Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvclex Structured version   Visualization version   GIF version

Theorem fvclex 7655
 Description: Existence of the class of values of a set. (Contributed by NM, 9-Nov-1995.)
Hypothesis
Ref Expression
fvclex.1 𝐹 ∈ V
Assertion
Ref Expression
fvclex {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ∈ V
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem fvclex
StepHypRef Expression
1 fvclex.1 . . . 4 𝐹 ∈ V
21rnex 7612 . . 3 ran 𝐹 ∈ V
3 snex 5319 . . 3 {∅} ∈ V
42, 3unex 7463 . 2 (ran 𝐹 ∪ {∅}) ∈ V
5 fvclss 6993 . 2 {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ (ran 𝐹 ∪ {∅})
64, 5ssexi 5212 1 {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ∈ V
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538  ∃wex 1781   ∈ wcel 2115  {cab 2802  Vcvv 3480   ∪ cun 3917  ∅c0 4276  {csn 4550  ran crn 5543  ‘cfv 6343 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pr 5317  ax-un 7455 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-cnv 5550  df-dm 5552  df-rn 5553  df-iota 6302  df-fv 6351 This theorem is referenced by:  fvresex  7656
 Copyright terms: Public domain W3C validator