| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvilbd | Structured version Visualization version GIF version | ||
| Description: A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020.) |
| Ref | Expression |
|---|---|
| fvilbd.r | ⊢ (𝜑 → 𝑅 ∈ V) |
| Ref | Expression |
|---|---|
| fvilbd | ⊢ (𝜑 → 𝑅 ⊆ ( I ‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3988 | . 2 ⊢ 𝑅 ⊆ 𝑅 | |
| 2 | fvilbd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 3 | fvi 6966 | . . 3 ⊢ (𝑅 ∈ V → ( I ‘𝑅) = 𝑅) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → ( I ‘𝑅) = 𝑅) |
| 5 | 1, 4 | sseqtrrid 4009 | 1 ⊢ (𝜑 → 𝑅 ⊆ ( I ‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ⊆ wss 3933 I cid 5559 ‘cfv 6542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6495 df-fun 6544 df-fv 6550 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |