MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchaleph Structured version   Visualization version   GIF version

Theorem gchaleph 10668
Description: If (ℵ‘𝐴) is a GCH-set and its powerset is well-orderable, then the successor aleph (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴). (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchaleph ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴))

Proof of Theorem gchaleph
StepHypRef Expression
1 alephsucpw2 10108 . . 3 ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)
2 alephon 10066 . . . . 5 (ℵ‘suc 𝐴) ∈ On
3 onenon 9946 . . . . 5 ((ℵ‘suc 𝐴) ∈ On → (ℵ‘suc 𝐴) ∈ dom card)
42, 3ax-mp 5 . . . 4 (ℵ‘suc 𝐴) ∈ dom card
5 simp3 1138 . . . 4 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → 𝒫 (ℵ‘𝐴) ∈ dom card)
6 domtri2 9986 . . . 4 (((ℵ‘suc 𝐴) ∈ dom card ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ↔ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)))
74, 5, 6sylancr 587 . . 3 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ↔ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)))
81, 7mpbiri 257 . 2 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴))
9 fvex 6904 . . . . . . 7 (ℵ‘𝐴) ∈ V
10 simp1 1136 . . . . . . . 8 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → 𝐴 ∈ On)
11 alephgeom 10079 . . . . . . . 8 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
1210, 11sylib 217 . . . . . . 7 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ω ⊆ (ℵ‘𝐴))
13 ssdomg 8998 . . . . . . 7 ((ℵ‘𝐴) ∈ V → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)))
149, 12, 13mpsyl 68 . . . . . 6 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ω ≼ (ℵ‘𝐴))
15 domnsym 9101 . . . . . 6 (ω ≼ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≺ ω)
1614, 15syl 17 . . . . 5 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ¬ (ℵ‘𝐴) ≺ ω)
17 isfinite 9649 . . . . 5 ((ℵ‘𝐴) ∈ Fin ↔ (ℵ‘𝐴) ≺ ω)
1816, 17sylnibr 328 . . . 4 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ¬ (ℵ‘𝐴) ∈ Fin)
19 simp2 1137 . . . . 5 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘𝐴) ∈ GCH)
20 alephordilem1 10070 . . . . . 6 (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
21203ad2ant1 1133 . . . . 5 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
22 gchi 10621 . . . . . 6 (((ℵ‘𝐴) ∈ GCH ∧ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) ∧ (ℵ‘suc 𝐴) ≺ 𝒫 (ℵ‘𝐴)) → (ℵ‘𝐴) ∈ Fin)
23223expia 1121 . . . . 5 (((ℵ‘𝐴) ∈ GCH ∧ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) → ((ℵ‘suc 𝐴) ≺ 𝒫 (ℵ‘𝐴) → (ℵ‘𝐴) ∈ Fin))
2419, 21, 23syl2anc 584 . . . 4 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ((ℵ‘suc 𝐴) ≺ 𝒫 (ℵ‘𝐴) → (ℵ‘𝐴) ∈ Fin))
2518, 24mtod 197 . . 3 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ¬ (ℵ‘suc 𝐴) ≺ 𝒫 (ℵ‘𝐴))
26 domtri2 9986 . . . 4 ((𝒫 (ℵ‘𝐴) ∈ dom card ∧ (ℵ‘suc 𝐴) ∈ dom card) → (𝒫 (ℵ‘𝐴) ≼ (ℵ‘suc 𝐴) ↔ ¬ (ℵ‘suc 𝐴) ≺ 𝒫 (ℵ‘𝐴)))
275, 4, 26sylancl 586 . . 3 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (𝒫 (ℵ‘𝐴) ≼ (ℵ‘suc 𝐴) ↔ ¬ (ℵ‘suc 𝐴) ≺ 𝒫 (ℵ‘𝐴)))
2825, 27mpbird 256 . 2 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → 𝒫 (ℵ‘𝐴) ≼ (ℵ‘suc 𝐴))
29 sbth 9095 . 2 (((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≼ (ℵ‘suc 𝐴)) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴))
308, 28, 29syl2anc 584 1 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  w3a 1087  wcel 2106  Vcvv 3474  wss 3948  𝒫 cpw 4602   class class class wbr 5148  dom cdm 5676  Oncon0 6364  suc csuc 6366  cfv 6543  ωcom 7857  cen 8938  cdom 8939  csdm 8940  Fincfn 8941  cardccrd 9932  cale 9933  GCHcgch 10617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-oi 9507  df-har 9554  df-card 9936  df-aleph 9937  df-gch 10618
This theorem is referenced by:  gchaleph2  10669
  Copyright terms: Public domain W3C validator