Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimprop2 Structured version   Visualization version   GIF version

Theorem grlimprop2 47989
Description: Properties of a local isomorphism of graphs. (Contributed by AV, 29-May-2025.)
Hypotheses
Ref Expression
grlimprop.v 𝑉 = (Vtx‘𝐺)
grlimprop.w 𝑊 = (Vtx‘𝐻)
grlimprop2.n 𝑁 = (𝐺 ClNeighbVtx 𝑣)
grlimprop2.m 𝑀 = (𝐻 ClNeighbVtx (𝐹𝑣))
grlimprop2.i 𝐼 = (iEdg‘𝐺)
grlimprop2.j 𝐽 = (iEdg‘𝐻)
grlimprop2.k 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
grlimprop2.l 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
Assertion
Ref Expression
grlimprop2 (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Distinct variable groups:   𝑣,𝐹   𝑣,𝐺   𝑣,𝐻   𝑣,𝑉   𝑓,𝐹,𝑔,𝑣   𝑓,𝐺,𝑔,𝑖,𝑥   𝑓,𝐻,𝑔,𝑖,𝑥   𝑥,𝐼   𝑥,𝐽   𝑖,𝐾   𝑖,𝐿   𝑓,𝑀,𝑔,𝑖,𝑥   𝑓,𝑁,𝑔,𝑖,𝑥   𝑣,𝑖
Allowed substitution hints:   𝐹(𝑥,𝑖)   𝐼(𝑣,𝑓,𝑔,𝑖)   𝐽(𝑣,𝑓,𝑔,𝑖)   𝐾(𝑥,𝑣,𝑓,𝑔)   𝐿(𝑥,𝑣,𝑓,𝑔)   𝑀(𝑣)   𝑁(𝑣)   𝑉(𝑥,𝑓,𝑔,𝑖)   𝑊(𝑥,𝑣,𝑓,𝑔,𝑖)

Proof of Theorem grlimprop2
StepHypRef Expression
1 grlimdmrel 47983 . . . . 5 Rel dom GraphLocIso
21ovrcl 7431 . . . 4 (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V))
3 id 22 . . . 4 (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻))
4 df-3an 1088 . . . 4 ((𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) ↔ ((𝐺 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)))
52, 3, 4sylanbrc 583 . . 3 (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)))
6 grlimprop.v . . . 4 𝑉 = (Vtx‘𝐺)
7 grlimprop.w . . . 4 𝑊 = (Vtx‘𝐻)
8 grlimprop2.n . . . 4 𝑁 = (𝐺 ClNeighbVtx 𝑣)
9 grlimprop2.m . . . 4 𝑀 = (𝐻 ClNeighbVtx (𝐹𝑣))
10 grlimprop2.i . . . 4 𝐼 = (iEdg‘𝐺)
11 grlimprop2.j . . . 4 𝐽 = (iEdg‘𝐻)
12 grlimprop2.k . . . 4 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
13 grlimprop2.l . . . 4 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
146, 7, 8, 9, 10, 11, 12, 13isgrlim2 47986 . . 3 ((𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
155, 14syl 17 . 2 (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
1615ibi 267 1 (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  wss 3917  dom cdm 5641  cima 5644  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  Vtxcvtx 28930  iEdgciedg 28931   ClNeighbVtx cclnbgr 47823   GraphLocIso cgrlim 47979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-1o 8437  df-map 8804  df-vtx 28932  df-iedg 28933  df-clnbgr 47824  df-isubgr 47865  df-grim 47882  df-gric 47885  df-grlim 47981
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator