Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispb Structured version   Visualization version   GIF version

Theorem gneispb 43833
Description: Given a neighborhood 𝑁 of 𝑃, each subset of the neighborhood space containing this neighborhood is also a neighborhood of 𝑃. Axiom B of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.)
Hypothesis
Ref Expression
gneispace.x 𝑋 = 𝐽
Assertion
Ref Expression
gneispb ((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∀𝑠 ∈ 𝒫 𝑋(𝑁𝑠𝑠 ∈ ((nei‘𝐽)‘{𝑃})))
Distinct variable groups:   𝐽,𝑠   𝑁,𝑠   𝑃,𝑠   𝑋,𝑠

Proof of Theorem gneispb
StepHypRef Expression
1 3simpb 1146 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
21ad2antrr 724 . . . 4 ((((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁𝑠) → (𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
3 simpr 483 . . . 4 ((((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁𝑠) → 𝑁𝑠)
4 simplr 767 . . . . 5 ((((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁𝑠) → 𝑠 ∈ 𝒫 𝑋)
54elpwid 4607 . . . 4 ((((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁𝑠) → 𝑠𝑋)
6 gneispace.x . . . . 5 𝑋 = 𝐽
76ssnei2 23106 . . . 4 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑁𝑠𝑠𝑋)) → 𝑠 ∈ ((nei‘𝐽)‘{𝑃}))
82, 3, 5, 7syl12anc 835 . . 3 ((((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁𝑠) → 𝑠 ∈ ((nei‘𝐽)‘{𝑃}))
98exp31 418 . 2 ((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑠 ∈ 𝒫 𝑋 → (𝑁𝑠𝑠 ∈ ((nei‘𝐽)‘{𝑃}))))
109ralrimiv 3135 1 ((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∀𝑠 ∈ 𝒫 𝑋(𝑁𝑠𝑠 ∈ ((nei‘𝐽)‘{𝑃})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  wss 3947  𝒫 cpw 4598  {csn 4624   cuni 4906  cfv 6544  Topctop 22881  neicnei 23087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-top 22882  df-nei 23088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator