| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ovv | Structured version Visualization version GIF version | ||
| Description: The codomain/range of a 1-1 onto function is a set iff its domain is a set. (Contributed by AV, 21-Mar-2019.) |
| Ref | Expression |
|---|---|
| f1ovv | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofo 6807 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) | |
| 2 | focdmex 7934 | . . 3 ⊢ (𝐴 ∈ V → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) | |
| 3 | 1, 2 | syl5com 31 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V → 𝐵 ∈ V)) |
| 4 | f1of1 6799 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) | |
| 5 | f1dmex 7935 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 6 | 5 | ex 412 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐵 ∈ V → 𝐴 ∈ V)) |
| 7 | 4, 6 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐵 ∈ V → 𝐴 ∈ V)) |
| 8 | 3, 7 | impbid 212 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3447 –1-1→wf1 6508 –onto→wfo 6509 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 |
| This theorem is referenced by: fsetsnprcnex 47053 fsetprcnexALT 47060 uspgrex 48135 |
| Copyright terms: Public domain | W3C validator |