MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sravscaOLD Structured version   Visualization version   GIF version

Theorem sravscaOLD 20495
Description: Obsolete proof of sravsca 20494 as of 12-Nov-2024. The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
Assertion
Ref Expression
sravscaOLD (𝜑 → (.r𝑊) = ( ·𝑠𝐴))

Proof of Theorem sravscaOLD
StepHypRef Expression
1 ovex 7340 . . . . 5 (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V
2 fvex 6817 . . . . 5 (.r𝑊) ∈ V
3 vscaid 17075 . . . . . 6 ·𝑠 = Slot ( ·𝑠 ‘ndx)
43setsid 16954 . . . . 5 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ (.r𝑊) ∈ V) → (.r𝑊) = ( ·𝑠 ‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)))
51, 2, 4mp2an 690 . . . 4 (.r𝑊) = ( ·𝑠 ‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
6 6re 12109 . . . . . . 7 6 ∈ ℝ
7 6lt8 12212 . . . . . . 7 6 < 8
86, 7ltneii 11134 . . . . . 6 6 ≠ 8
9 vscandx 17074 . . . . . . 7 ( ·𝑠 ‘ndx) = 6
10 ipndx 17085 . . . . . . 7 (·𝑖‘ndx) = 8
119, 10neeq12i 3008 . . . . . 6 (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ↔ 6 ≠ 8)
128, 11mpbir 230 . . . . 5 ( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx)
133, 12setsnid 16955 . . . 4 ( ·𝑠 ‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = ( ·𝑠 ‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
145, 13eqtri 2764 . . 3 (.r𝑊) = ( ·𝑠 ‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
15 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
1615adantl 483 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
17 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
18 sraval 20483 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
1917, 18sylan2 594 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
2016, 19eqtrd 2776 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
2120fveq2d 6808 . . 3 ((𝑊 ∈ V ∧ 𝜑) → ( ·𝑠𝐴) = ( ·𝑠 ‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
2214, 21eqtr4id 2795 . 2 ((𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = ( ·𝑠𝐴))
233str0 16935 . . 3 ∅ = ( ·𝑠 ‘∅)
24 fvprc 6796 . . . 4 𝑊 ∈ V → (.r𝑊) = ∅)
2524adantr 482 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = ∅)
26 fv2prc 6846 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
2715, 26sylan9eqr 2798 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
2827fveq2d 6808 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → ( ·𝑠𝐴) = ( ·𝑠 ‘∅))
2923, 25, 283eqtr4a 2802 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = ( ·𝑠𝐴))
3022, 29pm2.61ian 810 1 (𝜑 → (.r𝑊) = ( ·𝑠𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1539  wcel 2104  wne 2941  Vcvv 3437  wss 3892  c0 4262  cop 4571  cfv 6458  (class class class)co 7307  6c6 12078  8c8 12080   sSet csts 16909  ndxcnx 16939  Basecbs 16957  s cress 16986  .rcmulr 17008  Scalarcsca 17010   ·𝑠 cvsca 17011  ·𝑖cip 17012  subringAlg csra 20475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-sets 16910  df-slot 16928  df-ndx 16940  df-vsca 17024  df-ip 17025  df-sra 20479
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator