Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimcnv Structured version   Visualization version   GIF version

Theorem grimcnv 47879
Description: The converse of a graph isomorphism is a graph isomorphism. (Contributed by AV, 1-May-2025.)
Assertion
Ref Expression
grimcnv (𝑆 ∈ UHGraph → (𝐹 ∈ (𝑆 GraphIso 𝑇) → 𝐹 ∈ (𝑇 GraphIso 𝑆)))

Proof of Theorem grimcnv
Dummy variables 𝑓 𝑗 𝑥 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . 5 (Vtx‘𝑆) = (Vtx‘𝑆)
2 eqid 2737 . . . . 5 (Vtx‘𝑇) = (Vtx‘𝑇)
3 eqid 2737 . . . . 5 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2737 . . . . 5 (iEdg‘𝑇) = (iEdg‘𝑇)
51, 2, 3, 4grimprop 47869 . . . 4 (𝐹 ∈ (𝑆 GraphIso 𝑇) → (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))))
65adantl 481 . . 3 ((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) → (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))))
7 f1ocnv 6860 . . . . 5 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → 𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆))
87ad2antrl 728 . . . 4 (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))))) → 𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆))
9 vex 3484 . . . . . . . . 9 𝑗 ∈ V
10 cnvexg 7946 . . . . . . . . 9 (𝑗 ∈ V → 𝑗 ∈ V)
119, 10mp1i 13 . . . . . . . 8 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → 𝑗 ∈ V)
12 f1ocnv 6860 . . . . . . . . . 10 (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → 𝑗:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆))
1312ad2antrl 728 . . . . . . . . 9 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → 𝑗:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆))
14 f1ofo 6855 . . . . . . . . . . . . 13 (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → 𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇))
1514ad2antrl 728 . . . . . . . . . . . 12 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → 𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇))
16 foelcdmi 6970 . . . . . . . . . . . 12 ((𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → ∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗𝑦) = 𝑥)
1715, 16sylan 580 . . . . . . . . . . 11 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → ∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗𝑦) = 𝑥)
18 2fveq3 6911 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑦 → ((iEdg‘𝑇)‘(𝑗𝑖)) = ((iEdg‘𝑇)‘(𝑗𝑦)))
19 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑦 → ((iEdg‘𝑆)‘𝑖) = ((iEdg‘𝑆)‘𝑦))
2019imaeq2d 6078 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑦 → (𝐹 “ ((iEdg‘𝑆)‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)))
2118, 20eqeq12d 2753 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑦 → (((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) ↔ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
2221rspcv 3618 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ dom (iEdg‘𝑆) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
2322adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
24 f1ocnvfv1 7296 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (𝑗‘(𝑗𝑦)) = 𝑦)
2524ad4ant23 753 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → (𝑗‘(𝑗𝑦)) = 𝑦)
2625fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = ((iEdg‘𝑆)‘𝑦))
27 f1of1 6847 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → 𝐹:(Vtx‘𝑆)–1-1→(Vtx‘𝑇))
2827ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → 𝐹:(Vtx‘𝑆)–1-1→(Vtx‘𝑇))
291, 3uhgrss 29081 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑆 ∈ UHGraph ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆))
3029ad5ant15 759 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆))
31 f1imacnv 6864 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:(Vtx‘𝑆)–1-1→(Vtx‘𝑇) ∧ ((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆)) → (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))) = ((iEdg‘𝑆)‘𝑦))
3228, 30, 31syl2an2r 685 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))) = ((iEdg‘𝑆)‘𝑦))
3332eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑦) = (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
3433adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘𝑦) = (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
3526, 34eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
3635adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
37 simplr 769 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)))
3837eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) = ((iEdg‘𝑇)‘(𝑗𝑦)))
3938imaeq2d 6078 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → (𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))))
4036, 39eqtrd 2777 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))))
4140ex 412 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦)))))
4241ex 412 . . . . . . . . . . . . . . . . . . 19 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))))))
4323, 42syld 47 . . . . . . . . . . . . . . . . . 18 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))))))
4443ex 412 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → (𝑦 ∈ dom (iEdg‘𝑆) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦)))))))
4544com23 86 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → (𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦)))))))
4645impr 454 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → (𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))))))
47 eleq1 2829 . . . . . . . . . . . . . . . . 17 ((𝑗𝑦) = 𝑥 → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) ↔ 𝑥 ∈ dom (iEdg‘𝑇)))
48 2fveq3 6911 . . . . . . . . . . . . . . . . . 18 ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = ((iEdg‘𝑆)‘(𝑗𝑥)))
49 fveq2 6906 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘(𝑗𝑦)) = ((iEdg‘𝑇)‘𝑥))
5049imaeq2d 6078 . . . . . . . . . . . . . . . . . 18 ((𝑗𝑦) = 𝑥 → (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))
5148, 50eqeq12d 2753 . . . . . . . . . . . . . . . . 17 ((𝑗𝑦) = 𝑥 → (((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))) ↔ ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
5247, 51imbi12d 344 . . . . . . . . . . . . . . . 16 ((𝑗𝑦) = 𝑥 → (((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦)))) ↔ (𝑥 ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))))
5352imbi2d 340 . . . . . . . . . . . . . . 15 ((𝑗𝑦) = 𝑥 → ((𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗‘(𝑗𝑦))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑗𝑦))))) ↔ (𝑦 ∈ dom (iEdg‘𝑆) → (𝑥 ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))))
5446, 53syl5ibcom 245 . . . . . . . . . . . . . 14 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → ((𝑗𝑦) = 𝑥 → (𝑦 ∈ dom (iEdg‘𝑆) → (𝑥 ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))))
5554com24 95 . . . . . . . . . . . . 13 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → (𝑥 ∈ dom (iEdg‘𝑇) → (𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))))
5655imp31 417 . . . . . . . . . . . 12 ((((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
5756rexlimdva 3155 . . . . . . . . . . 11 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → (∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗𝑦) = 𝑥 → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
5817, 57mpd 15 . . . . . . . . . 10 (((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))
5958ralrimiva 3146 . . . . . . . . 9 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))
6013, 59jca 511 . . . . . . . 8 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → (𝑗:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
61 f1oeq1 6836 . . . . . . . . 9 (𝑓 = 𝑗 → (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ↔ 𝑗:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆)))
62 fveq1 6905 . . . . . . . . . . 11 (𝑓 = 𝑗 → (𝑓𝑥) = (𝑗𝑥))
6362fveqeq2d 6914 . . . . . . . . . 10 (𝑓 = 𝑗 → (((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) ↔ ((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
6463ralbidv 3178 . . . . . . . . 9 (𝑓 = 𝑗 → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) ↔ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
6561, 64anbi12d 632 . . . . . . . 8 (𝑓 = 𝑗 → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) ↔ (𝑗:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑗𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))))
6611, 60, 65spcedv 3598 . . . . . . 7 ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
6766ex 412 . . . . . 6 (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → ((𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))))
6867exlimdv 1933 . . . . 5 (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → (∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))))
6968impr 454 . . . 4 (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))))) → ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))
70 grimdmrel 47866 . . . . . . . 8 Rel dom GraphIso
7170ovrcl 7472 . . . . . . 7 (𝐹 ∈ (𝑆 GraphIso 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
7271simprd 495 . . . . . 6 (𝐹 ∈ (𝑆 GraphIso 𝑇) → 𝑇 ∈ V)
7371simpld 494 . . . . . 6 (𝐹 ∈ (𝑆 GraphIso 𝑇) → 𝑆 ∈ V)
74 cnvexg 7946 . . . . . 6 (𝐹 ∈ (𝑆 GraphIso 𝑇) → 𝐹 ∈ V)
752, 1, 4, 3isgrim 47868 . . . . . 6 ((𝑇 ∈ V ∧ 𝑆 ∈ V ∧ 𝐹 ∈ V) → (𝐹 ∈ (𝑇 GraphIso 𝑆) ↔ (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))))
7672, 73, 74, 75syl3anc 1373 . . . . 5 (𝐹 ∈ (𝑆 GraphIso 𝑇) → (𝐹 ∈ (𝑇 GraphIso 𝑆) ↔ (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))))
7776ad2antlr 727 . . . 4 (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))))) → (𝐹 ∈ (𝑇 GraphIso 𝑆) ↔ (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))))
788, 69, 77mpbir2and 713 . . 3 (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))))) → 𝐹 ∈ (𝑇 GraphIso 𝑆))
796, 78mpdan 687 . 2 ((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) → 𝐹 ∈ (𝑇 GraphIso 𝑆))
8079ex 412 1 (𝑆 ∈ UHGraph → (𝐹 ∈ (𝑆 GraphIso 𝑇) → 𝐹 ∈ (𝑇 GraphIso 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  wss 3951  ccnv 5684  dom cdm 5685  cima 5688  1-1wf1 6558  ontowfo 6559  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  Vtxcvtx 29013  iEdgciedg 29014  UHGraphcuhgr 29073   GraphIso cgrim 47861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-uhgr 29075  df-grim 47864
This theorem is referenced by:  gricsym  47890
  Copyright terms: Public domain W3C validator