Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grilcbri2 Structured version   Visualization version   GIF version

Theorem grilcbri2 47534
Description: Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025.)
Hypotheses
Ref Expression
dfgrlic2.v 𝑉 = (Vtx‘𝐺)
dfgrlic2.w 𝑊 = (Vtx‘𝐻)
dfgrlic3.i 𝐼 = (iEdg‘𝐺)
dfgrlic3.j 𝐽 = (iEdg‘𝐻)
grilcbri2.n 𝑁 = (𝐺 ClNeighbVtx 𝑋)
grilcbri2.m 𝑀 = (𝐻 ClNeighbVtx (𝑓𝑋))
grilcbri2.k 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
grilcbri2.l 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
Assertion
Ref Expression
grilcbri2 (𝐺𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ (𝑋𝑉 → ∃𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
Distinct variable groups:   𝑓,𝐺   𝑓,𝐻   𝑓,𝑋   𝑔,𝐺,𝑖,𝑗,𝑓   𝑥,𝐺   𝑔,𝐻,𝑖,𝑗   𝑥,𝐻   𝑖,𝐼,𝑥   𝑖,𝐽,𝑥   𝑖,𝐾   𝑔,𝑋,𝑗   𝑥,𝑋,𝑓
Allowed substitution hints:   𝐼(𝑓,𝑔,𝑗)   𝐽(𝑓,𝑔,𝑗)   𝐾(𝑥,𝑓,𝑔,𝑗)   𝐿(𝑥,𝑓,𝑔,𝑖,𝑗)   𝑀(𝑥,𝑓,𝑔,𝑖,𝑗)   𝑁(𝑥,𝑓,𝑔,𝑖,𝑗)   𝑉(𝑥,𝑓,𝑔,𝑖,𝑗)   𝑊(𝑥,𝑓,𝑔,𝑖,𝑗)   𝑋(𝑖)

Proof of Theorem grilcbri2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 brgrlic 47527 . . 3 (𝐺𝑙𝑔𝑟 𝐻 ↔ (𝐺 GraphLocIso 𝐻) ≠ ∅)
2 grlimdmrel 47519 . . . . 5 Rel dom GraphLocIso
32ovprc 7451 . . . 4 (¬ (𝐺 ∈ V ∧ 𝐻 ∈ V) → (𝐺 GraphLocIso 𝐻) = ∅)
43necon1ai 2958 . . 3 ((𝐺 GraphLocIso 𝐻) ≠ ∅ → (𝐺 ∈ V ∧ 𝐻 ∈ V))
51, 4sylbi 216 . 2 (𝐺𝑙𝑔𝑟 𝐻 → (𝐺 ∈ V ∧ 𝐻 ∈ V))
6 dfgrlic2.v . . . 4 𝑉 = (Vtx‘𝐺)
7 dfgrlic2.w . . . 4 𝑊 = (Vtx‘𝐻)
8 dfgrlic3.i . . . 4 𝐼 = (iEdg‘𝐺)
9 dfgrlic3.j . . . 4 𝐽 = (iEdg‘𝐻)
10 eqid 2726 . . . 4 (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝑣)
11 eqid 2726 . . . 4 (𝐻 ClNeighbVtx (𝑓𝑣)) = (𝐻 ClNeighbVtx (𝑓𝑣))
12 eqid 2726 . . . 4 {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}
13 eqid 2726 . . . 4 {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))}
146, 7, 8, 9, 10, 11, 12, 13dfgrlic3 47533 . . 3 ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
15 eqidd 2727 . . . . . . . . . . 11 (𝑣 = 𝑋𝑗 = 𝑗)
16 oveq2 7421 . . . . . . . . . . . 12 (𝑣 = 𝑋 → (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝑋))
17 grilcbri2.n . . . . . . . . . . . 12 𝑁 = (𝐺 ClNeighbVtx 𝑋)
1816, 17eqtr4di 2784 . . . . . . . . . . 11 (𝑣 = 𝑋 → (𝐺 ClNeighbVtx 𝑣) = 𝑁)
19 fveq2 6890 . . . . . . . . . . . . 13 (𝑣 = 𝑋 → (𝑓𝑣) = (𝑓𝑋))
2019oveq2d 7429 . . . . . . . . . . . 12 (𝑣 = 𝑋 → (𝐻 ClNeighbVtx (𝑓𝑣)) = (𝐻 ClNeighbVtx (𝑓𝑋)))
21 grilcbri2.m . . . . . . . . . . . 12 𝑀 = (𝐻 ClNeighbVtx (𝑓𝑋))
2220, 21eqtr4di 2784 . . . . . . . . . . 11 (𝑣 = 𝑋 → (𝐻 ClNeighbVtx (𝑓𝑣)) = 𝑀)
2315, 18, 22f1oeq123d 6826 . . . . . . . . . 10 (𝑣 = 𝑋 → (𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓𝑣)) ↔ 𝑗:𝑁1-1-onto𝑀))
24 eqidd 2727 . . . . . . . . . . . . 13 (𝑣 = 𝑋𝑔 = 𝑔)
2518sseq2d 4011 . . . . . . . . . . . . . . 15 (𝑣 = 𝑋 → ((𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣) ↔ (𝐼𝑥) ⊆ 𝑁))
2625rabbidv 3427 . . . . . . . . . . . . . 14 (𝑣 = 𝑋 → {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁})
27 grilcbri2.k . . . . . . . . . . . . . 14 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
2826, 27eqtr4di 2784 . . . . . . . . . . . . 13 (𝑣 = 𝑋 → {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} = 𝐾)
2922sseq2d 4011 . . . . . . . . . . . . . . 15 (𝑣 = 𝑋 → ((𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣)) ↔ (𝐽𝑥) ⊆ 𝑀))
3029rabbidv 3427 . . . . . . . . . . . . . 14 (𝑣 = 𝑋 → {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀})
31 grilcbri2.l . . . . . . . . . . . . . 14 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
3230, 31eqtr4di 2784 . . . . . . . . . . . . 13 (𝑣 = 𝑋 → {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} = 𝐿)
3324, 28, 32f1oeq123d 6826 . . . . . . . . . . . 12 (𝑣 = 𝑋 → (𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ↔ 𝑔:𝐾1-1-onto𝐿))
3428raleqdv 3315 . . . . . . . . . . . 12 (𝑣 = 𝑋 → (∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)) ↔ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))
3533, 34anbi12d 630 . . . . . . . . . . 11 (𝑣 = 𝑋 → ((𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))) ↔ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
3635exbidv 1917 . . . . . . . . . 10 (𝑣 = 𝑋 → (∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))) ↔ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
3723, 36anbi12d 630 . . . . . . . . 9 (𝑣 = 𝑋 → ((𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))) ↔ (𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
3837exbidv 1917 . . . . . . . 8 (𝑣 = 𝑋 → (∃𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))) ↔ ∃𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
3938rspcv 3603 . . . . . . 7 (𝑋𝑉 → (∀𝑣𝑉𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))) → ∃𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
4039com12 32 . . . . . 6 (∀𝑣𝑉𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))) → (𝑋𝑉 → ∃𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
4140a1i 11 . . . . 5 ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (∀𝑣𝑉𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))) → (𝑋𝑉 → ∃𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
4241anim2d 610 . . . 4 ((𝐺 ∈ V ∧ 𝐻 ∈ V) → ((𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))) → (𝑓:𝑉1-1-onto𝑊 ∧ (𝑋𝑉 → ∃𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))))
4342eximdv 1913 . . 3 ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ (𝑋𝑉 → ∃𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))))
4414, 43sylbid 239 . 2 ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (𝐺𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ (𝑋𝑉 → ∃𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))))
455, 44mpcom 38 1 (𝐺𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ (𝑋𝑉 → ∃𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wex 1774  wcel 2099  wne 2930  wral 3051  {crab 3419  Vcvv 3462  wss 3946  c0 4322   class class class wbr 5143  dom cdm 5672  cima 5675  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7413  Vtxcvtx 28926  iEdgciedg 28927   ClNeighbVtx cclnbgr 47423   GraphLocIso cgrlim 47515  𝑙𝑔𝑟 cgrlic 47516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7992  df-2nd 7993  df-1o 8485  df-map 8846  df-vtx 28928  df-iedg 28929  df-clnbgr 47424  df-isubgr 47461  df-grim 47476  df-gric 47479  df-grlim 47517  df-grlic 47520
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator