| Step | Hyp | Ref
| Expression |
| 1 | | brgrlic 47964 |
. . 3
⊢ (𝐺
≃𝑙𝑔𝑟 𝐻 ↔ (𝐺 GraphLocIso 𝐻) ≠ ∅) |
| 2 | | grlimdmrel 47947 |
. . . . 5
⊢ Rel dom
GraphLocIso |
| 3 | 2 | ovprc 7469 |
. . . 4
⊢ (¬
(𝐺 ∈ V ∧ 𝐻 ∈ V) → (𝐺 GraphLocIso 𝐻) = ∅) |
| 4 | 3 | necon1ai 2968 |
. . 3
⊢ ((𝐺 GraphLocIso 𝐻) ≠ ∅ → (𝐺 ∈ V ∧ 𝐻 ∈ V)) |
| 5 | 1, 4 | sylbi 217 |
. 2
⊢ (𝐺
≃𝑙𝑔𝑟 𝐻 → (𝐺 ∈ V ∧ 𝐻 ∈ V)) |
| 6 | | dfgrlic2.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
| 7 | | dfgrlic2.w |
. . . 4
⊢ 𝑊 = (Vtx‘𝐻) |
| 8 | | dfgrlic3.i |
. . . 4
⊢ 𝐼 = (iEdg‘𝐺) |
| 9 | | dfgrlic3.j |
. . . 4
⊢ 𝐽 = (iEdg‘𝐻) |
| 10 | | eqid 2737 |
. . . 4
⊢ (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝑣) |
| 11 | | eqid 2737 |
. . . 4
⊢ (𝐻 ClNeighbVtx (𝑓‘𝑣)) = (𝐻 ClNeighbVtx (𝑓‘𝑣)) |
| 12 | | eqid 2737 |
. . . 4
⊢ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} |
| 13 | | eqid 2737 |
. . . 4
⊢ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓‘𝑣))} = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓‘𝑣))} |
| 14 | 6, 7, 8, 9, 10, 11, 12, 13 | dfgrlic3 47970 |
. . 3
⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (𝐺
≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓‘𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓‘𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| 15 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑋 → 𝑗 = 𝑗) |
| 16 | | oveq2 7439 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑋 → (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝑋)) |
| 17 | | grilcbri2.n |
. . . . . . . . . . . 12
⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) |
| 18 | 16, 17 | eqtr4di 2795 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑋 → (𝐺 ClNeighbVtx 𝑣) = 𝑁) |
| 19 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑋 → (𝑓‘𝑣) = (𝑓‘𝑋)) |
| 20 | 19 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑋 → (𝐻 ClNeighbVtx (𝑓‘𝑣)) = (𝐻 ClNeighbVtx (𝑓‘𝑋))) |
| 21 | | grilcbri2.m |
. . . . . . . . . . . 12
⊢ 𝑀 = (𝐻 ClNeighbVtx (𝑓‘𝑋)) |
| 22 | 20, 21 | eqtr4di 2795 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑋 → (𝐻 ClNeighbVtx (𝑓‘𝑣)) = 𝑀) |
| 23 | 15, 18, 22 | f1oeq123d 6842 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑋 → (𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓‘𝑣)) ↔ 𝑗:𝑁–1-1-onto→𝑀)) |
| 24 | | eqidd 2738 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑋 → 𝑔 = 𝑔) |
| 25 | 18 | sseq2d 4016 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑋 → ((𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣) ↔ (𝐼‘𝑥) ⊆ 𝑁)) |
| 26 | 25 | rabbidv 3444 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑋 → {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁}) |
| 27 | | grilcbri2.k |
. . . . . . . . . . . . . 14
⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} |
| 28 | 26, 27 | eqtr4di 2795 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑋 → {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} = 𝐾) |
| 29 | 22 | sseq2d 4016 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑋 → ((𝐽‘𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓‘𝑣)) ↔ (𝐽‘𝑥) ⊆ 𝑀)) |
| 30 | 29 | rabbidv 3444 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑋 → {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓‘𝑣))} = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀}) |
| 31 | | grilcbri2.l |
. . . . . . . . . . . . . 14
⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} |
| 32 | 30, 31 | eqtr4di 2795 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑋 → {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓‘𝑣))} = 𝐿) |
| 33 | 24, 28, 32 | f1oeq123d 6842 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑋 → (𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓‘𝑣))} ↔ 𝑔:𝐾–1-1-onto→𝐿)) |
| 34 | 28 | raleqdv 3326 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑋 → (∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)) ↔ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))) |
| 35 | 33, 34 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑋 → ((𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓‘𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))) ↔ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) |
| 36 | 35 | exbidv 1921 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑋 → (∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓‘𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))) ↔ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) |
| 37 | 23, 36 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑣 = 𝑋 → ((𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓‘𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓‘𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))) ↔ (𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 38 | 37 | exbidv 1921 |
. . . . . . . 8
⊢ (𝑣 = 𝑋 → (∃𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓‘𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓‘𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))) ↔ ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 39 | 38 | rspcv 3618 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → (∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓‘𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓‘𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))) → ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 40 | 39 | com12 32 |
. . . . . 6
⊢
(∀𝑣 ∈
𝑉 ∃𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓‘𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓‘𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))) → (𝑋 ∈ 𝑉 → ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 41 | 40 | a1i 11 |
. . . . 5
⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓‘𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓‘𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))) → (𝑋 ∈ 𝑉 → ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| 42 | 41 | anim2d 612 |
. . . 4
⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V) → ((𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓‘𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓‘𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) → (𝑓:𝑉–1-1-onto→𝑊 ∧ (𝑋 ∈ 𝑉 → ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))))) |
| 43 | 42 | eximdv 1917 |
. . 3
⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝑓‘𝑣)) ∧ ∃𝑔(𝑔:{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ (𝐻 ClNeighbVtx (𝑓‘𝑣))} ∧ ∀𝑖 ∈ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ (𝑋 ∈ 𝑉 → ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))))) |
| 44 | 14, 43 | sylbid 240 |
. 2
⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (𝐺
≃𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ (𝑋 ∈ 𝑉 → ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))))) |
| 45 | 5, 44 | mpcom 38 |
1
⊢ (𝐺
≃𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ (𝑋 ∈ 𝑉 → ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |