![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sraip | Structured version Visualization version GIF version |
Description: The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
Ref | Expression |
---|---|
sraip | ⊢ (𝜑 → (.r‘𝑊) = (·𝑖‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srapart.a | . . . . . 6 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
2 | 1 | adantl 475 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
3 | srapart.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
4 | sraval 19544 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
5 | 3, 4 | sylan2 586 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
6 | 2, 5 | eqtrd 2861 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
7 | 6 | fveq2d 6441 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (·𝑖‘𝐴) = (·𝑖‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
8 | ovex 6942 | . . . 4 ⊢ ((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) ∈ V | |
9 | fvex 6450 | . . . 4 ⊢ (.r‘𝑊) ∈ V | |
10 | ipid 16389 | . . . . 5 ⊢ ·𝑖 = Slot (·𝑖‘ndx) | |
11 | 10 | setsid 16284 | . . . 4 ⊢ ((((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) ∈ V ∧ (.r‘𝑊) ∈ V) → (.r‘𝑊) = (·𝑖‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
12 | 8, 9, 11 | mp2an 683 | . . 3 ⊢ (.r‘𝑊) = (·𝑖‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
13 | 7, 12 | syl6reqr 2880 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = (·𝑖‘𝐴)) |
14 | 10 | str0 16281 | . . 3 ⊢ ∅ = (·𝑖‘∅) |
15 | fvprc 6430 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (.r‘𝑊) = ∅) | |
16 | 15 | adantr 474 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = ∅) |
17 | fvprc 6430 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅) | |
18 | 17 | fveq1d 6439 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = (∅‘𝑆)) |
19 | 0fv 6477 | . . . . . 6 ⊢ (∅‘𝑆) = ∅ | |
20 | 18, 19 | syl6eq 2877 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅) |
21 | 1, 20 | sylan9eqr 2883 | . . . 4 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅) |
22 | 21 | fveq2d 6441 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (·𝑖‘𝐴) = (·𝑖‘∅)) |
23 | 14, 16, 22 | 3eqtr4a 2887 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = (·𝑖‘𝐴)) |
24 | 13, 23 | pm2.61ian 846 | 1 ⊢ (𝜑 → (.r‘𝑊) = (·𝑖‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 Vcvv 3414 ⊆ wss 3798 ∅c0 4146 〈cop 4405 ‘cfv 6127 (class class class)co 6910 ndxcnx 16226 sSet csts 16227 Basecbs 16229 ↾s cress 16230 .rcmulr 16313 Scalarcsca 16315 ·𝑠 cvsca 16316 ·𝑖cip 16317 subringAlg csra 19536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-1cn 10317 ax-addcl 10319 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-ndx 16232 df-slot 16233 df-sets 16236 df-ip 16330 df-sra 19540 |
This theorem is referenced by: frlmip 20491 rrxip 23565 |
Copyright terms: Public domain | W3C validator |