MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sraip Structured version   Visualization version   GIF version

Theorem sraip 19948
Description: The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
Assertion
Ref Expression
sraip (𝜑 → (.r𝑊) = (·𝑖𝐴))

Proof of Theorem sraip
StepHypRef Expression
1 ovex 7168 . . . 4 ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V
2 fvex 6658 . . . 4 (.r𝑊) ∈ V
3 ipid 16634 . . . . 5 ·𝑖 = Slot (·𝑖‘ndx)
43setsid 16530 . . . 4 ((((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V ∧ (.r𝑊) ∈ V) → (.r𝑊) = (·𝑖‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
51, 2, 4mp2an 691 . . 3 (.r𝑊) = (·𝑖‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
6 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
76adantl 485 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
8 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
9 sraval 19941 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
108, 9sylan2 595 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
117, 10eqtrd 2833 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
1211fveq2d 6649 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (·𝑖𝐴) = (·𝑖‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
135, 12eqtr4id 2852 . 2 ((𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = (·𝑖𝐴))
143str0 16527 . . 3 ∅ = (·𝑖‘∅)
15 fvprc 6638 . . . 4 𝑊 ∈ V → (.r𝑊) = ∅)
1615adantr 484 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = ∅)
17 fv2prc 6685 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
186, 17sylan9eqr 2855 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
1918fveq2d 6649 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (·𝑖𝐴) = (·𝑖‘∅))
2014, 16, 193eqtr4a 2859 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = (·𝑖𝐴))
2113, 20pm2.61ian 811 1 (𝜑 → (.r𝑊) = (·𝑖𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881  c0 4243  cop 4531  cfv 6324  (class class class)co 7135  ndxcnx 16472   sSet csts 16473  Basecbs 16475  s cress 16476  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  ·𝑖cip 16562  subringAlg csra 19933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-1cn 10584  ax-addcl 10586
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-ndx 16478  df-slot 16479  df-sets 16482  df-ip 16575  df-sra 19937
This theorem is referenced by:  frlmip  20467  rrxip  23994
  Copyright terms: Public domain W3C validator