Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > srasca | Structured version Visualization version GIF version |
Description: The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
Ref | Expression |
---|---|
srasca | ⊢ (𝜑 → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaid 16889 | . . . . 5 ⊢ Scalar = Slot (Scalar‘ndx) | |
2 | 5re 11947 | . . . . . . 7 ⊢ 5 ∈ ℝ | |
3 | 5lt6 12041 | . . . . . . 7 ⊢ 5 < 6 | |
4 | 2, 3 | ltneii 10975 | . . . . . 6 ⊢ 5 ≠ 6 |
5 | scandx 16888 | . . . . . . 7 ⊢ (Scalar‘ndx) = 5 | |
6 | vscandx 16891 | . . . . . . 7 ⊢ ( ·𝑠 ‘ndx) = 6 | |
7 | 5, 6 | neeq12i 3010 | . . . . . 6 ⊢ ((Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 5 ≠ 6) |
8 | 4, 7 | mpbir 234 | . . . . 5 ⊢ (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) |
9 | 1, 8 | setsnid 16792 | . . . 4 ⊢ (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) = (Scalar‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) |
10 | 5lt8 12054 | . . . . . . 7 ⊢ 5 < 8 | |
11 | 2, 10 | ltneii 10975 | . . . . . 6 ⊢ 5 ≠ 8 |
12 | ipndx 16899 | . . . . . . 7 ⊢ (·𝑖‘ndx) = 8 | |
13 | 5, 12 | neeq12i 3010 | . . . . . 6 ⊢ ((Scalar‘ndx) ≠ (·𝑖‘ndx) ↔ 5 ≠ 8) |
14 | 11, 13 | mpbir 234 | . . . . 5 ⊢ (Scalar‘ndx) ≠ (·𝑖‘ndx) |
15 | 1, 14 | setsnid 16792 | . . . 4 ⊢ (Scalar‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) = (Scalar‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
16 | 9, 15 | eqtri 2767 | . . 3 ⊢ (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) = (Scalar‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
17 | ovexd 7270 | . . . 4 ⊢ (𝜑 → (𝑊 ↾s 𝑆) ∈ V) | |
18 | 1 | setsid 16791 | . . . 4 ⊢ ((𝑊 ∈ V ∧ (𝑊 ↾s 𝑆) ∈ V) → (𝑊 ↾s 𝑆) = (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉))) |
19 | 17, 18 | sylan2 596 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉))) |
20 | srapart.a | . . . . . 6 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
21 | 20 | adantl 485 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
22 | srapart.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
23 | sraval 20246 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
24 | 22, 23 | sylan2 596 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
25 | 21, 24 | eqtrd 2779 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
26 | 25 | fveq2d 6743 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (Scalar‘𝐴) = (Scalar‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
27 | 16, 19, 26 | 3eqtr4a 2806 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
28 | 1 | str0 16775 | . . 3 ⊢ ∅ = (Scalar‘∅) |
29 | reldmress 16819 | . . . . 5 ⊢ Rel dom ↾s | |
30 | 29 | ovprc1 7274 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝑊 ↾s 𝑆) = ∅) |
31 | 30 | adantr 484 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = ∅) |
32 | fv2prc 6779 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅) | |
33 | 20, 32 | sylan9eqr 2802 | . . . 4 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅) |
34 | 33 | fveq2d 6743 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (Scalar‘𝐴) = (Scalar‘∅)) |
35 | 28, 31, 34 | 3eqtr4a 2806 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
36 | 27, 35 | pm2.61ian 812 | 1 ⊢ (𝜑 → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 Vcvv 3423 ⊆ wss 3883 ∅c0 4254 〈cop 4564 ‘cfv 6401 (class class class)co 7235 5c5 11918 6c6 11919 8c8 11921 sSet csts 16749 ndxcnx 16777 Basecbs 16793 ↾s cress 16817 .rcmulr 16836 Scalarcsca 16838 ·𝑠 cvsca 16839 ·𝑖cip 16840 subringAlg csra 20238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5196 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-cnex 10815 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-pre-mulgt0 10836 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-om 7667 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-er 8415 df-en 8651 df-dom 8652 df-sdom 8653 df-pnf 10899 df-mnf 10900 df-xr 10901 df-ltxr 10902 df-le 10903 df-sub 11094 df-neg 11095 df-nn 11861 df-2 11923 df-3 11924 df-4 11925 df-5 11926 df-6 11927 df-7 11928 df-8 11929 df-sets 16750 df-slot 16768 df-ndx 16778 df-ress 16818 df-sca 16851 df-vsca 16852 df-ip 16853 df-sra 20242 |
This theorem is referenced by: sralmod 20257 rlmsca 20270 rlmsca2 20271 frlmip 20773 sraassa 20862 sranlm 23614 srabn 24289 rrxprds 24318 sralvec 31421 drgext0gsca 31425 drgextlsp 31427 fedgmullem1 31456 fedgmullem2 31457 fedgmul 31458 extdg1id 31484 ccfldsrarelvec 31487 ccfldextdgrr 31488 |
Copyright terms: Public domain | W3C validator |