Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sravsca | Structured version Visualization version GIF version |
Description: The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.) |
Ref | Expression |
---|---|
srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
Ref | Expression |
---|---|
sravsca | ⊢ (𝜑 → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7346 | . . . . 5 ⊢ (𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) ∈ V | |
2 | fvex 6822 | . . . . 5 ⊢ (.r‘𝑊) ∈ V | |
3 | vscaid 17097 | . . . . . 6 ⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) | |
4 | 3 | setsid 16976 | . . . . 5 ⊢ (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) ∈ V ∧ (.r‘𝑊) ∈ V) → (.r‘𝑊) = ( ·𝑠 ‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉))) |
5 | 1, 2, 4 | mp2an 689 | . . . 4 ⊢ (.r‘𝑊) = ( ·𝑠 ‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) |
6 | slotsdifipndx 17112 | . . . . . 6 ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx)) | |
7 | 6 | simpli 484 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) |
8 | 3, 7 | setsnid 16977 | . . . 4 ⊢ ( ·𝑠 ‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) = ( ·𝑠 ‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
9 | 5, 8 | eqtri 2765 | . . 3 ⊢ (.r‘𝑊) = ( ·𝑠 ‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
10 | srapart.a | . . . . . 6 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
11 | 10 | adantl 482 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
12 | srapart.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
13 | sraval 20509 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
14 | 12, 13 | sylan2 593 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
15 | 11, 14 | eqtrd 2777 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
16 | 15 | fveq2d 6813 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
17 | 9, 16 | eqtr4id 2796 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) |
18 | 3 | str0 16957 | . . 3 ⊢ ∅ = ( ·𝑠 ‘∅) |
19 | fvprc 6801 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (.r‘𝑊) = ∅) | |
20 | 19 | adantr 481 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = ∅) |
21 | fv2prc 6851 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅) | |
22 | 10, 21 | sylan9eqr 2799 | . . . 4 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅) |
23 | 22 | fveq2d 6813 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘∅)) |
24 | 18, 20, 23 | 3eqtr4a 2803 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) |
25 | 17, 24 | pm2.61ian 809 | 1 ⊢ (𝜑 → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 Vcvv 3441 ⊆ wss 3896 ∅c0 4266 〈cop 4575 ‘cfv 6463 (class class class)co 7313 sSet csts 16931 ndxcnx 16961 Basecbs 16979 ↾s cress 17008 .rcmulr 17030 Scalarcsca 17032 ·𝑠 cvsca 17033 ·𝑖cip 17034 subringAlg csra 20501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-7 12111 df-8 12112 df-sets 16932 df-slot 16950 df-ndx 16962 df-sca 17045 df-vsca 17046 df-ip 17047 df-sra 20505 |
This theorem is referenced by: sralmod 20528 rlmvsca 20543 sraassa 21145 sranlm 23919 drgextvsca 31784 drgextlsp 31787 fedgmullem1 31816 extdg1id 31844 ccfldsrarelvec 31847 ccfldextdgrr 31848 |
Copyright terms: Public domain | W3C validator |