Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvilbd Structured version   Visualization version   GIF version

Theorem fvilbd 43647
Description: A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020.)
Hypothesis
Ref Expression
fvilbd.r (𝜑𝑅 ∈ V)
Assertion
Ref Expression
fvilbd (𝜑𝑅 ⊆ ( I ‘𝑅))

Proof of Theorem fvilbd
StepHypRef Expression
1 ssid 3988 . 2 𝑅𝑅
2 fvilbd.r . . 3 (𝜑𝑅 ∈ V)
3 fvi 6966 . . 3 (𝑅 ∈ V → ( I ‘𝑅) = 𝑅)
42, 3syl 17 . 2 (𝜑 → ( I ‘𝑅) = 𝑅)
51, 4sseqtrrid 4009 1 (𝜑𝑅 ⊆ ( I ‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3464  wss 3933   I cid 5559  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6495  df-fun 6544  df-fv 6550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator