|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > fvclex | Structured version Visualization version GIF version | ||
| Description: Existence of the class of values of a set. (Contributed by NM, 9-Nov-1995.) | 
| Ref | Expression | 
|---|---|
| fvclex.1 | ⊢ 𝐹 ∈ V | 
| Ref | Expression | 
|---|---|
| fvclex | ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ∈ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fvclex.1 | . . . 4 ⊢ 𝐹 ∈ V | |
| 2 | 1 | rnex 7933 | . . 3 ⊢ ran 𝐹 ∈ V | 
| 3 | snex 5435 | . . 3 ⊢ {∅} ∈ V | |
| 4 | 2, 3 | unex 7765 | . 2 ⊢ (ran 𝐹 ∪ {∅}) ∈ V | 
| 5 | fvclss 7262 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ⊆ (ran 𝐹 ∪ {∅}) | |
| 6 | 4, 5 | ssexi 5321 | 1 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ∈ V | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2713 Vcvv 3479 ∪ cun 3948 ∅c0 4332 {csn 4625 ran crn 5685 ‘cfv 6560 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-cnv 5692 df-dm 5694 df-rn 5695 df-iota 6513 df-fv 6568 | 
| This theorem is referenced by: fvresex 7985 | 
| Copyright terms: Public domain | W3C validator |