr4a 2805 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = (·𝑖𝐴))
2113, 20pm2.61ian 808 1 (𝜑 → (.r𝑊) = (·𝑖𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  c0 4253  cop 4564  cfv 6418  (class class class)co 7255   sSet csts 16792  ndxcnx 16822  Basecbs 16840  s cress 16867  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  ·𝑖cip 16893  subringAlg csra 20345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-ip 16906  df-sra 20349
This theorem is referenced by:  frlmip  20895  rrxip  24459
  Copyright terms: Public domain W3C validator