Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gricrcl Structured version   Visualization version   GIF version

Theorem gricrcl 47914
Description: Reverse closure of the "is isomorphic to" relation for graphs. (Contributed by AV, 12-Jun-2025.)
Assertion
Ref Expression
gricrcl (𝐺𝑔𝑟 𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V))

Proof of Theorem gricrcl
StepHypRef Expression
1 brgric 47912 . 2 (𝐺𝑔𝑟 𝑆 ↔ (𝐺 GraphIso 𝑆) ≠ ∅)
2 grimdmrel 47880 . . . 4 Rel dom GraphIso
32ovprc 7425 . . 3 (¬ (𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝐺 GraphIso 𝑆) = ∅)
43necon1ai 2952 . 2 ((𝐺 GraphIso 𝑆) ≠ ∅ → (𝐺 ∈ V ∧ 𝑆 ∈ V))
51, 4sylbi 217 1 (𝐺𝑔𝑟 𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2925  Vcvv 3447  c0 4296   class class class wbr 5107  (class class class)co 7387   GraphIso cgrim 47875  𝑔𝑟 cgric 47876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-1o 8434  df-map 8801  df-grim 47878  df-gric 47881
This theorem is referenced by:  gricbri  47916
  Copyright terms: Public domain W3C validator