Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimco Structured version   Visualization version   GIF version

Theorem grimco 47880
Description: The composition of graph isomorphisms is a graph isomorphism. (Contributed by AV, 3-May-2025.)
Assertion
Ref Expression
grimco ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → (𝐹𝐺) ∈ (𝑆 GraphIso 𝑈))

Proof of Theorem grimco
Dummy variables 𝑓 𝑔 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (Vtx‘𝑇) = (Vtx‘𝑇)
2 eqid 2737 . . . 4 (Vtx‘𝑈) = (Vtx‘𝑈)
3 eqid 2737 . . . 4 (iEdg‘𝑇) = (iEdg‘𝑇)
4 eqid 2737 . . . 4 (iEdg‘𝑈) = (iEdg‘𝑈)
51, 2, 3, 4grimprop 47869 . . 3 (𝐹 ∈ (𝑇 GraphIso 𝑈) → (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))))
6 eqid 2737 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
7 eqid 2737 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
86, 1, 7, 3grimprop 47869 . . 3 (𝐺 ∈ (𝑆 GraphIso 𝑇) → (𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)))))
9 f1oco 6871 . . . . 5 ((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → (𝐹𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈))
109ad2ant2r 747 . . . 4 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) ∧ (𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))))) → (𝐹𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈))
11 vex 3484 . . . . . . . . . . . . 13 𝑓 ∈ V
12 vex 3484 . . . . . . . . . . . . 13 𝑔 ∈ V
1311, 12coex 7952 . . . . . . . . . . . 12 (𝑓𝑔) ∈ V
1413a1i 11 . . . . . . . . . . 11 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → (𝑓𝑔) ∈ V)
15 f1oco 6871 . . . . . . . . . . . . . . . . . 18 ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈))
1615a1d 25 . . . . . . . . . . . . . . . . 17 ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈)))
1716expcom 413 . . . . . . . . . . . . . . . 16 (𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈))))
1817impd 410 . . . . . . . . . . . . . . 15 (𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈)))
1918adantr 480 . . . . . . . . . . . . . 14 ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈)))
2019imp 406 . . . . . . . . . . . . 13 (((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈))
2120adantl 481 . . . . . . . . . . . 12 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈))
22 2fveq3 6911 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑖 → ((iEdg‘𝑇)‘(𝑔𝑦)) = ((iEdg‘𝑇)‘(𝑔𝑖)))
23 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑖 → ((iEdg‘𝑆)‘𝑦) = ((iEdg‘𝑆)‘𝑖))
2423imaeq2d 6078 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑖 → (𝐺 “ ((iEdg‘𝑆)‘𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)))
2522, 24eqeq12d 2753 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑖 → (((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) ↔ ((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖))))
2625rspcv 3618 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ dom (iEdg‘𝑆) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖))))
2726adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖))))
2827adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖))))
29 f1of 6848 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → 𝑔:dom (iEdg‘𝑆)⟶dom (iEdg‘𝑇))
3029adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → 𝑔:dom (iEdg‘𝑆)⟶dom (iEdg‘𝑇))
3130ffvelcdmda 7104 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) → (𝑔𝑖) ∈ dom (iEdg‘𝑇))
3231adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → (𝑔𝑖) ∈ dom (iEdg‘𝑇))
33 2fveq3 6911 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑔𝑖) → ((iEdg‘𝑈)‘(𝑓𝑥)) = ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))))
34 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝑔𝑖) → ((iEdg‘𝑇)‘𝑥) = ((iEdg‘𝑇)‘(𝑔𝑖)))
3534imaeq2d 6078 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑔𝑖) → (𝐹 “ ((iEdg‘𝑇)‘𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))))
3633, 35eqeq12d 2753 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑔𝑖) → (((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) ↔ ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))))
3736rspcv 3618 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔𝑖) ∈ dom (iEdg‘𝑇) → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))))
3832, 37syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))))
3930adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) → 𝑔:dom (iEdg‘𝑆)⟶dom (iEdg‘𝑇))
4039adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → 𝑔:dom (iEdg‘𝑆)⟶dom (iEdg‘𝑇))
41 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) → 𝑖 ∈ dom (iEdg‘𝑆))
4241adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → 𝑖 ∈ dom (iEdg‘𝑆))
4340, 42fvco3d 7009 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → ((𝑓𝑔)‘𝑖) = (𝑓‘(𝑔𝑖)))
4443adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) ∧ ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))) → ((𝑓𝑔)‘𝑖) = (𝑓‘(𝑔𝑖)))
4544fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) ∧ ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))))
46 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) ∧ ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))) → ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))))
4745, 46eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) ∧ ((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))))
4847ex 412 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → (((iEdg‘𝑈)‘(𝑓‘(𝑔𝑖))) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))))
4938, 48syld 47 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ 𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈)) → (∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖)))))
5049impr 454 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))))
51 imaeq2 6074 . . . . . . . . . . . . . . . . . . . . 21 (((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)) → (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))) = (𝐹 “ (𝐺 “ ((iEdg‘𝑆)‘𝑖))))
52 imaco 6271 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)) = (𝐹 “ (𝐺 “ ((iEdg‘𝑆)‘𝑖)))
5351, 52eqtr4di 2795 . . . . . . . . . . . . . . . . . . . 20 (((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)) → (𝐹 “ ((iEdg‘𝑇)‘(𝑔𝑖))) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)))
5450, 53sylan9eq 2797 . . . . . . . . . . . . . . . . . . 19 ((((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) ∧ ((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖))) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)))
5554ex 412 . . . . . . . . . . . . . . . . . 18 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → (((iEdg‘𝑇)‘(𝑔𝑖)) = (𝐺 “ ((iEdg‘𝑆)‘𝑖)) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
5628, 55syld 47 . . . . . . . . . . . . . . . . 17 (((((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) ∧ 𝑖 ∈ dom (iEdg‘𝑆)) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
5756exp31 419 . . . . . . . . . . . . . . . 16 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → (𝑖 ∈ dom (iEdg‘𝑆) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
5857com24 95 . . . . . . . . . . . . . . 15 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ 𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇)) → (∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (𝑖 ∈ dom (iEdg‘𝑆) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
5958expimpd 453 . . . . . . . . . . . . . 14 ((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → (𝑖 ∈ dom (iEdg‘𝑆) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
6059imp32 418 . . . . . . . . . . . . 13 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → (𝑖 ∈ dom (iEdg‘𝑆) → ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
6160ralrimiv 3145 . . . . . . . . . . . 12 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)))
6221, 61jca 511 . . . . . . . . . . 11 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → ((𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
63 f1oeq1 6836 . . . . . . . . . . . 12 (𝑗 = (𝑓𝑔) → (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ↔ (𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈)))
64 fveq1 6905 . . . . . . . . . . . . . 14 (𝑗 = (𝑓𝑔) → (𝑗𝑖) = ((𝑓𝑔)‘𝑖))
6564fveqeq2d 6914 . . . . . . . . . . . . 13 (𝑗 = (𝑓𝑔) → (((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)) ↔ ((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
6665ralbidv 3178 . . . . . . . . . . . 12 (𝑗 = (𝑓𝑔) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
6763, 66anbi12d 632 . . . . . . . . . . 11 (𝑗 = (𝑓𝑔) → ((𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))) ↔ ((𝑓𝑔):dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘((𝑓𝑔)‘𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)))))
6814, 62, 67spcedv 3598 . . . . . . . . . 10 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) ∧ ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) ∧ (𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
6968exp32 420 . . . . . . . . 9 ((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → ((𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
7069exlimdv 1933 . . . . . . . 8 ((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ 𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇)) → (∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
7170expimpd 453 . . . . . . 7 (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) → ((𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)))) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
7271com23 86 . . . . . 6 (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) → ((𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ((𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
7372exlimdv 1933 . . . . 5 (𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) → (∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥))) → ((𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦)))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
7473imp31 417 . . . 4 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) ∧ (𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))))) → ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))
7510, 74jca 511 . . 3 (((𝐹:(Vtx‘𝑇)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑓(𝑓:dom (iEdg‘𝑇)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑈)‘(𝑓𝑥)) = (𝐹 “ ((iEdg‘𝑇)‘𝑥)))) ∧ (𝐺:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑦 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑔𝑦)) = (𝐺 “ ((iEdg‘𝑆)‘𝑦))))) → ((𝐹𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)))))
765, 8, 75syl2an 596 . 2 ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → ((𝐹𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖)))))
77 grimdmrel 47866 . . . . . 6 Rel dom GraphIso
7877ovrcl 7472 . . . . 5 (𝐺 ∈ (𝑆 GraphIso 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
7978simpld 494 . . . 4 (𝐺 ∈ (𝑆 GraphIso 𝑇) → 𝑆 ∈ V)
8079adantl 481 . . 3 ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → 𝑆 ∈ V)
8177ovrcl 7472 . . . . 5 (𝐹 ∈ (𝑇 GraphIso 𝑈) → (𝑇 ∈ V ∧ 𝑈 ∈ V))
8281simprd 495 . . . 4 (𝐹 ∈ (𝑇 GraphIso 𝑈) → 𝑈 ∈ V)
8382adantr 480 . . 3 ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → 𝑈 ∈ V)
84 coexg 7951 . . 3 ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → (𝐹𝐺) ∈ V)
856, 2, 7, 4isgrim 47868 . . 3 ((𝑆 ∈ V ∧ 𝑈 ∈ V ∧ (𝐹𝐺) ∈ V) → ((𝐹𝐺) ∈ (𝑆 GraphIso 𝑈) ↔ ((𝐹𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
8680, 83, 84, 85syl3anc 1373 . 2 ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → ((𝐹𝐺) ∈ (𝑆 GraphIso 𝑈) ↔ ((𝐹𝐺):(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑈) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑈) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑈)‘(𝑗𝑖)) = ((𝐹𝐺) “ ((iEdg‘𝑆)‘𝑖))))))
8776, 86mpbird 257 1 ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → (𝐹𝐺) ∈ (𝑆 GraphIso 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3061  Vcvv 3480  dom cdm 5685  cima 5688  ccom 5689  wf 6557  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  Vtxcvtx 29013  iEdgciedg 29014   GraphIso cgrim 47861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-grim 47864
This theorem is referenced by:  grictr  47892
  Copyright terms: Public domain W3C validator