Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimco Structured version   Visualization version   GIF version

Theorem grimco 47764
Description: The composition of graph isomorphisms is a graph isomorphism. (Contributed by AV, 3-May-2025.)
Assertion
Ref Expression
grimco ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → (𝐹𝐺) ∈ (𝑆 GraphIso 𝑈))

Proof of Theorem grimco
Dummy variables 𝑓 𝑔 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 (Vtx‘𝑇) = (Vtx‘𝑇)
2 eqid 2740 . . . 4 (Vtx‘𝑈) = (Vtx‘𝑈)
3 eqid 2740 . . . 4 (iEdg‘𝑇) = (iEdg‘𝑇)
4 eqid 2740 . . . 4 (iEdg‘𝑈) = (iEdg‘𝑈)
51, 2, 3, 4grimprop 47753 . . 3 (𝐹 ∈ (𝑇 GraphIso 𝑈) → (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))))
6 eqid 2740 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
7 eqid 2740 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
86, 1, 7, 3grimprop 47753 . . 3 (𝐺 ∈ (𝑆 GraphIso 𝑇) → (𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)))))
9 f1oco 6885 . . . . 5 ((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → (𝐹𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈))
109ad2ant2r 746 . . . 4 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) ∧ (𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))))) → (𝐹𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈))
11 vex 3492 . . . . . . . . . . . . 13 𝑓 ∈ V
12 vex 3492 . . . . . . . . . . . . 13 𝑔 ∈ V
1311, 12coex 7970 . . . . . . . . . . . 12 (𝑓𝑔) ∈ V
1413a1i 11 . . . . . . . . . . 11 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → (𝑓𝑔) ∈ V)
15 f1oco 6885 . . . . . . . . . . . . . . . . . 18 ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈))
1615a1d 25 . . . . . . . . . . . . . . . . 17 ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈)))
1716expcom 413 . . . . . . . . . . . . . . . 16 (𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈))))
1817impd 410 . . . . . . . . . . . . . . 15 (𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈)))
1918adantr 480 . . . . . . . . . . . . . 14 ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈)))
2019imp 406 . . . . . . . . . . . . 13 (((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈))
2120adantl 481 . . . . . . . . . . . 12 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈))
22 2fveq3 6925 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑖 → ((iEdg‘𝑇)‘(𝑔𝑦)) = ((iEdg‘𝑇)‘(𝑔𝑖)))
23 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑖 → ((iEdg‘𝑆)‘𝑦) = ((iEdg‘𝑆)‘𝑖))
2423imaeq2d 6089 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑖 → (𝐺 “ ((iEdg‘𝑆)‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)))
2522, 24eqeq12d 2756 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑖 → (((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) ↔ ((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖))))
2625rspcv 3631 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ dom (iEdg‘𝑆) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖))))
2726adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖))))
2827adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖))))
29 f1of 6862 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → 𝑔:dom (iEdg‘𝑆)⟶dom (iEdg‘𝑇))
3029adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → 𝑔:dom (iEdg‘𝑆)⟶dom (iEdg‘𝑇))
3130ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) → (𝑔𝑖) ∈ dom (iEdg‘𝑇))
3231adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → (𝑔𝑖) ∈ dom (iEdg‘𝑇))
33 2fveq3 6925 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑔𝑖) → ((iEdg‘𝑈)‘(𝑓𝑥)) = ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))))
34 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝑔𝑖) → ((iEdg‘𝑇)‘𝑥) = ((iEdg‘𝑇)‘(𝑔𝑖)))
3534imaeq2d 6089 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑔𝑖) → (𝐹 “ ((iEdg‘𝑇)‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))))
3633, 35eqeq12d 2756 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑔𝑖) → (((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) ↔ ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))))
3736rspcv 3631 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔𝑖) ∈ dom (iEdg‘𝑇) → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))))
3832, 37syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))))
3930adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) → 𝑔:dom (iEdg‘𝑆)⟶dom (iEdg‘𝑇))
4039adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → 𝑔:dom (iEdg‘𝑆)⟶dom (iEdg‘𝑇))
41 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) → 𝑖 ∈ dom (iEdg‘𝑆))
4241adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → 𝑖 ∈ dom (iEdg‘𝑆))
4340, 42fvco3d 7022 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → ((𝑓𝑔)‘𝑖) = (𝑓‘(𝑔𝑖)))
4443adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) ∧ ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))) → ((𝑓𝑔)‘𝑖) = (𝑓‘(𝑔𝑖)))
4544fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) ∧ ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))))
46 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) ∧ ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))) → ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))))
4745, 46eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) ∧ ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))))
4847ex 412 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → (((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))))
4938, 48syld 47 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))))
5049impr 454 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))))
51 imaeq2 6085 . . . . . . . . . . . . . . . . . . . . 21 (((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)) → (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))) = (𝐹 “ (𝐺 “ ((iEdg‘𝑆)‘𝑖))))
52 imaco 6282 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)) = (𝐹 “ (𝐺 “ ((iEdg‘𝑆)‘𝑖)))
5351, 52eqtr4di 2798 . . . . . . . . . . . . . . . . . . . 20 (((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)) → (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)))
5450, 53sylan9eq 2800 . . . . . . . . . . . . . . . . . . 19 ((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) ∧ ((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖))) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)))
5554ex 412 . . . . . . . . . . . . . . . . . 18 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → (((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
5628, 55syld 47 . . . . . . . . . . . . . . . . 17 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
5756exp31 419 . . . . . . . . . . . . . . . 16 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → (𝑖 ∈ dom (iEdg‘𝑆) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
5857com24 95 . . . . . . . . . . . . . . 15 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (𝑖 ∈ dom (iEdg‘𝑆) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
5958expimpd 453 . . . . . . . . . . . . . 14 ((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (𝑖 ∈ dom (iEdg‘𝑆) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
6059imp32 418 . . . . . . . . . . . . 13 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → (𝑖 ∈ dom (iEdg‘𝑆) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
6160ralrimiv 3151 . . . . . . . . . . . 12 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)))
6221, 61jca 511 . . . . . . . . . . 11 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → ((𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
63 f1oeq1 6850 . . . . . . . . . . . 12 (𝑗 = (𝑓𝑔) → (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ↔ (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈)))
64 fveq1 6919 . . . . . . . . . . . . . 14 (𝑗 = (𝑓𝑔) → (𝑗𝑖) = ((𝑓𝑔)‘𝑖))
6564fveqeq2d 6928 . . . . . . . . . . . . 13 (𝑗 = (𝑓𝑔) → (((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)) ↔ ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
6665ralbidv 3184 . . . . . . . . . . . 12 (𝑗 = (𝑓𝑔) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
6763, 66anbi12d 631 . . . . . . . . . . 11 (𝑗 = (𝑓𝑔) → ((𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))) ↔ ((𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)))))
6814, 62, 67spcedv 3611 . . . . . . . . . 10 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
6968exp32 420 . . . . . . . . 9 ((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
7069exlimdv 1932 . . . . . . . 8 ((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → (∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
7170expimpd 453 . . . . . . 7 (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) → ((𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
7271com23 86 . . . . . 6 (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ((𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
7372exlimdv 1932 . . . . 5 (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) → (∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ((𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
7473imp31 417 . . . 4 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) ∧ (𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
7510, 74jca 511 . . 3 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) ∧ (𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))))) → ((𝐹𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)))))
765, 8, 75syl2an 595 . 2 ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → ((𝐹𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)))))
77 grimdmrel 47750 . . . . . 6 Rel dom GraphIso
7877ovrcl 7489 . . . . 5 (𝐺 ∈ (𝑆 GraphIso 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
7978simpld 494 . . . 4 (𝐺 ∈ (𝑆 GraphIso 𝑇) → 𝑆 ∈ V)
8079adantl 481 . . 3 ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → 𝑆 ∈ V)
8177ovrcl 7489 . . . . 5 (𝐹 ∈ (𝑇 GraphIso 𝑈) → (𝑇 ∈ V ∧ 𝑈 ∈ V))
8281simprd 495 . . . 4 (𝐹 ∈ (𝑇 GraphIso 𝑈) → 𝑈 ∈ V)
8382adantr 480 . . 3 ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → 𝑈 ∈ V)
84 coexg 7969 . . 3 ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → (𝐹𝐺) ∈ V)
856, 2, 7, 4isgrim 47752 . . 3 ((𝑆 ∈ V ∧ 𝑈 ∈ V ∧ (𝐹𝐺) ∈ V) → ((𝐹𝐺) ∈ (𝑆 GraphIso 𝑈) ↔ ((𝐹𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
8680, 83, 84, 85syl3anc 1371 . 2 ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → ((𝐹𝐺) ∈ (𝑆 GraphIso 𝑈) ↔ ((𝐹𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
8776, 86mpbird 257 1 ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → (𝐹𝐺) ∈ (𝑆 GraphIso 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  Vcvv 3488  dom cdm 5700  cima 5703  ccom 5704  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  iEdgciedg 29032   GraphIso cgrim 47745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-grim 47748
This theorem is referenced by:  grictr  47776
  Copyright terms: Public domain W3C validator