| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grlimprop2 | Structured version Visualization version GIF version | ||
| Description: Properties of a local isomorphism of graphs. (Contributed by AV, 29-May-2025.) |
| Ref | Expression |
|---|---|
| grlimprop.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| grlimprop.w | ⊢ 𝑊 = (Vtx‘𝐻) |
| grlimprop2.n | ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) |
| grlimprop2.m | ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) |
| grlimprop2.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| grlimprop2.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| grlimprop2.k | ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} |
| grlimprop2.l | ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} |
| Ref | Expression |
|---|---|
| grlimprop2 | ⊢ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grlimdmrel 47920 | . . . . 5 ⊢ Rel dom GraphLocIso | |
| 2 | 1 | ovrcl 7454 | . . . 4 ⊢ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V)) |
| 3 | id 22 | . . . 4 ⊢ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) | |
| 4 | df-3an 1088 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) ↔ ((𝐺 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻))) | |
| 5 | 2, 3, 4 | sylanbrc 583 | . . 3 ⊢ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻))) |
| 6 | grlimprop.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 7 | grlimprop.w | . . . 4 ⊢ 𝑊 = (Vtx‘𝐻) | |
| 8 | grlimprop2.n | . . . 4 ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) | |
| 9 | grlimprop2.m | . . . 4 ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) | |
| 10 | grlimprop2.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 11 | grlimprop2.j | . . . 4 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 12 | grlimprop2.k | . . . 4 ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} | |
| 13 | grlimprop2.l | . . . 4 ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} | |
| 14 | 6, 7, 8, 9, 10, 11, 12, 13 | isgrlim2 47923 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| 15 | 5, 14 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| 16 | 15 | ibi 267 | 1 ⊢ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∀wral 3050 {crab 3419 Vcvv 3463 ⊆ wss 3931 dom cdm 5665 “ cima 5668 –1-1-onto→wf1o 6540 ‘cfv 6541 (class class class)co 7413 Vtxcvtx 28942 iEdgciedg 28943 ClNeighbVtx cclnbgr 47778 GraphLocIso cgrlim 47916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-1o 8488 df-map 8850 df-vtx 28944 df-iedg 28945 df-clnbgr 47779 df-isubgr 47820 df-grim 47837 df-gric 47840 df-grlim 47918 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |