Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimcnv Structured version   Visualization version   GIF version

Theorem grimcnv 47763
Description: The converse of a graph isomorphism is a graph isomorphism. (Contributed by AV, 1-May-2025.)
Assertion
Ref Expression
grimcnv (𝑆 ∈ UHGraph → (𝐹 ∈ (𝑆 GraphIso 𝑇) → 𝐹 ∈ (𝑇 GraphIso 𝑆)))

Proof of Theorem grimcnv
Dummy variables 𝑓 𝑗 𝑥 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . 5 (Vtx‘𝑆) = (Vtx‘𝑆)
2 eqid 2740 . . . . 5 (Vtx‘𝑇) = (Vtx‘𝑇)
3 eqid 2740 . . . . 5 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2740 . . . . 5 (iEdg‘𝑇) = (iEdg‘𝑇)
51, 2, 3, 4grimprop 47753 . . . 4 (𝐹 ∈ (𝑆 GraphIso 𝑇) → (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))))
65adantl 481 . . 3 ((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) → (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))))
7 f1ocnv 6874 . . . . 5 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → 𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆))
87ad2antrl 727 . . . 4 (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))))) → 𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆))
9 vex 3492 . . . . . . . . 9 𝑗 ∈ V
10 cnvexg 7964 . . . . . . . . 9 (𝑗 ∈ V → 𝑗 ∈ V)
119, 10mp1i 13 . . . . . . . 8 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → 𝑗 ∈ V)
12 f1ocnv 6874 . . . . . . . . . 10 (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → 𝑗:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆))
1312ad2antrl 727 . . . . . . . . 9 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → 𝑗:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆))
14 f1ofo 6869 . . . . . . . . . . . . 13 (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → 𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇))
1514ad2antrl 727 . . . . . . . . . . . 12 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → 𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇))
16 foelcdmi 6983 . . . . . . . . . . . 12 ((𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → ∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗𝑦) = 𝑥)
1715, 16sylan 579 . . . . . . . . . . 11 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → ∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗𝑦) = 𝑥)
18 2fveq3 6925 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑦 → ((iEdg‘𝑇)‘(𝑗𝑖)) = ((iEdg‘𝑇)‘(𝑗𝑦)))
19 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑦 → ((iEdg‘𝑆)‘𝑖) = ((iEdg‘𝑆)‘𝑦))
2019imaeq2d 6089 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑦 → (𝐹 “ ((iEdg‘𝑆)‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)))
2118, 20eqeq12d 2756 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑦 → (((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) ↔ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
2221rspcv 3631 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ dom (iEdg‘𝑆) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
2322adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
24 f1ocnvfv1 7312 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (𝑗‘(𝑗𝑦)) = 𝑦)
2524ad4ant23 752 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → (𝑗‘(𝑗𝑦)) = 𝑦)
2625fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = ((iEdg‘𝑆)‘𝑦))
27 f1of1 6861 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → 𝐹:(Vtx‘𝑆)–1-1→(Vtx‘𝑇))
2827ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → 𝐹:(Vtx‘𝑆)–1-1→(Vtx‘𝑇))
291, 3uhgrss 29099 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑆 ∈ UHGraph ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆))
3029ad5ant15 758 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆))
31 f1imacnv 6878 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:(Vtx‘𝑆)–1-1→(Vtx‘𝑇) ∧ ((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆)) → (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))) = ((iEdg‘𝑆)‘𝑦))
3228, 30, 31syl2an2r 684 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))) = ((iEdg‘𝑆)‘𝑦))
3332eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑦) = (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
3433adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘𝑦) = (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
3526, 34eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
3635adantlr 714 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
37 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)))
3837eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) = ((iEdg‘𝑇)‘(𝑗𝑦)))
3938imaeq2d 6089 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))))
4036, 39eqtrd 2780 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))))
4140ex 412 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦)))))
4241ex 412 . . . . . . . . . . . . . . . . . . 19 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))))))
4323, 42syld 47 . . . . . . . . . . . . . . . . . 18 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))))))
4443ex 412 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → (𝑦 ∈ dom (iEdg‘𝑆) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦)))))))
4544com23 86 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → (𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦)))))))
4645impr 454 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → (𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))))))
47 eleq1 2832 . . . . . . . . . . . . . . . . 17 ((𝑗𝑦) = 𝑥 → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) ↔ 𝑥 ∈ dom (iEdg‘𝑇)))
48 2fveq3 6925 . . . . . . . . . . . . . . . . . 18 ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = ((iEdg‘𝑆)‘(𝑗𝑥)))
49 fveq2 6920 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘(𝑗𝑦)) = ((iEdg‘𝑇)‘𝑥))
5049imaeq2d 6089 . . . . . . . . . . . . . . . . . 18 ((𝑗𝑦) = 𝑥 → (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))
5148, 50eqeq12d 2756 . . . . . . . . . . . . . . . . 17 ((𝑗𝑦) = 𝑥 → (((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))) ↔ ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
5247, 51imbi12d 344 . . . . . . . . . . . . . . . 16 ((𝑗𝑦) = 𝑥 → (((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦)))) ↔ (𝑥 ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))))
5352imbi2d 340 . . . . . . . . . . . . . . 15 ((𝑗𝑦) = 𝑥 → ((𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))))) ↔ (𝑦 ∈ dom (iEdg‘𝑆) → (𝑥 ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))))
5446, 53syl5ibcom 245 . . . . . . . . . . . . . 14 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → ((𝑗𝑦) = 𝑥 → (𝑦 ∈ dom (iEdg‘𝑆) → (𝑥 ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))))
5554com24 95 . . . . . . . . . . . . 13 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → (𝑥 ∈ dom (iEdg‘𝑇) → (𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))))
5655imp31 417 . . . . . . . . . . . 12 ((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
5756rexlimdva 3161 . . . . . . . . . . 11 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → (∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗𝑦) = 𝑥 → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
5817, 57mpd 15 . . . . . . . . . 10 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))
5958ralrimiva 3152 . . . . . . . . 9 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))
6013, 59jca 511 . . . . . . . 8 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → (𝑗:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
61 f1oeq1 6850 . . . . . . . . 9 (𝑓 = 𝑗 → (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ↔ 𝑗:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆)))
62 fveq1 6919 . . . . . . . . . . 11 (𝑓 = 𝑗 → (𝑓𝑥) = (𝑗𝑥))
6362fveqeq2d 6928 . . . . . . . . . 10 (𝑓 = 𝑗 → (((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) ↔ ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
6463ralbidv 3184 . . . . . . . . 9 (𝑓 = 𝑗 → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) ↔ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
6561, 64anbi12d 631 . . . . . . . 8 (𝑓 = 𝑗 → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) ↔ (𝑗:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))))
6611, 60, 65spcedv 3611 . . . . . . 7 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
6766ex 412 . . . . . 6 (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → ((𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))))
6867exlimdv 1932 . . . . 5 (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → (∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))))
6968impr 454 . . . 4 (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))))) → ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
70 grimdmrel 47750 . . . . . . . 8 Rel dom GraphIso
7170ovrcl 7489 . . . . . . 7 (𝐹 ∈ (𝑆 GraphIso 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
7271simprd 495 . . . . . 6 (𝐹 ∈ (𝑆 GraphIso 𝑇) → 𝑇 ∈ V)
7371simpld 494 . . . . . 6 (𝐹 ∈ (𝑆 GraphIso 𝑇) → 𝑆 ∈ V)
74 cnvexg 7964 . . . . . 6 (𝐹 ∈ (𝑆 GraphIso 𝑇) → 𝐹 ∈ V)
752, 1, 4, 3isgrim 47752 . . . . . 6 ((𝑇 ∈ V ∧ 𝑆 ∈ V ∧ 𝐹 ∈ V) → (𝐹 ∈ (𝑇 GraphIso 𝑆) ↔ (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))))
7672, 73, 74, 75syl3anc 1371 . . . . 5 (𝐹 ∈ (𝑆 GraphIso 𝑇) → (𝐹 ∈ (𝑇 GraphIso 𝑆) ↔ (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))))
7776ad2antlr 726 . . . 4 (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))))) → (𝐹 ∈ (𝑇 GraphIso 𝑆) ↔ (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))))
788, 69, 77mpbir2and 712 . . 3 (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))))) → 𝐹 ∈ (𝑇 GraphIso 𝑆))
796, 78mpdan 686 . 2 ((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) → 𝐹 ∈ (𝑇 GraphIso 𝑆))
8079ex 412 1 (𝑆 ∈ UHGraph → (𝐹 ∈ (𝑆 GraphIso 𝑇) → 𝐹 ∈ (𝑇 GraphIso 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976  ccnv 5699  dom cdm 5700  cima 5703  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  iEdgciedg 29032  UHGraphcuhgr 29091   GraphIso cgrim 47745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-uhgr 29093  df-grim 47748
This theorem is referenced by:  gricsym  47774
  Copyright terms: Public domain W3C validator