MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ovv Structured version   Visualization version   GIF version

Theorem f1ovv 7890
Description: The codomain/range of a 1-1 onto function is a set iff its domain is a set. (Contributed by AV, 21-Mar-2019.)
Assertion
Ref Expression
f1ovv (𝐹:𝐴1-1-onto𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))

Proof of Theorem f1ovv
StepHypRef Expression
1 f1ofo 6770 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
2 focdmex 7888 . . 3 (𝐴 ∈ V → (𝐹:𝐴onto𝐵𝐵 ∈ V))
31, 2syl5com 31 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐴 ∈ V → 𝐵 ∈ V))
4 f1of1 6762 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
5 f1dmex 7889 . . . 4 ((𝐹:𝐴1-1𝐵𝐵 ∈ V) → 𝐴 ∈ V)
65ex 412 . . 3 (𝐹:𝐴1-1𝐵 → (𝐵 ∈ V → 𝐴 ∈ V))
74, 6syl 17 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐵 ∈ V → 𝐴 ∈ V))
83, 7impbid 212 1 (𝐹:𝐴1-1-onto𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2111  Vcvv 3436  1-1wf1 6478  ontowfo 6479  1-1-ontowf1o 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489
This theorem is referenced by:  fsetsnprcnex  47094  fsetprcnexALT  47101  uspgrex  48189
  Copyright terms: Public domain W3C validator