Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimco Structured version   Visualization version   GIF version

Theorem grimco 47364
Description: The composition of graph isomorphisms is a graph isomorphism. (Contributed by AV, 3-May-2025.)
Assertion
Ref Expression
grimco ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → (𝐹𝐺) ∈ (𝑆 GraphIso 𝑈))

Proof of Theorem grimco
Dummy variables 𝑓 𝑔 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . 4 (Vtx‘𝑇) = (Vtx‘𝑇)
2 eqid 2725 . . . 4 (Vtx‘𝑈) = (Vtx‘𝑈)
3 eqid 2725 . . . 4 (iEdg‘𝑇) = (iEdg‘𝑇)
4 eqid 2725 . . . 4 (iEdg‘𝑈) = (iEdg‘𝑈)
51, 2, 3, 4grimprop 47353 . . 3 (𝐹 ∈ (𝑇 GraphIso 𝑈) → (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))))
6 eqid 2725 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
7 eqid 2725 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
86, 1, 7, 3grimprop 47353 . . 3 (𝐺 ∈ (𝑆 GraphIso 𝑇) → (𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)))))
9 f1oco 6861 . . . . 5 ((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → (𝐹𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈))
109ad2ant2r 745 . . . 4 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) ∧ (𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))))) → (𝐹𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈))
11 vex 3465 . . . . . . . . . . . . 13 𝑓 ∈ V
12 vex 3465 . . . . . . . . . . . . 13 𝑔 ∈ V
1311, 12coex 7938 . . . . . . . . . . . 12 (𝑓𝑔) ∈ V
1413a1i 11 . . . . . . . . . . 11 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → (𝑓𝑔) ∈ V)
15 f1oco 6861 . . . . . . . . . . . . . . . . . 18 ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈))
1615a1d 25 . . . . . . . . . . . . . . . . 17 ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈)))
1716expcom 412 . . . . . . . . . . . . . . . 16 (𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈))))
1817impd 409 . . . . . . . . . . . . . . 15 (𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈)))
1918adantr 479 . . . . . . . . . . . . . 14 ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈)))
2019imp 405 . . . . . . . . . . . . 13 (((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈))
2120adantl 480 . . . . . . . . . . . 12 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈))
22 2fveq3 6901 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑖 → ((iEdg‘𝑇)‘(𝑔𝑦)) = ((iEdg‘𝑇)‘(𝑔𝑖)))
23 fveq2 6896 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑖 → ((iEdg‘𝑆)‘𝑦) = ((iEdg‘𝑆)‘𝑖))
2423imaeq2d 6064 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑖 → (𝐺 “ ((iEdg‘𝑆)‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)))
2522, 24eqeq12d 2741 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑖 → (((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) ↔ ((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖))))
2625rspcv 3602 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ dom (iEdg‘𝑆) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖))))
2726adantl 480 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖))))
2827adantr 479 . . . . . . . . . . . . . . . . . 18 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖))))
29 f1of 6838 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → 𝑔:dom (iEdg‘𝑆)⟶dom (iEdg‘𝑇))
3029adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → 𝑔:dom (iEdg‘𝑆)⟶dom (iEdg‘𝑇))
3130ffvelcdmda 7093 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) → (𝑔𝑖) ∈ dom (iEdg‘𝑇))
3231adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → (𝑔𝑖) ∈ dom (iEdg‘𝑇))
33 2fveq3 6901 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑔𝑖) → ((iEdg‘𝑈)‘(𝑓𝑥)) = ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))))
34 fveq2 6896 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝑔𝑖) → ((iEdg‘𝑇)‘𝑥) = ((iEdg‘𝑇)‘(𝑔𝑖)))
3534imaeq2d 6064 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑔𝑖) → (𝐹 “ ((iEdg‘𝑇)‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))))
3633, 35eqeq12d 2741 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑔𝑖) → (((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) ↔ ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))))
3736rspcv 3602 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔𝑖) ∈ dom (iEdg‘𝑇) → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))))
3832, 37syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))))
3930adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) → 𝑔:dom (iEdg‘𝑆)⟶dom (iEdg‘𝑇))
4039adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → 𝑔:dom (iEdg‘𝑆)⟶dom (iEdg‘𝑇))
41 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) → 𝑖 ∈ dom (iEdg‘𝑆))
4241adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → 𝑖 ∈ dom (iEdg‘𝑆))
4340, 42fvco3d 6997 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → ((𝑓𝑔)‘𝑖) = (𝑓‘(𝑔𝑖)))
4443adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) ∧ ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))) → ((𝑓𝑔)‘𝑖) = (𝑓‘(𝑔𝑖)))
4544fveq2d 6900 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) ∧ ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))))
46 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) ∧ ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))) → ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))))
4745, 46eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) ∧ ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))))
4847ex 411 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → (((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))))
4938, 48syld 47 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))))
5049impr 453 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))))
51 imaeq2 6060 . . . . . . . . . . . . . . . . . . . . 21 (((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)) → (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))) = (𝐹 “ (𝐺 “ ((iEdg‘𝑆)‘𝑖))))
52 imaco 6257 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)) = (𝐹 “ (𝐺 “ ((iEdg‘𝑆)‘𝑖)))
5351, 52eqtr4di 2783 . . . . . . . . . . . . . . . . . . . 20 (((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)) → (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)))
5450, 53sylan9eq 2785 . . . . . . . . . . . . . . . . . . 19 ((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) ∧ ((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖))) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)))
5554ex 411 . . . . . . . . . . . . . . . . . 18 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → (((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
5628, 55syld 47 . . . . . . . . . . . . . . . . 17 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
5756exp31 418 . . . . . . . . . . . . . . . 16 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → (𝑖 ∈ dom (iEdg‘𝑆) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
5857com24 95 . . . . . . . . . . . . . . 15 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (𝑖 ∈ dom (iEdg‘𝑆) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
5958expimpd 452 . . . . . . . . . . . . . 14 ((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (𝑖 ∈ dom (iEdg‘𝑆) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
6059imp32 417 . . . . . . . . . . . . 13 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → (𝑖 ∈ dom (iEdg‘𝑆) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
6160ralrimiv 3134 . . . . . . . . . . . 12 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)))
6221, 61jca 510 . . . . . . . . . . 11 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → ((𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
63 f1oeq1 6826 . . . . . . . . . . . 12 (𝑗 = (𝑓𝑔) → (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ↔ (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈)))
64 fveq1 6895 . . . . . . . . . . . . . 14 (𝑗 = (𝑓𝑔) → (𝑗𝑖) = ((𝑓𝑔)‘𝑖))
6564fveqeq2d 6904 . . . . . . . . . . . . 13 (𝑗 = (𝑓𝑔) → (((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)) ↔ ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
6665ralbidv 3167 . . . . . . . . . . . 12 (𝑗 = (𝑓𝑔) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
6763, 66anbi12d 630 . . . . . . . . . . 11 (𝑗 = (𝑓𝑔) → ((𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))) ↔ ((𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)))))
6814, 62, 67spcedv 3582 . . . . . . . . . 10 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
6968exp32 419 . . . . . . . . 9 ((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
7069exlimdv 1928 . . . . . . . 8 ((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → (∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
7170expimpd 452 . . . . . . 7 (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) → ((𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
7271com23 86 . . . . . 6 (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ((𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
7372exlimdv 1928 . . . . 5 (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) → (∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ((𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
7473imp31 416 . . . 4 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) ∧ (𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
7510, 74jca 510 . . 3 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) ∧ (𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))))) → ((𝐹𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)))))
765, 8, 75syl2an 594 . 2 ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → ((𝐹𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)))))
77 grimdmrel 47350 . . . . . 6 Rel dom GraphIso
7877ovrcl 7460 . . . . 5 (𝐺 ∈ (𝑆 GraphIso 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
7978simpld 493 . . . 4 (𝐺 ∈ (𝑆 GraphIso 𝑇) → 𝑆 ∈ V)
8079adantl 480 . . 3 ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → 𝑆 ∈ V)
8177ovrcl 7460 . . . . 5 (𝐹 ∈ (𝑇 GraphIso 𝑈) → (𝑇 ∈ V ∧ 𝑈 ∈ V))
8281simprd 494 . . . 4 (𝐹 ∈ (𝑇 GraphIso 𝑈) → 𝑈 ∈ V)
8382adantr 479 . . 3 ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → 𝑈 ∈ V)
84 coexg 7937 . . 3 ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → (𝐹𝐺) ∈ V)
856, 2, 7, 4isgrim 47352 . . 3 ((𝑆 ∈ V ∧ 𝑈 ∈ V ∧ (𝐹𝐺) ∈ V) → ((𝐹𝐺) ∈ (𝑆 GraphIso 𝑈) ↔ ((𝐹𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
8680, 83, 84, 85syl3anc 1368 . 2 ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → ((𝐹𝐺) ∈ (𝑆 GraphIso 𝑈) ↔ ((𝐹𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
8776, 86mpbird 256 1 ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → (𝐹𝐺) ∈ (𝑆 GraphIso 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wral 3050  Vcvv 3461  dom cdm 5678  cima 5681  ccom 5682  wf 6545  1-1-ontowf1o 6548  cfv 6549  (class class class)co 7419  Vtxcvtx 28881  iEdgciedg 28882   GraphIso cgrim 47345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-map 8847  df-grim 47348
This theorem is referenced by:  grictr  47375
  Copyright terms: Public domain W3C validator