| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grimprop | Structured version Visualization version GIF version | ||
| Description: Properties of an isomorphism of graphs. (Contributed by AV, 29-Apr-2025.) |
| Ref | Expression |
|---|---|
| grimprop.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| grimprop.w | ⊢ 𝑊 = (Vtx‘𝐻) |
| grimprop.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| grimprop.d | ⊢ 𝐷 = (iEdg‘𝐻) |
| Ref | Expression |
|---|---|
| grimprop | ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grimdmrel 48007 | . . . . 5 ⊢ Rel dom GraphIso | |
| 2 | 1 | ovrcl 7395 | . . . 4 ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V)) |
| 3 | 2 | simpld 494 | . . 3 ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐺 ∈ V) |
| 4 | 2 | simprd 495 | . . 3 ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐻 ∈ V) |
| 5 | id 22 | . . 3 ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹 ∈ (𝐺 GraphIso 𝐻)) | |
| 6 | 3, 4, 5 | 3jca 1128 | . 2 ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻))) |
| 7 | grimprop.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 8 | grimprop.w | . . . 4 ⊢ 𝑊 = (Vtx‘𝐻) | |
| 9 | grimprop.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 10 | grimprop.d | . . . 4 ⊢ 𝐷 = (iEdg‘𝐻) | |
| 11 | 7, 8, 9, 10 | isgrim 48009 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))))) |
| 12 | 11 | biimpd 229 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))))) |
| 13 | 6, 12 | mpcom 38 | 1 ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 dom cdm 5621 “ cima 5624 –1-1-onto→wf1o 6487 ‘cfv 6488 (class class class)co 7354 Vtxcvtx 28978 iEdgciedg 28979 GraphIso cgrim 48002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-map 8760 df-grim 48005 |
| This theorem is referenced by: grimf1o 48011 grimuhgr 48014 grimcnv 48015 grimco 48016 uhgrimedgi 48017 uhgrimisgrgric 48058 clnbgrgrimlem 48060 clnbgrgrim 48061 grimedg 48062 |
| Copyright terms: Public domain | W3C validator |