![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ovv | Structured version Visualization version GIF version |
Description: The codomain/range of a 1-1 onto function is a set iff its domain is a set. (Contributed by AV, 21-Mar-2019.) |
Ref | Expression |
---|---|
f1ovv | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofo 6869 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) | |
2 | focdmex 7996 | . . 3 ⊢ (𝐴 ∈ V → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) | |
3 | 1, 2 | syl5com 31 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V → 𝐵 ∈ V)) |
4 | f1of1 6861 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) | |
5 | f1dmex 7997 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
6 | 5 | ex 412 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐵 ∈ V → 𝐴 ∈ V)) |
7 | 4, 6 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐵 ∈ V → 𝐴 ∈ V)) |
8 | 3, 7 | impbid 212 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 Vcvv 3488 –1-1→wf1 6570 –onto→wfo 6571 –1-1-onto→wf1o 6572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: fsetsnprcnex 46970 fsetprcnexALT 46977 uspgrex 47873 |
Copyright terms: Public domain | W3C validator |