| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvilbd | Structured version Visualization version GIF version | ||
| Description: A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020.) |
| Ref | Expression |
|---|---|
| fvilbd.r | ⊢ (𝜑 → 𝑅 ∈ V) |
| Ref | Expression |
|---|---|
| fvilbd | ⊢ (𝜑 → 𝑅 ⊆ ( I ‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3952 | . 2 ⊢ 𝑅 ⊆ 𝑅 | |
| 2 | fvilbd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 3 | fvi 6898 | . . 3 ⊢ (𝑅 ∈ V → ( I ‘𝑅) = 𝑅) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → ( I ‘𝑅) = 𝑅) |
| 5 | 1, 4 | sseqtrrid 3973 | 1 ⊢ (𝜑 → 𝑅 ⊆ ( I ‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 I cid 5508 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |