![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvclex | Structured version Visualization version GIF version |
Description: Existence of the class of values of a set. (Contributed by NM, 9-Nov-1995.) |
Ref | Expression |
---|---|
fvclex.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
fvclex | ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvclex.1 | . . . 4 ⊢ 𝐹 ∈ V | |
2 | 1 | rnex 7950 | . . 3 ⊢ ran 𝐹 ∈ V |
3 | snex 5451 | . . 3 ⊢ {∅} ∈ V | |
4 | 2, 3 | unex 7779 | . 2 ⊢ (ran 𝐹 ∪ {∅}) ∈ V |
5 | fvclss 7278 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ⊆ (ran 𝐹 ∪ {∅}) | |
6 | 4, 5 | ssexi 5340 | 1 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 Vcvv 3488 ∪ cun 3974 ∅c0 4352 {csn 4648 ran crn 5701 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 df-iota 6525 df-fv 6581 |
This theorem is referenced by: fvresex 8000 |
Copyright terms: Public domain | W3C validator |