| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srasca | Structured version Visualization version GIF version | ||
| Description: The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.) |
| Ref | Expression |
|---|---|
| srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
| Ref | Expression |
|---|---|
| srasca | ⊢ (𝜑 → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaid 17334 | . . . . 5 ⊢ Scalar = Slot (Scalar‘ndx) | |
| 2 | vscandxnscandx 17343 | . . . . . 6 ⊢ ( ·𝑠 ‘ndx) ≠ (Scalar‘ndx) | |
| 3 | 2 | necomi 2987 | . . . . 5 ⊢ (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) |
| 4 | 1, 3 | setsnid 17232 | . . . 4 ⊢ (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) = (Scalar‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) |
| 5 | slotsdifipndx 17354 | . . . . . 6 ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx)) | |
| 6 | 5 | simpri 485 | . . . . 5 ⊢ (Scalar‘ndx) ≠ (·𝑖‘ndx) |
| 7 | 1, 6 | setsnid 17232 | . . . 4 ⊢ (Scalar‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) = (Scalar‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 8 | 4, 7 | eqtri 2759 | . . 3 ⊢ (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) = (Scalar‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 9 | ovexd 7445 | . . . 4 ⊢ (𝜑 → (𝑊 ↾s 𝑆) ∈ V) | |
| 10 | 1 | setsid 17231 | . . . 4 ⊢ ((𝑊 ∈ V ∧ (𝑊 ↾s 𝑆) ∈ V) → (𝑊 ↾s 𝑆) = (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉))) |
| 11 | 9, 10 | sylan2 593 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉))) |
| 12 | srapart.a | . . . . . 6 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
| 13 | 12 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| 14 | srapart.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
| 15 | sraval 21138 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
| 16 | 14, 15 | sylan2 593 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 17 | 13, 16 | eqtrd 2771 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 18 | 17 | fveq2d 6885 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (Scalar‘𝐴) = (Scalar‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
| 19 | 8, 11, 18 | 3eqtr4a 2797 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
| 20 | 1 | str0 17213 | . . 3 ⊢ ∅ = (Scalar‘∅) |
| 21 | reldmress 17258 | . . . . 5 ⊢ Rel dom ↾s | |
| 22 | 21 | ovprc1 7449 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝑊 ↾s 𝑆) = ∅) |
| 23 | 22 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = ∅) |
| 24 | fv2prc 6926 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅) | |
| 25 | 12, 24 | sylan9eqr 2793 | . . . 4 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅) |
| 26 | 25 | fveq2d 6885 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (Scalar‘𝐴) = (Scalar‘∅)) |
| 27 | 20, 23, 26 | 3eqtr4a 2797 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
| 28 | 19, 27 | pm2.61ian 811 | 1 ⊢ (𝜑 → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 ⊆ wss 3931 ∅c0 4313 〈cop 4612 ‘cfv 6536 (class class class)co 7410 sSet csts 17187 ndxcnx 17217 Basecbs 17233 ↾s cress 17256 .rcmulr 17277 Scalarcsca 17279 ·𝑠 cvsca 17280 ·𝑖cip 17281 subringAlg csra 21134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-sets 17188 df-slot 17206 df-ndx 17218 df-ress 17257 df-sca 17292 df-vsca 17293 df-ip 17294 df-sra 21136 |
| This theorem is referenced by: sralmod 21150 rlmsca 21161 rlmsca2 21162 frlmip 21743 sraassab 21833 sraassaOLD 21835 evls1maplmhm 22320 sranlm 24628 srabn 25317 rrxprds 25346 sralvec 33630 drgext0gsca 33636 drgextlsp 33638 fedgmullem1 33674 fedgmullem2 33675 fedgmul 33676 extdg1id 33712 ccfldsrarelvec 33717 ccfldextdgrr 33718 fldextrspunlsplem 33719 fldextrspunlsp 33720 fldextrspunlem1 33721 fldextrspunfld 33722 |
| Copyright terms: Public domain | W3C validator |