| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sravsca | Structured version Visualization version GIF version | ||
| Description: The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.) |
| Ref | Expression |
|---|---|
| srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
| Ref | Expression |
|---|---|
| sravsca | ⊢ (𝜑 → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7420 | . . . . 5 ⊢ (𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) ∈ V | |
| 2 | fvex 6871 | . . . . 5 ⊢ (.r‘𝑊) ∈ V | |
| 3 | vscaid 17283 | . . . . . 6 ⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) | |
| 4 | 3 | setsid 17177 | . . . . 5 ⊢ (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) ∈ V ∧ (.r‘𝑊) ∈ V) → (.r‘𝑊) = ( ·𝑠 ‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉))) |
| 5 | 1, 2, 4 | mp2an 692 | . . . 4 ⊢ (.r‘𝑊) = ( ·𝑠 ‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) |
| 6 | slotsdifipndx 17298 | . . . . . 6 ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx)) | |
| 7 | 6 | simpli 483 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) |
| 8 | 3, 7 | setsnid 17178 | . . . 4 ⊢ ( ·𝑠 ‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) = ( ·𝑠 ‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 9 | 5, 8 | eqtri 2752 | . . 3 ⊢ (.r‘𝑊) = ( ·𝑠 ‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 10 | srapart.a | . . . . . 6 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| 12 | srapart.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
| 13 | sraval 21082 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
| 14 | 12, 13 | sylan2 593 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 15 | 11, 14 | eqtrd 2764 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 16 | 15 | fveq2d 6862 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
| 17 | 9, 16 | eqtr4id 2783 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) |
| 18 | 3 | str0 17159 | . . 3 ⊢ ∅ = ( ·𝑠 ‘∅) |
| 19 | fvprc 6850 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (.r‘𝑊) = ∅) | |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = ∅) |
| 21 | fv2prc 6903 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅) | |
| 22 | 10, 21 | sylan9eqr 2786 | . . . 4 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅) |
| 23 | 22 | fveq2d 6862 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘∅)) |
| 24 | 18, 20, 23 | 3eqtr4a 2790 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) |
| 25 | 17, 24 | pm2.61ian 811 | 1 ⊢ (𝜑 → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 〈cop 4595 ‘cfv 6511 (class class class)co 7387 sSet csts 17133 ndxcnx 17163 Basecbs 17179 ↾s cress 17200 .rcmulr 17221 Scalarcsca 17223 ·𝑠 cvsca 17224 ·𝑖cip 17225 subringAlg csra 21078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-sets 17134 df-slot 17152 df-ndx 17164 df-sca 17236 df-vsca 17237 df-ip 17238 df-sra 21080 |
| This theorem is referenced by: sralmod 21094 rlmvsca 21107 sraassab 21777 sraassaOLD 21779 evls1maplmhm 22264 sranlm 24572 drgextvsca 33586 drgextlsp 33589 fedgmullem1 33625 extdg1id 33661 ccfldsrarelvec 33666 ccfldextdgrr 33667 fldextrspunlsplem 33668 fldextrspunlsp 33669 |
| Copyright terms: Public domain | W3C validator |