![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvilbd | Structured version Visualization version GIF version |
Description: A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020.) |
Ref | Expression |
---|---|
fvilbd.r | ⊢ (𝜑 → 𝑅 ∈ V) |
Ref | Expression |
---|---|
fvilbd | ⊢ (𝜑 → 𝑅 ⊆ ( I ‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3847 | . 2 ⊢ 𝑅 ⊆ 𝑅 | |
2 | fvilbd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
3 | fvi 6501 | . . 3 ⊢ (𝑅 ∈ V → ( I ‘𝑅) = 𝑅) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → ( I ‘𝑅) = 𝑅) |
5 | 1, 4 | syl5sseqr 3878 | 1 ⊢ (𝜑 → 𝑅 ⊆ ( I ‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 Vcvv 3413 ⊆ wss 3797 I cid 5248 ‘cfv 6122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pr 5126 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ral 3121 df-rex 3122 df-rab 3125 df-v 3415 df-sbc 3662 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-br 4873 df-opab 4935 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-iota 6085 df-fun 6124 df-fv 6130 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |