Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  srasca Structured version   Visualization version   GIF version

Theorem srasca 19873
 Description: The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
Assertion
Ref Expression
srasca (𝜑 → (𝑊s 𝑆) = (Scalar‘𝐴))

Proof of Theorem srasca
StepHypRef Expression
1 scaid 16623 . . . . 5 Scalar = Slot (Scalar‘ndx)
2 5re 11713 . . . . . . 7 5 ∈ ℝ
3 5lt6 11807 . . . . . . 7 5 < 6
42, 3ltneii 10742 . . . . . 6 5 ≠ 6
5 scandx 16622 . . . . . . 7 (Scalar‘ndx) = 5
6 vscandx 16624 . . . . . . 7 ( ·𝑠 ‘ndx) = 6
75, 6neeq12i 3087 . . . . . 6 ((Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 5 ≠ 6)
84, 7mpbir 232 . . . . 5 (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx)
91, 8setsnid 16529 . . . 4 (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (Scalar‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
10 5lt8 11820 . . . . . . 7 5 < 8
112, 10ltneii 10742 . . . . . 6 5 ≠ 8
12 ipndx 16631 . . . . . . 7 (·𝑖‘ndx) = 8
135, 12neeq12i 3087 . . . . . 6 ((Scalar‘ndx) ≠ (·𝑖‘ndx) ↔ 5 ≠ 8)
1411, 13mpbir 232 . . . . 5 (Scalar‘ndx) ≠ (·𝑖‘ndx)
151, 14setsnid 16529 . . . 4 (Scalar‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = (Scalar‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
169, 15eqtri 2849 . . 3 (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (Scalar‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
17 ovexd 7183 . . . 4 (𝜑 → (𝑊s 𝑆) ∈ V)
181setsid 16528 . . . 4 ((𝑊 ∈ V ∧ (𝑊s 𝑆) ∈ V) → (𝑊s 𝑆) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)))
1917, 18sylan2 592 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (𝑊s 𝑆) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)))
20 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
2120adantl 482 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
22 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
23 sraval 19868 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
2422, 23sylan2 592 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
2521, 24eqtrd 2861 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
2625fveq2d 6671 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (Scalar‘𝐴) = (Scalar‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
2716, 19, 263eqtr4a 2887 . 2 ((𝑊 ∈ V ∧ 𝜑) → (𝑊s 𝑆) = (Scalar‘𝐴))
281str0 16525 . . 3 ∅ = (Scalar‘∅)
29 reldmress 16540 . . . . 5 Rel dom ↾s
3029ovprc1 7187 . . . 4 𝑊 ∈ V → (𝑊s 𝑆) = ∅)
3130adantr 481 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝑊s 𝑆) = ∅)
32 fv2prc 6707 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
3320, 32sylan9eqr 2883 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
3433fveq2d 6671 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (Scalar‘𝐴) = (Scalar‘∅))
3528, 31, 343eqtr4a 2887 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝑊s 𝑆) = (Scalar‘𝐴))
3627, 35pm2.61ian 808 1 (𝜑 → (𝑊s 𝑆) = (Scalar‘𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 396   = wceq 1530   ∈ wcel 2107   ≠ wne 3021  Vcvv 3500   ⊆ wss 3940  ∅c0 4295  ⟨cop 4570  ‘cfv 6352  (class class class)co 7148  5c5 11684  6c6 11685  8c8 11687  ndxcnx 16470   sSet csts 16471  Basecbs 16473   ↾s cress 16474  .rcmulr 16556  Scalarcsca 16558   ·𝑠 cvsca 16559  ·𝑖cip 16560  subringAlg csra 19860 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-ndx 16476  df-slot 16477  df-sets 16480  df-ress 16481  df-sca 16571  df-vsca 16572  df-ip 16573  df-sra 19864 This theorem is referenced by:  sralmod  19879  rlmsca  19892  rlmsca2  19893  sraassa  20018  frlmip  20838  sranlm  23208  srabn  23878  rrxprds  23907  sralvec  30876  drgext0gsca  30880  drgextlsp  30882  fedgmullem1  30911  fedgmullem2  30912  fedgmul  30913  extdg1id  30939  ccfldsrarelvec  30942  ccfldextdgrr  30943
 Copyright terms: Public domain W3C validator