MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sraip Structured version   Visualization version   GIF version

Theorem sraip 21214
Description: The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
Assertion
Ref Expression
sraip (𝜑 → (.r𝑊) = (·𝑖𝐴))

Proof of Theorem sraip
StepHypRef Expression
1 ovex 7471 . . . 4 ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V
2 fvex 6927 . . . 4 (.r𝑊) ∈ V
3 ipid 17386 . . . . 5 ·𝑖 = Slot (·𝑖‘ndx)
43setsid 17251 . . . 4 ((((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V ∧ (.r𝑊) ∈ V) → (.r𝑊) = (·𝑖‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
51, 2, 4mp2an 692 . . 3 (.r𝑊) = (·𝑖‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
6 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
76adantl 481 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
8 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
9 sraval 21201 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
108, 9sylan2 593 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
117, 10eqtrd 2777 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
1211fveq2d 6918 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (·𝑖𝐴) = (·𝑖‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
135, 12eqtr4id 2796 . 2 ((𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = (·𝑖𝐴))
143str0 17232 . . 3 ∅ = (·𝑖‘∅)
15 fvprc 6906 . . . 4 𝑊 ∈ V → (.r𝑊) = ∅)
1615adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = ∅)
17 fv2prc 6959 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
186, 17sylan9eqr 2799 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
1918fveq2d 6918 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (·𝑖𝐴) = (·𝑖‘∅))
2014, 16, 193eqtr4a 2803 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = (·𝑖𝐴))
2113, 20pm2.61ian 812 1 (𝜑 → (.r𝑊) = (·𝑖𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3481  wss 3966  c0 4342  cop 4640  cfv 6569  (class class class)co 7438   sSet csts 17206  ndxcnx 17236  Basecbs 17254  s cress 17283  .rcmulr 17308  Scalarcsca 17310   ·𝑠 cvsca 17311  ·𝑖cip 17312  subringAlg csra 21197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-1cn 11220  ax-addcl 11222
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-sets 17207  df-slot 17225  df-ndx 17237  df-ip 17325  df-sra 21199
This theorem is referenced by:  frlmip  21825  rrxip  25449
  Copyright terms: Public domain W3C validator