Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sravscaOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of sravsca 20529 as of 12-Nov-2024. The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
Ref | Expression |
---|---|
sravscaOLD | ⊢ (𝜑 → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7349 | . . . . 5 ⊢ (𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) ∈ V | |
2 | fvex 6824 | . . . . 5 ⊢ (.r‘𝑊) ∈ V | |
3 | vscaid 17104 | . . . . . 6 ⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) | |
4 | 3 | setsid 16983 | . . . . 5 ⊢ (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) ∈ V ∧ (.r‘𝑊) ∈ V) → (.r‘𝑊) = ( ·𝑠 ‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉))) |
5 | 1, 2, 4 | mp2an 689 | . . . 4 ⊢ (.r‘𝑊) = ( ·𝑠 ‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) |
6 | 6re 12142 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
7 | 6lt8 12245 | . . . . . . 7 ⊢ 6 < 8 | |
8 | 6, 7 | ltneii 11167 | . . . . . 6 ⊢ 6 ≠ 8 |
9 | vscandx 17103 | . . . . . . 7 ⊢ ( ·𝑠 ‘ndx) = 6 | |
10 | ipndx 17114 | . . . . . . 7 ⊢ (·𝑖‘ndx) = 8 | |
11 | 9, 10 | neeq12i 3007 | . . . . . 6 ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ↔ 6 ≠ 8) |
12 | 8, 11 | mpbir 230 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) |
13 | 3, 12 | setsnid 16984 | . . . 4 ⊢ ( ·𝑠 ‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) = ( ·𝑠 ‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
14 | 5, 13 | eqtri 2764 | . . 3 ⊢ (.r‘𝑊) = ( ·𝑠 ‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
15 | srapart.a | . . . . . 6 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
16 | 15 | adantl 482 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
17 | srapart.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
18 | sraval 20518 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
19 | 17, 18 | sylan2 593 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
20 | 16, 19 | eqtrd 2776 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
21 | 20 | fveq2d 6815 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
22 | 14, 21 | eqtr4id 2795 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) |
23 | 3 | str0 16964 | . . 3 ⊢ ∅ = ( ·𝑠 ‘∅) |
24 | fvprc 6803 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (.r‘𝑊) = ∅) | |
25 | 24 | adantr 481 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = ∅) |
26 | fv2prc 6853 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅) | |
27 | 15, 26 | sylan9eqr 2798 | . . . 4 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅) |
28 | 27 | fveq2d 6815 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘∅)) |
29 | 23, 25, 28 | 3eqtr4a 2802 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) |
30 | 22, 29 | pm2.61ian 809 | 1 ⊢ (𝜑 → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 Vcvv 3440 ⊆ wss 3896 ∅c0 4266 〈cop 4576 ‘cfv 6465 (class class class)co 7316 6c6 12111 8c8 12113 sSet csts 16938 ndxcnx 16968 Basecbs 16986 ↾s cress 17015 .rcmulr 17037 Scalarcsca 17039 ·𝑠 cvsca 17040 ·𝑖cip 17041 subringAlg csra 20510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-sets 16939 df-slot 16957 df-ndx 16969 df-vsca 17053 df-ip 17054 df-sra 20514 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |