| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gneispb | Structured version Visualization version GIF version | ||
| Description: Given a neighborhood 𝑁 of 𝑃, each subset of the neighborhood space containing this neighborhood is also a neighborhood of 𝑃. Axiom B of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.) |
| Ref | Expression |
|---|---|
| gneispace.x | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| gneispb | ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∀𝑠 ∈ 𝒫 𝑋(𝑁 ⊆ 𝑠 → 𝑠 ∈ ((nei‘𝐽)‘{𝑃}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 1149 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) | |
| 2 | 1 | ad2antrr 726 | . . . 4 ⊢ ((((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁 ⊆ 𝑠) → (𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) |
| 3 | simpr 484 | . . . 4 ⊢ ((((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁 ⊆ 𝑠) → 𝑁 ⊆ 𝑠) | |
| 4 | simplr 768 | . . . . 5 ⊢ ((((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁 ⊆ 𝑠) → 𝑠 ∈ 𝒫 𝑋) | |
| 5 | 4 | elpwid 4559 | . . . 4 ⊢ ((((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁 ⊆ 𝑠) → 𝑠 ⊆ 𝑋) |
| 6 | gneispace.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 7 | 6 | ssnei2 23029 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑁 ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑋)) → 𝑠 ∈ ((nei‘𝐽)‘{𝑃})) |
| 8 | 2, 3, 5, 7 | syl12anc 836 | . . 3 ⊢ ((((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁 ⊆ 𝑠) → 𝑠 ∈ ((nei‘𝐽)‘{𝑃})) |
| 9 | 8 | exp31 419 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑠 ∈ 𝒫 𝑋 → (𝑁 ⊆ 𝑠 → 𝑠 ∈ ((nei‘𝐽)‘{𝑃})))) |
| 10 | 9 | ralrimiv 3123 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∀𝑠 ∈ 𝒫 𝑋(𝑁 ⊆ 𝑠 → 𝑠 ∈ ((nei‘𝐽)‘{𝑃}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3902 𝒫 cpw 4550 {csn 4576 ∪ cuni 4859 ‘cfv 6481 Topctop 22806 neicnei 23010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-top 22807 df-nei 23011 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |