Step | Hyp | Ref
| Expression |
1 | | ovex 7445 |
. . . . 5
β’ (π sSet β¨(Scalarβndx),
(π βΎs
π)β©) β
V |
2 | | fvex 6904 |
. . . . 5
β’
(.rβπ) β V |
3 | | vscaid 17270 |
. . . . . 6
β’
Β·π = Slot (
Β·π βndx) |
4 | 3 | setsid 17146 |
. . . . 5
β’ (((π sSet β¨(Scalarβndx),
(π βΎs
π)β©) β V β§
(.rβπ)
β V) β (.rβπ) = ( Β·π
β((π sSet
β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©))) |
5 | 1, 2, 4 | mp2an 689 |
. . . 4
β’
(.rβπ) = ( Β·π
β((π sSet
β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©)) |
6 | | 6re 12307 |
. . . . . . 7
β’ 6 β
β |
7 | | 6lt8 12410 |
. . . . . . 7
β’ 6 <
8 |
8 | 6, 7 | ltneii 11332 |
. . . . . 6
β’ 6 β
8 |
9 | | vscandx 17269 |
. . . . . . 7
β’ (
Β·π βndx) = 6 |
10 | | ipndx 17280 |
. . . . . . 7
β’
(Β·πβndx) = 8 |
11 | 9, 10 | neeq12i 3006 |
. . . . . 6
β’ ((
Β·π βndx) β
(Β·πβndx) β 6 β
8) |
12 | 8, 11 | mpbir 230 |
. . . . 5
β’ (
Β·π βndx) β
(Β·πβndx) |
13 | 3, 12 | setsnid 17147 |
. . . 4
β’ (
Β·π β((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©)) = (
Β·π β(((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
14 | 5, 13 | eqtri 2759 |
. . 3
β’
(.rβπ) = ( Β·π
β(((π sSet
β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
15 | | srapart.a |
. . . . . 6
β’ (π β π΄ = ((subringAlg βπ)βπ)) |
16 | 15 | adantl 481 |
. . . . 5
β’ ((π β V β§ π) β π΄ = ((subringAlg βπ)βπ)) |
17 | | srapart.s |
. . . . . 6
β’ (π β π β (Baseβπ)) |
18 | | sraval 20935 |
. . . . . 6
β’ ((π β V β§ π β (Baseβπ)) β ((subringAlg
βπ)βπ) = (((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
19 | 17, 18 | sylan2 592 |
. . . . 5
β’ ((π β V β§ π) β ((subringAlg βπ)βπ) = (((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
20 | 16, 19 | eqtrd 2771 |
. . . 4
β’ ((π β V β§ π) β π΄ = (((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
21 | 20 | fveq2d 6895 |
. . 3
β’ ((π β V β§ π) β (
Β·π βπ΄) = ( Β·π
β(((π sSet
β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©))) |
22 | 14, 21 | eqtr4id 2790 |
. 2
β’ ((π β V β§ π) β (.rβπ) = (
Β·π βπ΄)) |
23 | 3 | str0 17127 |
. . 3
β’ β
=
( Β·π ββ
) |
24 | | fvprc 6883 |
. . . 4
β’ (Β¬
π β V β
(.rβπ) =
β
) |
25 | 24 | adantr 480 |
. . 3
β’ ((Β¬
π β V β§ π) β
(.rβπ) =
β
) |
26 | | fv2prc 6936 |
. . . . 5
β’ (Β¬
π β V β
((subringAlg βπ)βπ) = β
) |
27 | 15, 26 | sylan9eqr 2793 |
. . . 4
β’ ((Β¬
π β V β§ π) β π΄ = β
) |
28 | 27 | fveq2d 6895 |
. . 3
β’ ((Β¬
π β V β§ π) β (
Β·π βπ΄) = ( Β·π
ββ
)) |
29 | 23, 25, 28 | 3eqtr4a 2797 |
. 2
β’ ((Β¬
π β V β§ π) β
(.rβπ) = (
Β·π βπ΄)) |
30 | 22, 29 | pm2.61ian 809 |
1
β’ (π β (.rβπ) = (
Β·π βπ΄)) |