Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grilcbri2 Structured version   Visualization version   GIF version

Theorem grilcbri2 48016
Description: Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025.)
Hypotheses
Ref Expression
dfgrlic2.v 𝑉 = (Vtx‘𝐺)
dfgrlic2.w 𝑊 = (Vtx‘𝐻)
dfgrlic3.i 𝐼 = (iEdg‘𝐺)
dfgrlic3.j 𝐽 = (iEdg‘𝐻)
grilcbri2.n 𝑁 = (𝐺 ClNeighbVtx 𝑋)
grilcbri2.m 𝑀 = (𝐻 ClNeighbVtx (𝑓𝑋))
grilcbri2.k 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
grilcbri2.l 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
Assertion
Ref Expression
grilcbri2 (𝐺𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ (𝑋𝑉 → ∃𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
Distinct variable groups:   𝑓,𝐺   𝑓,𝐻   𝑓,𝑋   𝑔,𝐺,𝑖,𝑗,𝑓   𝑥,𝐺   𝑔,𝐻,𝑖,𝑗   𝑥,𝐻   𝑖,𝐼,𝑥   𝑖,𝐽,𝑥   𝑖,𝐾   𝑔,𝑋,𝑗   𝑥,𝑋,𝑓
Allowed substitution hints:   𝐼(𝑓,𝑔,𝑗)   𝐽(𝑓,𝑔,𝑗)   𝐾(𝑥,𝑓,𝑔,𝑗)   𝐿(𝑥,𝑓,𝑔,𝑖,𝑗)   𝑀(𝑥,𝑓,𝑔,𝑖,𝑗)   𝑁(𝑥,𝑓,𝑔,𝑖,𝑗)   𝑉(𝑥,𝑓,𝑔,𝑖,𝑗)   𝑊(𝑥,𝑓,𝑔,𝑖,𝑗)   𝑋(𝑖)

Proof of Theorem grilcbri2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 brgrlic 48009 . . 3 (𝐺𝑙𝑔𝑟 𝐻 ↔ (𝐺 GraphLocIso 𝐻) ≠ ∅)
2 grlimdmrel 47992 . . . . 5 Rel dom GraphLocIso
32ovprc 7443 . . . 4 (¬ (𝐺 ∈ V ∧ 𝐻 ∈ V) → (𝐺 GraphLocIso 𝐻) = ∅)
43necon1ai 2959 . . 3 ((𝐺 GraphLocIso 𝐻) ≠ ∅ → (𝐺 ∈ V ∧ 𝐻 ∈ V))
51, 4sylbi 217 . 2 (𝐺𝑙𝑔𝑟 𝐻 → (𝐺 ∈ V ∧ 𝐻 ∈ V))
6 dfgrlic2.v . . . 4 𝑉 = (Vtx‘𝐺)
7 dfgrlic2.w . . . 4 𝑊 = (Vtx‘𝐻)
8 dfgrlic3.i . . . 4 𝐼 = (iEdg‘𝐺)
9 dfgrlic3.j . . . 4 𝐽 = (iEdg‘𝐻)
10 eqid 2735 . . . 4 (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝑣)
11 eqid 2735 . . . 4 (𝐻 ClNeighbVtx (𝑓𝑣)) = (𝐻 ClNeighbVtx (𝑓𝑣))
12 eqid 2735 . . . 4 {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}
13 eqid 2735 . . . 4 {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))}
146, 7, 8, 9, 10, 11, 12, 13dfgrlic3 48015 . . 3 ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
15 eqidd 2736 . . . . . . . . . . 11 (𝑣 = 𝑋𝑗 = 𝑗)
16 oveq2 7413 . . . . . . . . . . . 12 (𝑣 = 𝑋 → (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝑋))
17 grilcbri2.n . . . . . . . . . . . 12 𝑁 = (𝐺 ClNeighbVtx 𝑋)
1816, 17eqtr4di 2788 . . . . . . . . . . 11 (𝑣 = 𝑋 → (𝐺 ClNeighbVtx 𝑣) = 𝑁)
19 fveq2 6876 . . . . . . . . . . . . 13 (𝑣 = 𝑋 → (𝑓𝑣) = (𝑓𝑋))
2019oveq2d 7421 . . . . . . . . . . . 12 (𝑣 = 𝑋 → (𝐻 ClNeighbVtx (𝑓𝑣)) = (𝐻 ClNeighbVtx (𝑓𝑋)))
21 grilcbri2.m . . . . . . . . . . . 12 𝑀 = (𝐻 ClNeighbVtx (𝑓𝑋))
2220, 21eqtr4di 2788 . . . . . . . . . . 11 (𝑣 = 𝑋 → (𝐻 ClNeighbVtx (𝑓𝑣)) = 𝑀)
2315, 18, 22f1oeq123d 6812 . . . . . . . . . 10 (𝑣 = 𝑋 → (𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓𝑣)) ↔ 𝑗:𝑁1-1-onto𝑀))
24 eqidd 2736 . . . . . . . . . . . . 13 (𝑣 = 𝑋𝑔 = 𝑔)
2518sseq2d 3991 . . . . . . . . . . . . . . 15 (𝑣 = 𝑋 → ((𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣) ↔ (𝐼𝑥) ⊆ 𝑁))
2625rabbidv 3423 . . . . . . . . . . . . . 14 (𝑣 = 𝑋 → {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁})
27 grilcbri2.k . . . . . . . . . . . . . 14 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
2826, 27eqtr4di 2788 . . . . . . . . . . . . 13 (𝑣 = 𝑋 → {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} = 𝐾)
2922sseq2d 3991 . . . . . . . . . . . . . . 15 (𝑣 = 𝑋 → ((𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣)) ↔ (𝐽𝑥) ⊆ 𝑀))
3029rabbidv 3423 . . . . . . . . . . . . . 14 (𝑣 = 𝑋 → {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀})
31 grilcbri2.l . . . . . . . . . . . . . 14 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
3230, 31eqtr4di 2788 . . . . . . . . . . . . 13 (𝑣 = 𝑋 → {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} = 𝐿)
3324, 28, 32f1oeq123d 6812 . . . . . . . . . . . 12 (𝑣 = 𝑋 → (𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ↔ 𝑔:𝐾1-1-onto𝐿))
3428raleqdv 3305 . . . . . . . . . . . 12 (𝑣 = 𝑋 → (∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)) ↔ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))
3533, 34anbi12d 632 . . . . . . . . . . 11 (𝑣 = 𝑋 → ((𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))) ↔ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
3635exbidv 1921 . . . . . . . . . 10 (𝑣 = 𝑋 → (∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))) ↔ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
3723, 36anbi12d 632 . . . . . . . . 9 (𝑣 = 𝑋 → ((𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))) ↔ (𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
3837exbidv 1921 . . . . . . . 8 (𝑣 = 𝑋 → (∃𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))) ↔ ∃𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
3938rspcv 3597 . . . . . . 7 (𝑋𝑉 → (∀𝑣𝑉𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))) → ∃𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
4039com12 32 . . . . . 6 (∀𝑣𝑉𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))) → (𝑋𝑉 → ∃𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
4140a1i 11 . . . . 5 ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (∀𝑣𝑉𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))) → (𝑋𝑉 → ∃𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
4241anim2d 612 . . . 4 ((𝐺 ∈ V ∧ 𝐻 ∈ V) → ((𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))) → (𝑓:𝑉1-1-onto𝑊 ∧ (𝑋𝑉 → ∃𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))))
4342eximdv 1917 . . 3 ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))) → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ (𝑋𝑉 → ∃𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))))
4414, 43sylbid 240 . 2 ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (𝐺𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ (𝑋𝑉 → ∃𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))))
455, 44mpcom 38 1 (𝐺𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ (𝑋𝑉 → ∃𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  {crab 3415  Vcvv 3459  wss 3926  c0 4308   class class class wbr 5119  dom cdm 5654  cima 5657  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  Vtxcvtx 28975  iEdgciedg 28976   ClNeighbVtx cclnbgr 47832   GraphLocIso cgrlim 47988  𝑙𝑔𝑟 cgrlic 47989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-1o 8480  df-map 8842  df-vtx 28977  df-iedg 28978  df-clnbgr 47833  df-isubgr 47874  df-grim 47891  df-gric 47894  df-grlim 47990  df-grlic 47993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator