MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ovv Structured version   Visualization version   GIF version

Theorem f1ovv 7936
Description: The codomain/range of a 1-1 onto function is a set iff its domain is a set. (Contributed by AV, 21-Mar-2019.)
Assertion
Ref Expression
f1ovv (𝐹:𝐴1-1-onto𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))

Proof of Theorem f1ovv
StepHypRef Expression
1 f1ofo 6807 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
2 focdmex 7934 . . 3 (𝐴 ∈ V → (𝐹:𝐴onto𝐵𝐵 ∈ V))
31, 2syl5com 31 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐴 ∈ V → 𝐵 ∈ V))
4 f1of1 6799 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
5 f1dmex 7935 . . . 4 ((𝐹:𝐴1-1𝐵𝐵 ∈ V) → 𝐴 ∈ V)
65ex 412 . . 3 (𝐹:𝐴1-1𝐵 → (𝐵 ∈ V → 𝐴 ∈ V))
74, 6syl 17 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐵 ∈ V → 𝐴 ∈ V))
83, 7impbid 212 1 (𝐹:𝐴1-1-onto𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Vcvv 3447  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519
This theorem is referenced by:  fsetsnprcnex  47053  fsetprcnexALT  47060  uspgrex  48135
  Copyright terms: Public domain W3C validator