Step | Hyp | Ref
| Expression |
1 | | eqid 2725 |
. . . . 5
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
2 | | eqid 2725 |
. . . . 5
⊢
(Vtx‘𝑇) =
(Vtx‘𝑇) |
3 | | eqid 2725 |
. . . . 5
⊢
(iEdg‘𝑆) =
(iEdg‘𝑆) |
4 | | eqid 2725 |
. . . . 5
⊢
(iEdg‘𝑇) =
(iEdg‘𝑇) |
5 | 1, 2, 3, 4 | grimprop 47353 |
. . . 4
⊢ (𝐹 ∈ (𝑆 GraphIso 𝑇) → (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))))) |
6 | 5 | adantl 480 |
. . 3
⊢ ((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) → (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))))) |
7 | | f1ocnv 6850 |
. . . . 5
⊢ (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → ◡𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆)) |
8 | 7 | ad2antrl 726 |
. . . 4
⊢ (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))))) → ◡𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆)) |
9 | | vex 3465 |
. . . . . . . . 9
⊢ 𝑗 ∈ V |
10 | | cnvexg 7932 |
. . . . . . . . 9
⊢ (𝑗 ∈ V → ◡𝑗 ∈ V) |
11 | 9, 10 | mp1i 13 |
. . . . . . . 8
⊢ ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → ◡𝑗 ∈ V) |
12 | | f1ocnv 6850 |
. . . . . . . . . 10
⊢ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) → ◡𝑗:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑆)) |
13 | 12 | ad2antrl 726 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → ◡𝑗:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑆)) |
14 | | f1ofo 6845 |
. . . . . . . . . . . . 13
⊢ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) → 𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇)) |
15 | 14 | ad2antrl 726 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → 𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇)) |
16 | | foelcdmi 6959 |
. . . . . . . . . . . 12
⊢ ((𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → ∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗‘𝑦) = 𝑥) |
17 | 15, 16 | sylan 578 |
. . . . . . . . . . 11
⊢
(((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → ∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗‘𝑦) = 𝑥) |
18 | | 2fveq3 6901 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑦 → ((iEdg‘𝑇)‘(𝑗‘𝑖)) = ((iEdg‘𝑇)‘(𝑗‘𝑦))) |
19 | | fveq2 6896 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑦 → ((iEdg‘𝑆)‘𝑖) = ((iEdg‘𝑆)‘𝑦)) |
20 | 19 | imaeq2d 6064 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑦 → (𝐹 “ ((iEdg‘𝑆)‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) |
21 | 18, 20 | eqeq12d 2741 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑦 → (((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) ↔ ((iEdg‘𝑇)‘(𝑗‘𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)))) |
22 | 21 | rspcv 3602 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ dom (iEdg‘𝑆) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((iEdg‘𝑇)‘(𝑗‘𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)))) |
23 | 22 | adantl 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((iEdg‘𝑇)‘(𝑗‘𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)))) |
24 | | f1ocnvfv1 7285 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (◡𝑗‘(𝑗‘𝑦)) = 𝑦) |
25 | 24 | ad4ant23 751 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ (𝑗‘𝑦) ∈ dom (iEdg‘𝑇)) → (◡𝑗‘(𝑗‘𝑦)) = 𝑦) |
26 | 25 | fveq2d 6900 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ (𝑗‘𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(◡𝑗‘(𝑗‘𝑦))) = ((iEdg‘𝑆)‘𝑦)) |
27 | | f1of1 6837 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → 𝐹:(Vtx‘𝑆)–1-1→(Vtx‘𝑇)) |
28 | 27 | ad2antlr 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) →
𝐹:(Vtx‘𝑆)–1-1→(Vtx‘𝑇)) |
29 | 1, 3 | uhgrss 28949 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑆 ∈ UHGraph ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆)) |
30 | 29 | ad5ant15 757 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆)) |
31 | | f1imacnv 6854 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹:(Vtx‘𝑆)–1-1→(Vtx‘𝑇) ∧ ((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆)) → (◡𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))) = ((iEdg‘𝑆)‘𝑦)) |
32 | 28, 30, 31 | syl2an2r 683 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (◡𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))) = ((iEdg‘𝑆)‘𝑦)) |
33 | 32 | eqcomd 2731 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑦) = (◡𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦)))) |
34 | 33 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ (𝑗‘𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘𝑦) = (◡𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦)))) |
35 | 26, 34 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ (𝑗‘𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(◡𝑗‘(𝑗‘𝑦))) = (◡𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦)))) |
36 | 35 | adantlr 713 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗‘𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗‘𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(◡𝑗‘(𝑗‘𝑦))) = (◡𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦)))) |
37 | | simplr 767 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗‘𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗‘𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑇)‘(𝑗‘𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) |
38 | 37 | eqcomd 2731 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗‘𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗‘𝑦) ∈ dom (iEdg‘𝑇)) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) = ((iEdg‘𝑇)‘(𝑗‘𝑦))) |
39 | 38 | imaeq2d 6064 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗‘𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗‘𝑦) ∈ dom (iEdg‘𝑇)) → (◡𝐹 “ (𝐹 “ ((iEdg‘𝑆)‘𝑦))) = (◡𝐹 “ ((iEdg‘𝑇)‘(𝑗‘𝑦)))) |
40 | 36, 39 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗‘𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑗‘𝑦) ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(◡𝑗‘(𝑗‘𝑦))) = (◡𝐹 “ ((iEdg‘𝑇)‘(𝑗‘𝑦)))) |
41 | 40 | ex 411 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗‘𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑗‘𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(◡𝑗‘(𝑗‘𝑦))) = (◡𝐹 “ ((iEdg‘𝑇)‘(𝑗‘𝑦))))) |
42 | 41 | ex 411 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (((iEdg‘𝑇)‘(𝑗‘𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)) → ((𝑗‘𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(◡𝑗‘(𝑗‘𝑦))) = (◡𝐹 “ ((iEdg‘𝑇)‘(𝑗‘𝑦)))))) |
43 | 23, 42 | syld 47 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((𝑗‘𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(◡𝑗‘(𝑗‘𝑦))) = (◡𝐹 “ ((iEdg‘𝑇)‘(𝑗‘𝑦)))))) |
44 | 43 | ex 411 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) →
(𝑦 ∈ dom
(iEdg‘𝑆) →
(∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((𝑗‘𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(◡𝑗‘(𝑗‘𝑦))) = (◡𝐹 “ ((iEdg‘𝑇)‘(𝑗‘𝑦))))))) |
45 | 44 | com23 86 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) →
(∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → (𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗‘𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(◡𝑗‘(𝑗‘𝑦))) = (◡𝐹 “ ((iEdg‘𝑇)‘(𝑗‘𝑦))))))) |
46 | 45 | impr 453 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → (𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗‘𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(◡𝑗‘(𝑗‘𝑦))) = (◡𝐹 “ ((iEdg‘𝑇)‘(𝑗‘𝑦)))))) |
47 | | eleq1 2813 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗‘𝑦) = 𝑥 → ((𝑗‘𝑦) ∈ dom (iEdg‘𝑇) ↔ 𝑥 ∈ dom (iEdg‘𝑇))) |
48 | | 2fveq3 6901 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗‘𝑦) = 𝑥 → ((iEdg‘𝑆)‘(◡𝑗‘(𝑗‘𝑦))) = ((iEdg‘𝑆)‘(◡𝑗‘𝑥))) |
49 | | fveq2 6896 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗‘𝑦) = 𝑥 → ((iEdg‘𝑇)‘(𝑗‘𝑦)) = ((iEdg‘𝑇)‘𝑥)) |
50 | 49 | imaeq2d 6064 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗‘𝑦) = 𝑥 → (◡𝐹 “ ((iEdg‘𝑇)‘(𝑗‘𝑦))) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥))) |
51 | 48, 50 | eqeq12d 2741 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗‘𝑦) = 𝑥 → (((iEdg‘𝑆)‘(◡𝑗‘(𝑗‘𝑦))) = (◡𝐹 “ ((iEdg‘𝑇)‘(𝑗‘𝑦))) ↔ ((iEdg‘𝑆)‘(◡𝑗‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥)))) |
52 | 47, 51 | imbi12d 343 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗‘𝑦) = 𝑥 → (((𝑗‘𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(◡𝑗‘(𝑗‘𝑦))) = (◡𝐹 “ ((iEdg‘𝑇)‘(𝑗‘𝑦)))) ↔ (𝑥 ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(◡𝑗‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥))))) |
53 | 52 | imbi2d 339 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗‘𝑦) = 𝑥 → ((𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗‘𝑦) ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(◡𝑗‘(𝑗‘𝑦))) = (◡𝐹 “ ((iEdg‘𝑇)‘(𝑗‘𝑦))))) ↔ (𝑦 ∈ dom (iEdg‘𝑆) → (𝑥 ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(◡𝑗‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥)))))) |
54 | 46, 53 | syl5ibcom 244 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → ((𝑗‘𝑦) = 𝑥 → (𝑦 ∈ dom (iEdg‘𝑆) → (𝑥 ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑆)‘(◡𝑗‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥)))))) |
55 | 54 | com24 95 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → (𝑥 ∈ dom (iEdg‘𝑇) → (𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗‘𝑦) = 𝑥 → ((iEdg‘𝑆)‘(◡𝑗‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥)))))) |
56 | 55 | imp31 416 |
. . . . . . . . . . . 12
⊢
((((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((𝑗‘𝑦) = 𝑥 → ((iEdg‘𝑆)‘(◡𝑗‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥)))) |
57 | 56 | rexlimdva 3144 |
. . . . . . . . . . 11
⊢
(((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → (∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗‘𝑦) = 𝑥 → ((iEdg‘𝑆)‘(◡𝑗‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥)))) |
58 | 17, 57 | mpd 15 |
. . . . . . . . . 10
⊢
(((((𝑆 ∈
UHGraph ∧ 𝐹 ∈
(𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → ((iEdg‘𝑆)‘(◡𝑗‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥))) |
59 | 58 | ralrimiva 3135 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(◡𝑗‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥))) |
60 | 13, 59 | jca 510 |
. . . . . . . 8
⊢ ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → (◡𝑗:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑆) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑆)‘(◡𝑗‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥)))) |
61 | | f1oeq1 6826 |
. . . . . . . . 9
⊢ (𝑓 = ◡𝑗 → (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑆) ↔ ◡𝑗:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑆))) |
62 | | fveq1 6895 |
. . . . . . . . . . 11
⊢ (𝑓 = ◡𝑗 → (𝑓‘𝑥) = (◡𝑗‘𝑥)) |
63 | 62 | fveqeq2d 6904 |
. . . . . . . . . 10
⊢ (𝑓 = ◡𝑗 → (((iEdg‘𝑆)‘(𝑓‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥)) ↔ ((iEdg‘𝑆)‘(◡𝑗‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥)))) |
64 | 63 | ralbidv 3167 |
. . . . . . . . 9
⊢ (𝑓 = ◡𝑗 → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥)) ↔ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑆)‘(◡𝑗‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥)))) |
65 | 61, 64 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑓 = ◡𝑗 → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑆) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥))) ↔ (◡𝑗:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑆) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑆)‘(◡𝑗‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥))))) |
66 | 11, 60, 65 | spcedv 3582 |
. . . . . . 7
⊢ ((((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑆) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥)))) |
67 | 66 | ex 411 |
. . . . . 6
⊢ (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → ((𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑆) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥))))) |
68 | 67 | exlimdv 1928 |
. . . . 5
⊢ (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ 𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → (∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑆) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥))))) |
69 | 68 | impr 453 |
. . . 4
⊢ (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))))) → ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑆) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥)))) |
70 | | grimdmrel 47350 |
. . . . . . . 8
⊢ Rel dom
GraphIso |
71 | 70 | ovrcl 7460 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑆 GraphIso 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V)) |
72 | 71 | simprd 494 |
. . . . . 6
⊢ (𝐹 ∈ (𝑆 GraphIso 𝑇) → 𝑇 ∈ V) |
73 | 71 | simpld 493 |
. . . . . 6
⊢ (𝐹 ∈ (𝑆 GraphIso 𝑇) → 𝑆 ∈ V) |
74 | | cnvexg 7932 |
. . . . . 6
⊢ (𝐹 ∈ (𝑆 GraphIso 𝑇) → ◡𝐹 ∈ V) |
75 | 2, 1, 4, 3 | isgrim 47352 |
. . . . . 6
⊢ ((𝑇 ∈ V ∧ 𝑆 ∈ V ∧ ◡𝐹 ∈ V) → (◡𝐹 ∈ (𝑇 GraphIso 𝑆) ↔ (◡𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑆) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥)))))) |
76 | 72, 73, 74, 75 | syl3anc 1368 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 GraphIso 𝑇) → (◡𝐹 ∈ (𝑇 GraphIso 𝑆) ↔ (◡𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑆) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥)))))) |
77 | 76 | ad2antlr 725 |
. . . 4
⊢ (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))))) → (◡𝐹 ∈ (𝑇 GraphIso 𝑆) ↔ (◡𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑆) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑆) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑆)‘(𝑓‘𝑥)) = (◡𝐹 “ ((iEdg‘𝑇)‘𝑥)))))) |
78 | 8, 69, 77 | mpbir2and 711 |
. . 3
⊢ (((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) ∧ (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))))) → ◡𝐹 ∈ (𝑇 GraphIso 𝑆)) |
79 | 6, 78 | mpdan 685 |
. 2
⊢ ((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) → ◡𝐹 ∈ (𝑇 GraphIso 𝑆)) |
80 | 79 | ex 411 |
1
⊢ (𝑆 ∈ UHGraph → (𝐹 ∈ (𝑆 GraphIso 𝑇) → ◡𝐹 ∈ (𝑇 GraphIso 𝑆))) |