| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grimprop | Structured version Visualization version GIF version | ||
| Description: Properties of an isomorphism of graphs. (Contributed by AV, 29-Apr-2025.) |
| Ref | Expression |
|---|---|
| grimprop.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| grimprop.w | ⊢ 𝑊 = (Vtx‘𝐻) |
| grimprop.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| grimprop.d | ⊢ 𝐷 = (iEdg‘𝐻) |
| Ref | Expression |
|---|---|
| grimprop | ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grimdmrel 47877 | . . . . 5 ⊢ Rel dom GraphIso | |
| 2 | 1 | ovrcl 7428 | . . . 4 ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V)) |
| 3 | 2 | simpld 494 | . . 3 ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐺 ∈ V) |
| 4 | 2 | simprd 495 | . . 3 ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐻 ∈ V) |
| 5 | id 22 | . . 3 ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹 ∈ (𝐺 GraphIso 𝐻)) | |
| 6 | 3, 4, 5 | 3jca 1128 | . 2 ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻))) |
| 7 | grimprop.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 8 | grimprop.w | . . . 4 ⊢ 𝑊 = (Vtx‘𝐻) | |
| 9 | grimprop.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 10 | grimprop.d | . . . 4 ⊢ 𝐷 = (iEdg‘𝐻) | |
| 11 | 7, 8, 9, 10 | isgrim 47879 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))))) |
| 12 | 11 | biimpd 229 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))))) |
| 13 | 6, 12 | mpcom 38 | 1 ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 dom cdm 5638 “ cima 5641 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 Vtxcvtx 28923 iEdgciedg 28924 GraphIso cgrim 47872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-grim 47875 |
| This theorem is referenced by: grimf1o 47881 grimuhgr 47884 grimcnv 47885 grimco 47886 uhgrimedgi 47887 uhgrimisgrgric 47928 clnbgrgrimlem 47930 clnbgrgrim 47931 grimedg 47932 |
| Copyright terms: Public domain | W3C validator |