Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispb Structured version   Visualization version   GIF version

Theorem gneispb 44127
Description: Given a neighborhood 𝑁 of 𝑃, each subset of the neighborhood space containing this neighborhood is also a neighborhood of 𝑃. Axiom B of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.)
Hypothesis
Ref Expression
gneispace.x 𝑋 = 𝐽
Assertion
Ref Expression
gneispb ((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∀𝑠 ∈ 𝒫 𝑋(𝑁𝑠𝑠 ∈ ((nei‘𝐽)‘{𝑃})))
Distinct variable groups:   𝐽,𝑠   𝑁,𝑠   𝑃,𝑠   𝑋,𝑠

Proof of Theorem gneispb
StepHypRef Expression
1 3simpb 1149 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
21ad2antrr 726 . . . 4 ((((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁𝑠) → (𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
3 simpr 484 . . . 4 ((((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁𝑠) → 𝑁𝑠)
4 simplr 768 . . . . 5 ((((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁𝑠) → 𝑠 ∈ 𝒫 𝑋)
54elpwid 4575 . . . 4 ((((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁𝑠) → 𝑠𝑋)
6 gneispace.x . . . . 5 𝑋 = 𝐽
76ssnei2 23010 . . . 4 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑁𝑠𝑠𝑋)) → 𝑠 ∈ ((nei‘𝐽)‘{𝑃}))
82, 3, 5, 7syl12anc 836 . . 3 ((((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁𝑠) → 𝑠 ∈ ((nei‘𝐽)‘{𝑃}))
98exp31 419 . 2 ((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑠 ∈ 𝒫 𝑋 → (𝑁𝑠𝑠 ∈ ((nei‘𝐽)‘{𝑃}))))
109ralrimiv 3125 1 ((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∀𝑠 ∈ 𝒫 𝑋(𝑁𝑠𝑠 ∈ ((nei‘𝐽)‘{𝑃})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wss 3917  𝒫 cpw 4566  {csn 4592   cuni 4874  cfv 6514  Topctop 22787  neicnei 22991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-top 22788  df-nei 22992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator