| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . 4
⊢
(Vtx‘𝑇) =
(Vtx‘𝑇) |
| 2 | | eqid 2737 |
. . . 4
⊢
(Vtx‘𝑈) =
(Vtx‘𝑈) |
| 3 | | eqid 2737 |
. . . 4
⊢
(iEdg‘𝑇) =
(iEdg‘𝑇) |
| 4 | | eqid 2737 |
. . . 4
⊢
(iEdg‘𝑈) =
(iEdg‘𝑈) |
| 5 | 1, 2, 3, 4 | grimprop 47869 |
. . 3
⊢ (𝐹 ∈ (𝑇 GraphIso 𝑈) → (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) |
| 6 | | eqid 2737 |
. . . 4
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
| 7 | | eqid 2737 |
. . . 4
⊢
(iEdg‘𝑆) =
(iEdg‘𝑆) |
| 8 | 6, 1, 7, 3 | grimprop 47869 |
. . 3
⊢ (𝐺 ∈ (𝑆 GraphIso 𝑇) → (𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))))) |
| 9 | | f1oco 6871 |
. . . . 5
⊢ ((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → (𝐹 ∘ 𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈)) |
| 10 | 9 | ad2ant2r 747 |
. . . 4
⊢ (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) ∧ (𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))))) → (𝐹 ∘ 𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈)) |
| 11 | | vex 3484 |
. . . . . . . . . . . . 13
⊢ 𝑓 ∈ V |
| 12 | | vex 3484 |
. . . . . . . . . . . . 13
⊢ 𝑔 ∈ V |
| 13 | 11, 12 | coex 7952 |
. . . . . . . . . . . 12
⊢ (𝑓 ∘ 𝑔) ∈ V |
| 14 | 13 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → (𝑓 ∘ 𝑔) ∈ V) |
| 15 | | f1oco 6871 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) →
(𝑓 ∘ 𝑔):dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈)) |
| 16 | 15 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) →
(∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → (𝑓 ∘ 𝑔):dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈))) |
| 17 | 16 | expcom 413 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) →
(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) →
(∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → (𝑓 ∘ 𝑔):dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈)))) |
| 18 | 17 | impd 410 |
. . . . . . . . . . . . . . 15
⊢ (𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) →
((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (𝑓 ∘ 𝑔):dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈))) |
| 19 | 18 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (𝑓 ∘ 𝑔):dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈))) |
| 20 | 19 | imp 406 |
. . . . . . . . . . . . 13
⊢ (((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → (𝑓 ∘ 𝑔):dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈)) |
| 21 | 20 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → (𝑓 ∘ 𝑔):dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈)) |
| 22 | | 2fveq3 6911 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑖 → ((iEdg‘𝑇)‘(𝑔‘𝑦)) = ((iEdg‘𝑇)‘(𝑔‘𝑖))) |
| 23 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑖 → ((iEdg‘𝑆)‘𝑦) = ((iEdg‘𝑆)‘𝑖)) |
| 24 | 23 | imaeq2d 6078 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑖 → (𝐺 “ ((iEdg‘𝑆)‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖))) |
| 25 | 22, 24 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑖 → (((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) ↔ ((iEdg‘𝑇)‘(𝑔‘𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)))) |
| 26 | 25 | rspcv 3618 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ dom (iEdg‘𝑆) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑇)‘(𝑔‘𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)))) |
| 27 | 26 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑇)‘(𝑔‘𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)))) |
| 28 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑇)‘(𝑔‘𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)))) |
| 29 | | f1of 6848 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) → 𝑔:dom (iEdg‘𝑆)⟶dom (iEdg‘𝑇)) |
| 30 | 29 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) →
𝑔:dom (iEdg‘𝑆)⟶dom (iEdg‘𝑇)) |
| 31 | 30 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) → (𝑔‘𝑖) ∈ dom (iEdg‘𝑇)) |
| 32 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈)) →
(𝑔‘𝑖) ∈ dom (iEdg‘𝑇)) |
| 33 | | 2fveq3 6911 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = (𝑔‘𝑖) → ((iEdg‘𝑈)‘(𝑓‘𝑥)) = ((iEdg‘𝑈)‘(𝑓‘(𝑔‘𝑖)))) |
| 34 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = (𝑔‘𝑖) → ((iEdg‘𝑇)‘𝑥) = ((iEdg‘𝑇)‘(𝑔‘𝑖))) |
| 35 | 34 | imaeq2d 6078 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = (𝑔‘𝑖) → (𝐹 “ ((iEdg‘𝑇)‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔‘𝑖)))) |
| 36 | 33, 35 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = (𝑔‘𝑖) → (((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) ↔ ((iEdg‘𝑈)‘(𝑓‘(𝑔‘𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔‘𝑖))))) |
| 37 | 36 | rspcv 3618 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑔‘𝑖) ∈ dom (iEdg‘𝑇) → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → ((iEdg‘𝑈)‘(𝑓‘(𝑔‘𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔‘𝑖))))) |
| 38 | 32, 37 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈)) →
(∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → ((iEdg‘𝑈)‘(𝑓‘(𝑔‘𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔‘𝑖))))) |
| 39 | 30 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) → 𝑔:dom (iEdg‘𝑆)⟶dom (iEdg‘𝑇)) |
| 40 | 39 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈)) →
𝑔:dom (iEdg‘𝑆)⟶dom (iEdg‘𝑇)) |
| 41 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) → 𝑖 ∈ dom (iEdg‘𝑆)) |
| 42 | 41 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈)) →
𝑖 ∈ dom
(iEdg‘𝑆)) |
| 43 | 40, 42 | fvco3d 7009 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈)) →
((𝑓 ∘ 𝑔)‘𝑖) = (𝑓‘(𝑔‘𝑖))) |
| 44 | 43 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈)) ∧
((iEdg‘𝑈)‘(𝑓‘(𝑔‘𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔‘𝑖)))) → ((𝑓 ∘ 𝑔)‘𝑖) = (𝑓‘(𝑔‘𝑖))) |
| 45 | 44 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈)) ∧
((iEdg‘𝑈)‘(𝑓‘(𝑔‘𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔‘𝑖)))) → ((iEdg‘𝑈)‘((𝑓 ∘ 𝑔)‘𝑖)) = ((iEdg‘𝑈)‘(𝑓‘(𝑔‘𝑖)))) |
| 46 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈)) ∧
((iEdg‘𝑈)‘(𝑓‘(𝑔‘𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔‘𝑖)))) → ((iEdg‘𝑈)‘(𝑓‘(𝑔‘𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔‘𝑖)))) |
| 47 | 45, 46 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈)) ∧
((iEdg‘𝑈)‘(𝑓‘(𝑔‘𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔‘𝑖)))) → ((iEdg‘𝑈)‘((𝑓 ∘ 𝑔)‘𝑖)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔‘𝑖)))) |
| 48 | 47 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈)) →
(((iEdg‘𝑈)‘(𝑓‘(𝑔‘𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔‘𝑖))) → ((iEdg‘𝑈)‘((𝑓 ∘ 𝑔)‘𝑖)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔‘𝑖))))) |
| 49 | 38, 48 | syld 47 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈)) →
(∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → ((iEdg‘𝑈)‘((𝑓 ∘ 𝑔)‘𝑖)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔‘𝑖))))) |
| 50 | 49 | impr 454 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → ((iEdg‘𝑈)‘((𝑓 ∘ 𝑔)‘𝑖)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔‘𝑖)))) |
| 51 | | imaeq2 6074 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((iEdg‘𝑇)‘(𝑔‘𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)) → (𝐹 “ ((iEdg‘𝑇)‘(𝑔‘𝑖))) = (𝐹 “ (𝐺 “ ((iEdg‘𝑆)‘𝑖)))) |
| 52 | | imaco 6271 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)) = (𝐹 “ (𝐺 “ ((iEdg‘𝑆)‘𝑖))) |
| 53 | 51, 52 | eqtr4di 2795 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((iEdg‘𝑇)‘(𝑔‘𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)) → (𝐹 “ ((iEdg‘𝑇)‘(𝑔‘𝑖))) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖))) |
| 54 | 50, 53 | sylan9eq 2797 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) ∧ ((iEdg‘𝑇)‘(𝑔‘𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖))) → ((iEdg‘𝑈)‘((𝑓 ∘ 𝑔)‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖))) |
| 55 | 54 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → (((iEdg‘𝑇)‘(𝑔‘𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)) → ((iEdg‘𝑈)‘((𝑓 ∘ 𝑔)‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)))) |
| 56 | 28, 55 | syld 47 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑈)‘((𝑓 ∘ 𝑔)‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)))) |
| 57 | 56 | exp31 419 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) →
(𝑖 ∈ dom
(iEdg‘𝑆) →
((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑈)‘((𝑓 ∘ 𝑔)‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)))))) |
| 58 | 57 | com24 95 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇)) →
(∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (𝑖 ∈ dom (iEdg‘𝑆) → ((iEdg‘𝑈)‘((𝑓 ∘ 𝑔)‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)))))) |
| 59 | 58 | expimpd 453 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (𝑖 ∈ dom (iEdg‘𝑆) → ((iEdg‘𝑈)‘((𝑓 ∘ 𝑔)‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)))))) |
| 60 | 59 | imp32 418 |
. . . . . . . . . . . . 13
⊢ (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → (𝑖 ∈ dom (iEdg‘𝑆) → ((iEdg‘𝑈)‘((𝑓 ∘ 𝑔)‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)))) |
| 61 | 60 | ralrimiv 3145 |
. . . . . . . . . . . 12
⊢ (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘((𝑓 ∘ 𝑔)‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖))) |
| 62 | 21, 61 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → ((𝑓 ∘ 𝑔):dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑈)‘((𝑓 ∘ 𝑔)‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)))) |
| 63 | | f1oeq1 6836 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑓 ∘ 𝑔) → (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈) ↔
(𝑓 ∘ 𝑔):dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈))) |
| 64 | | fveq1 6905 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝑓 ∘ 𝑔) → (𝑗‘𝑖) = ((𝑓 ∘ 𝑔)‘𝑖)) |
| 65 | 64 | fveqeq2d 6914 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑓 ∘ 𝑔) → (((iEdg‘𝑈)‘(𝑗‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)) ↔ ((iEdg‘𝑈)‘((𝑓 ∘ 𝑔)‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)))) |
| 66 | 65 | ralbidv 3178 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑓 ∘ 𝑔) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘((𝑓 ∘ 𝑔)‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)))) |
| 67 | 63, 66 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑗 = (𝑓 ∘ 𝑔) → ((𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖))) ↔ ((𝑓 ∘ 𝑔):dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑈)‘((𝑓 ∘ 𝑔)‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖))))) |
| 68 | 14, 62, 67 | spcedv 3598 |
. . . . . . . . . 10
⊢ (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)))) |
| 69 | 68 | exp32 420 |
. . . . . . . . 9
⊢ ((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)))))) |
| 70 | 69 | exlimdv 1933 |
. . . . . . . 8
⊢ ((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → (∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)))))) |
| 71 | 70 | expimpd 453 |
. . . . . . 7
⊢ (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) → ((𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)))))) |
| 72 | 71 | com23 86 |
. . . . . 6
⊢ (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ((𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)))))) |
| 73 | 72 | exlimdv 1933 |
. . . . 5
⊢ (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) → (∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ((𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)))))) |
| 74 | 73 | imp31 417 |
. . . 4
⊢ (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) ∧ (𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)))) |
| 75 | 10, 74 | jca 511 |
. . 3
⊢ (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑥 ∈ dom
(iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) ∧ (𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑇) ∧
∀𝑦 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))))) → ((𝐹 ∘ 𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖))))) |
| 76 | 5, 8, 75 | syl2an 596 |
. 2
⊢ ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → ((𝐹 ∘ 𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖))))) |
| 77 | | grimdmrel 47866 |
. . . . . 6
⊢ Rel dom
GraphIso |
| 78 | 77 | ovrcl 7472 |
. . . . 5
⊢ (𝐺 ∈ (𝑆 GraphIso 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V)) |
| 79 | 78 | simpld 494 |
. . . 4
⊢ (𝐺 ∈ (𝑆 GraphIso 𝑇) → 𝑆 ∈ V) |
| 80 | 79 | adantl 481 |
. . 3
⊢ ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → 𝑆 ∈ V) |
| 81 | 77 | ovrcl 7472 |
. . . . 5
⊢ (𝐹 ∈ (𝑇 GraphIso 𝑈) → (𝑇 ∈ V ∧ 𝑈 ∈ V)) |
| 82 | 81 | simprd 495 |
. . . 4
⊢ (𝐹 ∈ (𝑇 GraphIso 𝑈) → 𝑈 ∈ V) |
| 83 | 82 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → 𝑈 ∈ V) |
| 84 | | coexg 7951 |
. . 3
⊢ ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → (𝐹 ∘ 𝐺) ∈ V) |
| 85 | 6, 2, 7, 4 | isgrim 47868 |
. . 3
⊢ ((𝑆 ∈ V ∧ 𝑈 ∈ V ∧ (𝐹 ∘ 𝐺) ∈ V) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GraphIso 𝑈) ↔ ((𝐹 ∘ 𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)))))) |
| 86 | 80, 83, 84, 85 | syl3anc 1373 |
. 2
⊢ ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GraphIso 𝑈) ↔ ((𝐹 ∘ 𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom
(iEdg‘𝑈) ∧
∀𝑖 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗‘𝑖)) = ((𝐹 ∘ 𝐺) “ ((iEdg‘𝑆)‘𝑖)))))) |
| 87 | 76, 86 | mpbird 257 |
1
⊢ ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GraphIso 𝑈)) |