Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvclex | Structured version Visualization version GIF version |
Description: Existence of the class of values of a set. (Contributed by NM, 9-Nov-1995.) |
Ref | Expression |
---|---|
fvclex.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
fvclex | ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvclex.1 | . . . 4 ⊢ 𝐹 ∈ V | |
2 | 1 | rnex 7733 | . . 3 ⊢ ran 𝐹 ∈ V |
3 | snex 5349 | . . 3 ⊢ {∅} ∈ V | |
4 | 2, 3 | unex 7574 | . 2 ⊢ (ran 𝐹 ∪ {∅}) ∈ V |
5 | fvclss 7097 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ⊆ (ran 𝐹 ∪ {∅}) | |
6 | 4, 5 | ssexi 5241 | 1 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 Vcvv 3422 ∪ cun 3881 ∅c0 4253 {csn 4558 ran crn 5581 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 df-iota 6376 df-fv 6426 |
This theorem is referenced by: fvresex 7776 |
Copyright terms: Public domain | W3C validator |