![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gneispb | Structured version Visualization version GIF version |
Description: Given a neighborhood 𝑁 of 𝑃, each subset of the neighborhood space containing this neighborhood is also a neighborhood of 𝑃. Axiom B of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.) |
Ref | Expression |
---|---|
gneispace.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
gneispb | ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∀𝑠 ∈ 𝒫 𝑋(𝑁 ⊆ 𝑠 → 𝑠 ∈ ((nei‘𝐽)‘{𝑃}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb 1146 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) | |
2 | 1 | ad2antrr 724 | . . . 4 ⊢ ((((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁 ⊆ 𝑠) → (𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) |
3 | simpr 483 | . . . 4 ⊢ ((((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁 ⊆ 𝑠) → 𝑁 ⊆ 𝑠) | |
4 | simplr 767 | . . . . 5 ⊢ ((((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁 ⊆ 𝑠) → 𝑠 ∈ 𝒫 𝑋) | |
5 | 4 | elpwid 4607 | . . . 4 ⊢ ((((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁 ⊆ 𝑠) → 𝑠 ⊆ 𝑋) |
6 | gneispace.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
7 | 6 | ssnei2 23106 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑁 ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑋)) → 𝑠 ∈ ((nei‘𝐽)‘{𝑃})) |
8 | 2, 3, 5, 7 | syl12anc 835 | . . 3 ⊢ ((((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑁 ⊆ 𝑠) → 𝑠 ∈ ((nei‘𝐽)‘{𝑃})) |
9 | 8 | exp31 418 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑠 ∈ 𝒫 𝑋 → (𝑁 ⊆ 𝑠 → 𝑠 ∈ ((nei‘𝐽)‘{𝑃})))) |
10 | 9 | ralrimiv 3135 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∀𝑠 ∈ 𝒫 𝑋(𝑁 ⊆ 𝑠 → 𝑠 ∈ ((nei‘𝐽)‘{𝑃}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ⊆ wss 3947 𝒫 cpw 4598 {csn 4624 ∪ cuni 4906 ‘cfv 6544 Topctop 22881 neicnei 23087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-top 22882 df-nei 23088 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |