MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvclex Structured version   Visualization version   GIF version

Theorem fvclex 7962
Description: Existence of the class of values of a set. (Contributed by NM, 9-Nov-1995.)
Hypothesis
Ref Expression
fvclex.1 𝐹 ∈ V
Assertion
Ref Expression
fvclex {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ∈ V
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem fvclex
StepHypRef Expression
1 fvclex.1 . . . 4 𝐹 ∈ V
21rnex 7911 . . 3 ran 𝐹 ∈ V
3 snex 5411 . . 3 {∅} ∈ V
42, 3unex 7743 . 2 (ran 𝐹 ∪ {∅}) ∈ V
5 fvclss 7238 . 2 {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ (ran 𝐹 ∪ {∅})
64, 5ssexi 5297 1 {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wex 1779  wcel 2109  {cab 2714  Vcvv 3464  cun 3929  c0 4313  {csn 4606  ran crn 5660  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-cnv 5667  df-dm 5669  df-rn 5670  df-iota 6489  df-fv 6544
This theorem is referenced by:  fvresex  7963
  Copyright terms: Public domain W3C validator