Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimcnv Structured version   Visualization version   GIF version

Theorem grimcnv 47363
Description: The converse of a graph isomorphism is a graph isomorphism. (Contributed by AV, 1-May-2025.)
Assertion
Ref Expression
grimcnv (𝑆 ∈ UHGraph → (𝐹 ∈ (𝑆 GraphIso 𝑇) → 𝐹 ∈ (𝑇 GraphIso 𝑆)))

Proof of Theorem grimcnv
Dummy variables 𝑓 𝑗 𝑥 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . . 5 (Vtx‘𝑆) = (Vtx‘𝑆)
2 eqid 2725 . . . . 5 (Vtx‘𝑇) = (Vtx‘𝑇)
3 eqid 2725 . . . . 5 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2725 . . . . 5 (iEdg‘𝑇) = (iEdg‘𝑇)
51, 2, 3, 4grimprop 47353 . . . 4 (𝐹 ∈ (𝑆 GraphIso 𝑇) → (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))))
65adantl 480 . . 3 ((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) → (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))))
7 f1ocnv 6850 . . . . 5 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → 𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆))
87ad2antrl 726 . . . 4 (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))))) → 𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆))
9 vex 3465 . . . . . . . . 9 𝑗 ∈ V
10 cnvexg 7932 . . . . . . . . 9 (𝑗 ∈ V → 𝑗 ∈ V)
119, 10mp1i 13 . . . . . . . 8 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → 𝑗 ∈ V)
12 f1ocnv 6850 . . . . . . . . . 10 (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → 𝑗:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆))
1312ad2antrl 726 . . . . . . . . 9 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → 𝑗:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆))
14 f1ofo 6845 . . . . . . . . . . . . 13 (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → 𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇))
1514ad2antrl 726 . . . . . . . . . . . 12 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → 𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇))
16 foelcdmi 6959 . . . . . . . . . . . 12 ((𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → ∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗𝑦) = 𝑥)
1715, 16sylan 578 . . . . . . . . . . 11 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → ∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗𝑦) = 𝑥)
18 2fveq3 6901 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑦 → ((iEdg‘𝑇)‘(𝑗𝑖)) = ((iEdg‘𝑇)‘(𝑗𝑦)))
19 fveq2 6896 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑦 → ((iEdg‘𝑆)‘𝑖) = ((iEdg‘𝑆)‘𝑦))
2019imaeq2d 6064 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑦 → (𝐹 “ ((iEdg‘𝑆)‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)))
2118, 20eqeq12d 2741 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑦 → (((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) ↔ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
2221rspcv 3602 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ dom (iEdg‘𝑆) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
2322adantl 480 . . . . . . . . . . . . . . . . . . 19 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
24 f1ocnvfv1 7285 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (𝑗‘(𝑗𝑦)) = 𝑦)
2524ad4ant23 751 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → (𝑗‘(𝑗𝑦)) = 𝑦)
2625fveq2d 6900 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = ((iEdg‘𝑆)‘𝑦))
27 f1of1 6837 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → 𝐹:(Vtx‘𝑆)–1-1→(Vtx‘𝑇))
2827ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → 𝐹:(Vtx‘𝑆)–1-1→(Vtx‘𝑇))
291, 3uhgrss 28949 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑆 ∈ UHGraph ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆))
3029ad5ant15 757 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆))
31 f1imacnv 6854 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:(Vtx‘𝑆)–1-1→(Vtx‘𝑇) ∧ ((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆)) → (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))) = ((iEdg‘𝑆)‘𝑦))
3228, 30, 31syl2an2r 683 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))) = ((iEdg‘𝑆)‘𝑦))
3332eqcomd 2731 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑦) = (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
3433adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘𝑦) = (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
3526, 34eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
3635adantlr 713 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
37 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)))
3837eqcomd 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) = ((iEdg‘𝑇)‘(𝑗𝑦)))
3938imaeq2d 6064 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))))
4036, 39eqtrd 2765 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))))
4140ex 411 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦)))))
4241ex 411 . . . . . . . . . . . . . . . . . . 19 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))))))
4323, 42syld 47 . . . . . . . . . . . . . . . . . 18 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))))))
4443ex 411 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → (𝑦 ∈ dom (iEdg‘𝑆) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦)))))))
4544com23 86 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → (𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦)))))))
4645impr 453 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → (𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))))))
47 eleq1 2813 . . . . . . . . . . . . . . . . 17 ((𝑗𝑦) = 𝑥 → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) ↔ 𝑥 ∈ dom (iEdg‘𝑇)))
48 2fveq3 6901 . . . . . . . . . . . . . . . . . 18 ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = ((iEdg‘𝑆)‘(𝑗𝑥)))
49 fveq2 6896 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘(𝑗𝑦)) = ((iEdg‘𝑇)‘𝑥))
5049imaeq2d 6064 . . . . . . . . . . . . . . . . . 18 ((𝑗𝑦) = 𝑥 → (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))
5148, 50eqeq12d 2741 . . . . . . . . . . . . . . . . 17 ((𝑗𝑦) = 𝑥 → (((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))) ↔ ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
5247, 51imbi12d 343 . . . . . . . . . . . . . . . 16 ((𝑗𝑦) = 𝑥 → (((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦)))) ↔ (𝑥 ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))))
5352imbi2d 339 . . . . . . . . . . . . . . 15 ((𝑗𝑦) = 𝑥 → ((𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))))) ↔ (𝑦 ∈ dom (iEdg‘𝑆) → (𝑥 ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))))
5446, 53syl5ibcom 244 . . . . . . . . . . . . . 14 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → ((𝑗𝑦) = 𝑥 → (𝑦 ∈ dom (iEdg‘𝑆) → (𝑥 ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))))
5554com24 95 . . . . . . . . . . . . 13 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → (𝑥 ∈ dom (iEdg‘𝑇) → (𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))))
5655imp31 416 . . . . . . . . . . . 12 ((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
5756rexlimdva 3144 . . . . . . . . . . 11 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → (∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗𝑦) = 𝑥 → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
5817, 57mpd 15 . . . . . . . . . 10 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))
5958ralrimiva 3135 . . . . . . . . 9 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))
6013, 59jca 510 . . . . . . . 8 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → (𝑗:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
61 f1oeq1 6826 . . . . . . . . 9 (𝑓 = 𝑗 → (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ↔ 𝑗:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆)))
62 fveq1 6895 . . . . . . . . . . 11 (𝑓 = 𝑗 → (𝑓𝑥) = (𝑗𝑥))
6362fveqeq2d 6904 . . . . . . . . . 10 (𝑓 = 𝑗 → (((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) ↔ ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
6463ralbidv 3167 . . . . . . . . 9 (𝑓 = 𝑗 → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) ↔ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
6561, 64anbi12d 630 . . . . . . . 8 (𝑓 = 𝑗 → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) ↔ (𝑗:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))))
6611, 60, 65spcedv 3582 . . . . . . 7 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
6766ex 411 . . . . . 6 (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → ((𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))))
6867exlimdv 1928 . . . . 5 (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → (∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))))
6968impr 453 . . . 4 (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))))) → ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
70 grimdmrel 47350 . . . . . . . 8 Rel dom GraphIso
7170ovrcl 7460 . . . . . . 7 (𝐹 ∈ (𝑆 GraphIso 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
7271simprd 494 . . . . . 6 (𝐹 ∈ (𝑆 GraphIso 𝑇) → 𝑇 ∈ V)
7371simpld 493 . . . . . 6 (𝐹 ∈ (𝑆 GraphIso 𝑇) → 𝑆 ∈ V)
74 cnvexg 7932 . . . . . 6 (𝐹 ∈ (𝑆 GraphIso 𝑇) → 𝐹 ∈ V)
752, 1, 4, 3isgrim 47352 . . . . . 6 ((𝑇 ∈ V ∧ 𝑆 ∈ V ∧ 𝐹 ∈ V) → (𝐹 ∈ (𝑇 GraphIso 𝑆) ↔ (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))))
7672, 73, 74, 75syl3anc 1368 . . . . 5 (𝐹 ∈ (𝑆 GraphIso 𝑇) → (𝐹 ∈ (𝑇 GraphIso 𝑆) ↔ (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))))
7776ad2antlr 725 . . . 4 (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))))) → (𝐹 ∈ (𝑇 GraphIso 𝑆) ↔ (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))))
788, 69, 77mpbir2and 711 . . 3 (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))))) → 𝐹 ∈ (𝑇 GraphIso 𝑆))
796, 78mpdan 685 . 2 ((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) → 𝐹 ∈ (𝑇 GraphIso 𝑆))
8079ex 411 1 (𝑆 ∈ UHGraph → (𝐹 ∈ (𝑆 GraphIso 𝑇) → 𝐹 ∈ (𝑇 GraphIso 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wral 3050  wrex 3059  Vcvv 3461  wss 3944  ccnv 5677  dom cdm 5678  cima 5681  1-1wf1 6546  ontowfo 6547  1-1-ontowf1o 6548  cfv 6549  (class class class)co 7419  Vtxcvtx 28881  iEdgciedg 28882  UHGraphcuhgr 28941   GraphIso cgrim 47345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-map 8847  df-uhgr 28943  df-grim 47348
This theorem is referenced by:  gricsym  47373
  Copyright terms: Public domain W3C validator