MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sravsca Structured version   Visualization version   GIF version

Theorem sravsca 19666
Description: The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
Assertion
Ref Expression
sravsca (𝜑 → (.r𝑊) = ( ·𝑠𝐴))

Proof of Theorem sravsca
StepHypRef Expression
1 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
21adantl 474 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
3 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
4 sraval 19660 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
53, 4sylan2 583 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
62, 5eqtrd 2808 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
76fveq2d 6497 . . 3 ((𝑊 ∈ V ∧ 𝜑) → ( ·𝑠𝐴) = ( ·𝑠 ‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
8 ovex 7002 . . . . 5 (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V
9 fvex 6506 . . . . 5 (.r𝑊) ∈ V
10 vscaid 16481 . . . . . 6 ·𝑠 = Slot ( ·𝑠 ‘ndx)
1110setsid 16384 . . . . 5 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ (.r𝑊) ∈ V) → (.r𝑊) = ( ·𝑠 ‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)))
128, 9, 11mp2an 679 . . . 4 (.r𝑊) = ( ·𝑠 ‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
13 6re 11526 . . . . . . 7 6 ∈ ℝ
14 6lt8 11633 . . . . . . 7 6 < 8
1513, 14ltneii 10545 . . . . . 6 6 ≠ 8
16 vscandx 16480 . . . . . . 7 ( ·𝑠 ‘ndx) = 6
17 ipndx 16487 . . . . . . 7 (·𝑖‘ndx) = 8
1816, 17neeq12i 3027 . . . . . 6 (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ↔ 6 ≠ 8)
1915, 18mpbir 223 . . . . 5 ( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx)
2010, 19setsnid 16385 . . . 4 ( ·𝑠 ‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = ( ·𝑠 ‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
2112, 20eqtri 2796 . . 3 (.r𝑊) = ( ·𝑠 ‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
227, 21syl6reqr 2827 . 2 ((𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = ( ·𝑠𝐴))
2310str0 16381 . . 3 ∅ = ( ·𝑠 ‘∅)
24 fvprc 6486 . . . 4 𝑊 ∈ V → (.r𝑊) = ∅)
2524adantr 473 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = ∅)
26 fv2prc 6534 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
271, 26sylan9eqr 2830 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
2827fveq2d 6497 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → ( ·𝑠𝐴) = ( ·𝑠 ‘∅))
2923, 25, 283eqtr4a 2834 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = ( ·𝑠𝐴))
3022, 29pm2.61ian 799 1 (𝜑 → (.r𝑊) = ( ·𝑠𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387   = wceq 1507  wcel 2048  wne 2961  Vcvv 3409  wss 3825  c0 4173  cop 4441  cfv 6182  (class class class)co 6970  6c6 11492  8c8 11494  ndxcnx 16326   sSet csts 16327  Basecbs 16329  s cress 16330  .rcmulr 16412  Scalarcsca 16414   ·𝑠 cvsca 16415  ·𝑖cip 16416  subringAlg csra 19652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-ndx 16332  df-slot 16333  df-sets 16336  df-vsca 16428  df-ip 16429  df-sra 19656
This theorem is referenced by:  sralmod  19671  rlmvsca  19686  sraassa  19809  sranlm  22986  drgextvsca  30578  drgextlsp  30581  fedgmullem1  30610  extdg1id  30638  ccfldsrarelvec  30641  ccfldextdgrr  30642
  Copyright terms: Public domain W3C validator