MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srasca Structured version   Visualization version   GIF version

Theorem srasca 20251
Description: The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
Assertion
Ref Expression
srasca (𝜑 → (𝑊s 𝑆) = (Scalar‘𝐴))

Proof of Theorem srasca
StepHypRef Expression
1 scaid 16889 . . . . 5 Scalar = Slot (Scalar‘ndx)
2 5re 11947 . . . . . . 7 5 ∈ ℝ
3 5lt6 12041 . . . . . . 7 5 < 6
42, 3ltneii 10975 . . . . . 6 5 ≠ 6
5 scandx 16888 . . . . . . 7 (Scalar‘ndx) = 5
6 vscandx 16891 . . . . . . 7 ( ·𝑠 ‘ndx) = 6
75, 6neeq12i 3010 . . . . . 6 ((Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 5 ≠ 6)
84, 7mpbir 234 . . . . 5 (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx)
91, 8setsnid 16792 . . . 4 (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (Scalar‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
10 5lt8 12054 . . . . . . 7 5 < 8
112, 10ltneii 10975 . . . . . 6 5 ≠ 8
12 ipndx 16899 . . . . . . 7 (·𝑖‘ndx) = 8
135, 12neeq12i 3010 . . . . . 6 ((Scalar‘ndx) ≠ (·𝑖‘ndx) ↔ 5 ≠ 8)
1411, 13mpbir 234 . . . . 5 (Scalar‘ndx) ≠ (·𝑖‘ndx)
151, 14setsnid 16792 . . . 4 (Scalar‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = (Scalar‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
169, 15eqtri 2767 . . 3 (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (Scalar‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
17 ovexd 7270 . . . 4 (𝜑 → (𝑊s 𝑆) ∈ V)
181setsid 16791 . . . 4 ((𝑊 ∈ V ∧ (𝑊s 𝑆) ∈ V) → (𝑊s 𝑆) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)))
1917, 18sylan2 596 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (𝑊s 𝑆) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)))
20 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
2120adantl 485 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
22 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
23 sraval 20246 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
2422, 23sylan2 596 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
2521, 24eqtrd 2779 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
2625fveq2d 6743 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (Scalar‘𝐴) = (Scalar‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
2716, 19, 263eqtr4a 2806 . 2 ((𝑊 ∈ V ∧ 𝜑) → (𝑊s 𝑆) = (Scalar‘𝐴))
281str0 16775 . . 3 ∅ = (Scalar‘∅)
29 reldmress 16819 . . . . 5 Rel dom ↾s
3029ovprc1 7274 . . . 4 𝑊 ∈ V → (𝑊s 𝑆) = ∅)
3130adantr 484 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝑊s 𝑆) = ∅)
32 fv2prc 6779 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
3320, 32sylan9eqr 2802 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
3433fveq2d 6743 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (Scalar‘𝐴) = (Scalar‘∅))
3528, 31, 343eqtr4a 2806 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝑊s 𝑆) = (Scalar‘𝐴))
3627, 35pm2.61ian 812 1 (𝜑 → (𝑊s 𝑆) = (Scalar‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2112  wne 2943  Vcvv 3423  wss 3883  c0 4254  cop 4564  cfv 6401  (class class class)co 7235  5c5 11918  6c6 11919  8c8 11921   sSet csts 16749  ndxcnx 16777  Basecbs 16793  s cress 16817  .rcmulr 16836  Scalarcsca 16838   ·𝑠 cvsca 16839  ·𝑖cip 16840  subringAlg csra 20238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5196  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545  ax-cnex 10815  ax-resscn 10816  ax-1cn 10817  ax-icn 10818  ax-addcl 10819  ax-addrcl 10820  ax-mulcl 10821  ax-mulrcl 10822  ax-mulcom 10823  ax-addass 10824  ax-mulass 10825  ax-distr 10826  ax-i2m1 10827  ax-1ne0 10828  ax-1rid 10829  ax-rnegex 10830  ax-rrecex 10831  ax-cnre 10832  ax-pre-lttri 10833  ax-pre-lttrn 10834  ax-pre-ltadd 10835  ax-pre-mulgt0 10836
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5179  df-id 5472  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-we 5529  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-pred 6179  df-ord 6237  df-on 6238  df-lim 6239  df-suc 6240  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-riota 7192  df-ov 7238  df-oprab 7239  df-mpo 7240  df-om 7667  df-wrecs 8071  df-recs 8132  df-rdg 8170  df-er 8415  df-en 8651  df-dom 8652  df-sdom 8653  df-pnf 10899  df-mnf 10900  df-xr 10901  df-ltxr 10902  df-le 10903  df-sub 11094  df-neg 11095  df-nn 11861  df-2 11923  df-3 11924  df-4 11925  df-5 11926  df-6 11927  df-7 11928  df-8 11929  df-sets 16750  df-slot 16768  df-ndx 16778  df-ress 16818  df-sca 16851  df-vsca 16852  df-ip 16853  df-sra 20242
This theorem is referenced by:  sralmod  20257  rlmsca  20270  rlmsca2  20271  frlmip  20773  sraassa  20862  sranlm  23614  srabn  24289  rrxprds  24318  sralvec  31421  drgext0gsca  31425  drgextlsp  31427  fedgmullem1  31456  fedgmullem2  31457  fedgmul  31458  extdg1id  31484  ccfldsrarelvec  31487  ccfldextdgrr  31488
  Copyright terms: Public domain W3C validator