Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimprop2 Structured version   Visualization version   GIF version

Theorem grlimprop2 48016
Description: Properties of a local isomorphism of graphs. (Contributed by AV, 29-May-2025.)
Hypotheses
Ref Expression
grlimprop.v 𝑉 = (Vtx‘𝐺)
grlimprop.w 𝑊 = (Vtx‘𝐻)
grlimprop2.n 𝑁 = (𝐺 ClNeighbVtx 𝑣)
grlimprop2.m 𝑀 = (𝐻 ClNeighbVtx (𝐹𝑣))
grlimprop2.i 𝐼 = (iEdg‘𝐺)
grlimprop2.j 𝐽 = (iEdg‘𝐻)
grlimprop2.k 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
grlimprop2.l 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
Assertion
Ref Expression
grlimprop2 (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Distinct variable groups:   𝑣,𝐹   𝑣,𝐺   𝑣,𝐻   𝑣,𝑉   𝑓,𝐹,𝑔,𝑣   𝑓,𝐺,𝑔,𝑖,𝑥   𝑓,𝐻,𝑔,𝑖,𝑥   𝑥,𝐼   𝑥,𝐽   𝑖,𝐾   𝑖,𝐿   𝑓,𝑀,𝑔,𝑖,𝑥   𝑓,𝑁,𝑔,𝑖,𝑥   𝑣,𝑖
Allowed substitution hints:   𝐹(𝑥,𝑖)   𝐼(𝑣,𝑓,𝑔,𝑖)   𝐽(𝑣,𝑓,𝑔,𝑖)   𝐾(𝑥,𝑣,𝑓,𝑔)   𝐿(𝑥,𝑣,𝑓,𝑔)   𝑀(𝑣)   𝑁(𝑣)   𝑉(𝑥,𝑓,𝑔,𝑖)   𝑊(𝑥,𝑣,𝑓,𝑔,𝑖)

Proof of Theorem grlimprop2
StepHypRef Expression
1 grlimdmrel 48010 . . . . 5 Rel dom GraphLocIso
21ovrcl 7387 . . . 4 (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V))
3 id 22 . . . 4 (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻))
4 df-3an 1088 . . . 4 ((𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) ↔ ((𝐺 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)))
52, 3, 4sylanbrc 583 . . 3 (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)))
6 grlimprop.v . . . 4 𝑉 = (Vtx‘𝐺)
7 grlimprop.w . . . 4 𝑊 = (Vtx‘𝐻)
8 grlimprop2.n . . . 4 𝑁 = (𝐺 ClNeighbVtx 𝑣)
9 grlimprop2.m . . . 4 𝑀 = (𝐻 ClNeighbVtx (𝐹𝑣))
10 grlimprop2.i . . . 4 𝐼 = (iEdg‘𝐺)
11 grlimprop2.j . . . 4 𝐽 = (iEdg‘𝐻)
12 grlimprop2.k . . . 4 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
13 grlimprop2.l . . . 4 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
146, 7, 8, 9, 10, 11, 12, 13isgrlim2 48013 . . 3 ((𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
155, 14syl 17 . 2 (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
1615ibi 267 1 (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  wss 3902  dom cdm 5616  cima 5619  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Vtxcvtx 28972  iEdgciedg 28973   ClNeighbVtx cclnbgr 47848   GraphLocIso cgrlim 48006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-1o 8385  df-map 8752  df-vtx 28974  df-iedg 28975  df-clnbgr 47849  df-isubgr 47891  df-grim 47908  df-gric 47911  df-grlim 48008
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator