| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvclex | Structured version Visualization version GIF version | ||
| Description: Existence of the class of values of a set. (Contributed by NM, 9-Nov-1995.) |
| Ref | Expression |
|---|---|
| fvclex.1 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| fvclex | ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvclex.1 | . . . 4 ⊢ 𝐹 ∈ V | |
| 2 | 1 | rnex 7911 | . . 3 ⊢ ran 𝐹 ∈ V |
| 3 | snex 5411 | . . 3 ⊢ {∅} ∈ V | |
| 4 | 2, 3 | unex 7743 | . 2 ⊢ (ran 𝐹 ∪ {∅}) ∈ V |
| 5 | fvclss 7238 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ⊆ (ran 𝐹 ∪ {∅}) | |
| 6 | 4, 5 | ssexi 5297 | 1 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 Vcvv 3464 ∪ cun 3929 ∅c0 4313 {csn 4606 ran crn 5660 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-cnv 5667 df-dm 5669 df-rn 5670 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: fvresex 7963 |
| Copyright terms: Public domain | W3C validator |