| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sraip | Structured version Visualization version GIF version | ||
| Description: The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
| Ref | Expression |
|---|---|
| sraip | ⊢ (𝜑 → (.r‘𝑊) = (·𝑖‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7446 | . . . 4 ⊢ ((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) ∈ V | |
| 2 | fvex 6899 | . . . 4 ⊢ (.r‘𝑊) ∈ V | |
| 3 | ipid 17347 | . . . . 5 ⊢ ·𝑖 = Slot (·𝑖‘ndx) | |
| 4 | 3 | setsid 17226 | . . . 4 ⊢ ((((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) ∈ V ∧ (.r‘𝑊) ∈ V) → (.r‘𝑊) = (·𝑖‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
| 5 | 1, 2, 4 | mp2an 692 | . . 3 ⊢ (.r‘𝑊) = (·𝑖‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 6 | srapart.a | . . . . . 6 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| 8 | srapart.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
| 9 | sraval 21142 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
| 10 | 8, 9 | sylan2 593 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 11 | 7, 10 | eqtrd 2769 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 12 | 11 | fveq2d 6890 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (·𝑖‘𝐴) = (·𝑖‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
| 13 | 5, 12 | eqtr4id 2788 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = (·𝑖‘𝐴)) |
| 14 | 3 | str0 17208 | . . 3 ⊢ ∅ = (·𝑖‘∅) |
| 15 | fvprc 6878 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (.r‘𝑊) = ∅) | |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = ∅) |
| 17 | fv2prc 6931 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅) | |
| 18 | 6, 17 | sylan9eqr 2791 | . . . 4 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅) |
| 19 | 18 | fveq2d 6890 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (·𝑖‘𝐴) = (·𝑖‘∅)) |
| 20 | 14, 16, 19 | 3eqtr4a 2795 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = (·𝑖‘𝐴)) |
| 21 | 13, 20 | pm2.61ian 811 | 1 ⊢ (𝜑 → (.r‘𝑊) = (·𝑖‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 ∅c0 4313 〈cop 4612 ‘cfv 6541 (class class class)co 7413 sSet csts 17182 ndxcnx 17212 Basecbs 17229 ↾s cress 17252 .rcmulr 17274 Scalarcsca 17276 ·𝑠 cvsca 17277 ·𝑖cip 17278 subringAlg csra 21138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-1cn 11195 ax-addcl 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-sets 17183 df-slot 17201 df-ndx 17213 df-ip 17291 df-sra 21140 |
| This theorem is referenced by: frlmip 21752 rrxip 25360 |
| Copyright terms: Public domain | W3C validator |