MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sravsca Structured version   Visualization version   GIF version

Theorem sravsca 21203
Description: The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
Assertion
Ref Expression
sravsca (𝜑 → (.r𝑊) = ( ·𝑠𝐴))

Proof of Theorem sravsca
StepHypRef Expression
1 ovex 7464 . . . . 5 (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V
2 fvex 6920 . . . . 5 (.r𝑊) ∈ V
3 vscaid 17366 . . . . . 6 ·𝑠 = Slot ( ·𝑠 ‘ndx)
43setsid 17242 . . . . 5 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ (.r𝑊) ∈ V) → (.r𝑊) = ( ·𝑠 ‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)))
51, 2, 4mp2an 692 . . . 4 (.r𝑊) = ( ·𝑠 ‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
6 slotsdifipndx 17381 . . . . . 6 (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx))
76simpli 483 . . . . 5 ( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx)
83, 7setsnid 17243 . . . 4 ( ·𝑠 ‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = ( ·𝑠 ‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
95, 8eqtri 2763 . . 3 (.r𝑊) = ( ·𝑠 ‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
10 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
1110adantl 481 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
12 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
13 sraval 21192 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
1412, 13sylan2 593 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
1511, 14eqtrd 2775 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
1615fveq2d 6911 . . 3 ((𝑊 ∈ V ∧ 𝜑) → ( ·𝑠𝐴) = ( ·𝑠 ‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
179, 16eqtr4id 2794 . 2 ((𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = ( ·𝑠𝐴))
183str0 17223 . . 3 ∅ = ( ·𝑠 ‘∅)
19 fvprc 6899 . . . 4 𝑊 ∈ V → (.r𝑊) = ∅)
2019adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = ∅)
21 fv2prc 6952 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
2210, 21sylan9eqr 2797 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
2322fveq2d 6911 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → ( ·𝑠𝐴) = ( ·𝑠 ‘∅))
2418, 20, 233eqtr4a 2801 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = ( ·𝑠𝐴))
2517, 24pm2.61ian 812 1 (𝜑 → (.r𝑊) = ( ·𝑠𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  wss 3963  c0 4339  cop 4637  cfv 6563  (class class class)co 7431   sSet csts 17197  ndxcnx 17227  Basecbs 17245  s cress 17274  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  ·𝑖cip 17303  subringAlg csra 21188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-sets 17198  df-slot 17216  df-ndx 17228  df-sca 17314  df-vsca 17315  df-ip 17316  df-sra 21190
This theorem is referenced by:  sralmod  21212  rlmvsca  21225  sraassab  21906  sraassaOLD  21908  evls1maplmhm  22397  sranlm  24721  drgextvsca  33620  drgextlsp  33623  fedgmullem1  33657  extdg1id  33691  ccfldsrarelvec  33696  ccfldextdgrr  33697
  Copyright terms: Public domain W3C validator