MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchaleph Structured version   Visualization version   GIF version

Theorem gchaleph 10711
Description: If (ℵ‘𝐴) is a GCH-set and its powerset is well-orderable, then the successor aleph (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴). (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchaleph ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴))

Proof of Theorem gchaleph
StepHypRef Expression
1 alephsucpw2 10151 . . 3 ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)
2 alephon 10109 . . . . 5 (ℵ‘suc 𝐴) ∈ On
3 onenon 9989 . . . . 5 ((ℵ‘suc 𝐴) ∈ On → (ℵ‘suc 𝐴) ∈ dom card)
42, 3ax-mp 5 . . . 4 (ℵ‘suc 𝐴) ∈ dom card
5 simp3 1139 . . . 4 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → 𝒫 (ℵ‘𝐴) ∈ dom card)
6 domtri2 10029 . . . 4 (((ℵ‘suc 𝐴) ∈ dom card ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ↔ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)))
74, 5, 6sylancr 587 . . 3 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ↔ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)))
81, 7mpbiri 258 . 2 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴))
9 fvex 6919 . . . . . . 7 (ℵ‘𝐴) ∈ V
10 simp1 1137 . . . . . . . 8 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → 𝐴 ∈ On)
11 alephgeom 10122 . . . . . . . 8 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
1210, 11sylib 218 . . . . . . 7 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ω ⊆ (ℵ‘𝐴))
13 ssdomg 9040 . . . . . . 7 ((ℵ‘𝐴) ∈ V → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)))
149, 12, 13mpsyl 68 . . . . . 6 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ω ≼ (ℵ‘𝐴))
15 domnsym 9139 . . . . . 6 (ω ≼ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≺ ω)
1614, 15syl 17 . . . . 5 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ¬ (ℵ‘𝐴) ≺ ω)
17 isfinite 9692 . . . . 5 ((ℵ‘𝐴) ∈ Fin ↔ (ℵ‘𝐴) ≺ ω)
1816, 17sylnibr 329 . . . 4 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ¬ (ℵ‘𝐴) ∈ Fin)
19 simp2 1138 . . . . 5 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘𝐴) ∈ GCH)
20 alephordilem1 10113 . . . . . 6 (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
21203ad2ant1 1134 . . . . 5 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
22 gchi 10664 . . . . . 6 (((ℵ‘𝐴) ∈ GCH ∧ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) ∧ (ℵ‘suc 𝐴) ≺ 𝒫 (ℵ‘𝐴)) → (ℵ‘𝐴) ∈ Fin)
23223expia 1122 . . . . 5 (((ℵ‘𝐴) ∈ GCH ∧ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) → ((ℵ‘suc 𝐴) ≺ 𝒫 (ℵ‘𝐴) → (ℵ‘𝐴) ∈ Fin))
2419, 21, 23syl2anc 584 . . . 4 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ((ℵ‘suc 𝐴) ≺ 𝒫 (ℵ‘𝐴) → (ℵ‘𝐴) ∈ Fin))
2518, 24mtod 198 . . 3 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ¬ (ℵ‘suc 𝐴) ≺ 𝒫 (ℵ‘𝐴))
26 domtri2 10029 . . . 4 ((𝒫 (ℵ‘𝐴) ∈ dom card ∧ (ℵ‘suc 𝐴) ∈ dom card) → (𝒫 (ℵ‘𝐴) ≼ (ℵ‘suc 𝐴) ↔ ¬ (ℵ‘suc 𝐴) ≺ 𝒫 (ℵ‘𝐴)))
275, 4, 26sylancl 586 . . 3 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (𝒫 (ℵ‘𝐴) ≼ (ℵ‘suc 𝐴) ↔ ¬ (ℵ‘suc 𝐴) ≺ 𝒫 (ℵ‘𝐴)))
2825, 27mpbird 257 . 2 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → 𝒫 (ℵ‘𝐴) ≼ (ℵ‘suc 𝐴))
29 sbth 9133 . 2 (((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≼ (ℵ‘suc 𝐴)) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴))
308, 28, 29syl2anc 584 1 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1087  wcel 2108  Vcvv 3480  wss 3951  𝒫 cpw 4600   class class class wbr 5143  dom cdm 5685  Oncon0 6384  suc csuc 6386  cfv 6561  ωcom 7887  cen 8982  cdom 8983  csdm 8984  Fincfn 8985  cardccrd 9975  cale 9976  GCHcgch 10660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-oi 9550  df-har 9597  df-card 9979  df-aleph 9980  df-gch 10661
This theorem is referenced by:  gchaleph2  10712
  Copyright terms: Public domain W3C validator