Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispb Structured version   Visualization version   GIF version

Theorem gneispb 44144
Description: Given a neighborhood 𝑁 of 𝑃, each subset of the neighborhood space containing this neighborhood is also a neighborhood of 𝑃. Axiom B of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.)
Hypothesis
Ref Expression
gneispace.x 𝑋 = 𝐽
Assertion
Ref Expression
gneispb ((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∀𝑠 ∈ 𝒫 𝑋(𝑁𝑠𝑠 ∈ ((nei‘𝐽)‘{𝑃})))
Distinct variable groups:   𝐽,𝑠   𝑁,𝑠   𝑃,𝑠   𝑋,𝑠

Proof of Theorem gneispb
StepHypRef Expression
1 3simpb 1150 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
21ad2antrr 726 . . . 4 ((((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁𝑠) → (𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
3 simpr 484 . . . 4 ((((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁𝑠) → 𝑁𝑠)
4 simplr 769 . . . . 5 ((((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁𝑠) → 𝑠 ∈ 𝒫 𝑋)
54elpwid 4609 . . . 4 ((((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁𝑠) → 𝑠𝑋)
6 gneispace.x . . . . 5 𝑋 = 𝐽
76ssnei2 23124 . . . 4 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑁𝑠𝑠𝑋)) → 𝑠 ∈ ((nei‘𝐽)‘{𝑃}))
82, 3, 5, 7syl12anc 837 . . 3 ((((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁𝑠) → 𝑠 ∈ ((nei‘𝐽)‘{𝑃}))
98exp31 419 . 2 ((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑠 ∈ 𝒫 𝑋 → (𝑁𝑠𝑠 ∈ ((nei‘𝐽)‘{𝑃}))))
109ralrimiv 3145 1 ((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∀𝑠 ∈ 𝒫 𝑋(𝑁𝑠𝑠 ∈ ((nei‘𝐽)‘{𝑃})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wss 3951  𝒫 cpw 4600  {csn 4626   cuni 4907  cfv 6561  Topctop 22899  neicnei 23105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-top 22900  df-nei 23106
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator