MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvclex Structured version   Visualization version   GIF version

Theorem fvclex 7937
Description: Existence of the class of values of a set. (Contributed by NM, 9-Nov-1995.)
Hypothesis
Ref Expression
fvclex.1 𝐹 ∈ V
Assertion
Ref Expression
fvclex {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ∈ V
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem fvclex
StepHypRef Expression
1 fvclex.1 . . . 4 𝐹 ∈ V
21rnex 7886 . . 3 ran 𝐹 ∈ V
3 snex 5391 . . 3 {∅} ∈ V
42, 3unex 7720 . 2 (ran 𝐹 ∪ {∅}) ∈ V
5 fvclss 7215 . 2 {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ (ran 𝐹 ∪ {∅})
64, 5ssexi 5277 1 {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wex 1779  wcel 2109  {cab 2707  Vcvv 3447  cun 3912  c0 4296  {csn 4589  ran crn 5639  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-cnv 5646  df-dm 5648  df-rn 5649  df-iota 6464  df-fv 6519
This theorem is referenced by:  fvresex  7938
  Copyright terms: Public domain W3C validator