MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvclex Structured version   Visualization version   GIF version

Theorem fvclex 7886
Description: Existence of the class of values of a set. (Contributed by NM, 9-Nov-1995.)
Hypothesis
Ref Expression
fvclex.1 𝐹 ∈ V
Assertion
Ref Expression
fvclex {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ∈ V
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem fvclex
StepHypRef Expression
1 fvclex.1 . . . 4 𝐹 ∈ V
21rnex 7835 . . 3 ran 𝐹 ∈ V
3 snex 5369 . . 3 {∅} ∈ V
42, 3unex 7672 . 2 (ran 𝐹 ∪ {∅}) ∈ V
5 fvclss 7170 . 2 {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ (ran 𝐹 ∪ {∅})
64, 5ssexi 5255 1 {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wex 1780  wcel 2111  {cab 2709  Vcvv 3436  cun 3895  c0 4278  {csn 4571  ran crn 5612  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-cnv 5619  df-dm 5621  df-rn 5622  df-iota 6432  df-fv 6484
This theorem is referenced by:  fvresex  7887
  Copyright terms: Public domain W3C validator