| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sraip | Structured version Visualization version GIF version | ||
| Description: The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
| Ref | Expression |
|---|---|
| sraip | ⊢ (𝜑 → (.r‘𝑊) = (·𝑖‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7388 | . . . 4 ⊢ ((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) ∈ V | |
| 2 | fvex 6844 | . . . 4 ⊢ (.r‘𝑊) ∈ V | |
| 3 | ipid 17242 | . . . . 5 ⊢ ·𝑖 = Slot (·𝑖‘ndx) | |
| 4 | 3 | setsid 17125 | . . . 4 ⊢ ((((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) ∈ V ∧ (.r‘𝑊) ∈ V) → (.r‘𝑊) = (·𝑖‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
| 5 | 1, 2, 4 | mp2an 692 | . . 3 ⊢ (.r‘𝑊) = (·𝑖‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 6 | srapart.a | . . . . . 6 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| 8 | srapart.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
| 9 | sraval 21118 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
| 10 | 8, 9 | sylan2 593 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 11 | 7, 10 | eqtrd 2768 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 12 | 11 | fveq2d 6835 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (·𝑖‘𝐴) = (·𝑖‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
| 13 | 5, 12 | eqtr4id 2787 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = (·𝑖‘𝐴)) |
| 14 | 3 | str0 17107 | . . 3 ⊢ ∅ = (·𝑖‘∅) |
| 15 | fvprc 6823 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (.r‘𝑊) = ∅) | |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = ∅) |
| 17 | fv2prc 6873 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅) | |
| 18 | 6, 17 | sylan9eqr 2790 | . . . 4 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅) |
| 19 | 18 | fveq2d 6835 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (·𝑖‘𝐴) = (·𝑖‘∅)) |
| 20 | 14, 16, 19 | 3eqtr4a 2794 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = (·𝑖‘𝐴)) |
| 21 | 13, 20 | pm2.61ian 811 | 1 ⊢ (𝜑 → (.r‘𝑊) = (·𝑖‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 ∅c0 4282 〈cop 4583 ‘cfv 6489 (class class class)co 7355 sSet csts 17081 ndxcnx 17111 Basecbs 17127 ↾s cress 17148 .rcmulr 17169 Scalarcsca 17171 ·𝑠 cvsca 17172 ·𝑖cip 17173 subringAlg csra 21114 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-1cn 11075 ax-addcl 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-sets 17082 df-slot 17100 df-ndx 17112 df-ip 17186 df-sra 21116 |
| This theorem is referenced by: frlmip 21724 rrxip 25337 |
| Copyright terms: Public domain | W3C validator |