Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvclex | Structured version Visualization version GIF version |
Description: Existence of the class of values of a set. (Contributed by NM, 9-Nov-1995.) |
Ref | Expression |
---|---|
fvclex.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
fvclex | ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvclex.1 | . . . 4 ⊢ 𝐹 ∈ V | |
2 | 1 | rnex 7779 | . . 3 ⊢ ran 𝐹 ∈ V |
3 | snex 5357 | . . 3 ⊢ {∅} ∈ V | |
4 | 2, 3 | unex 7616 | . 2 ⊢ (ran 𝐹 ∪ {∅}) ∈ V |
5 | fvclss 7135 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ⊆ (ran 𝐹 ∪ {∅}) | |
6 | 4, 5 | ssexi 5249 | 1 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∃wex 1777 ∈ wcel 2101 {cab 2710 Vcvv 3434 ∪ cun 3887 ∅c0 4259 {csn 4564 ran crn 5592 ‘cfv 6447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-cnv 5599 df-dm 5601 df-rn 5602 df-iota 6399 df-fv 6455 |
This theorem is referenced by: fvresex 7822 |
Copyright terms: Public domain | W3C validator |