Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlicrcl Structured version   Visualization version   GIF version

Theorem grlicrcl 48038
Description: Reverse closure of the "is locally isomorphic to" relation for graphs. (Contributed by AV, 9-Jun-2025.)
Assertion
Ref Expression
grlicrcl (𝐺𝑙𝑔𝑟 𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V))

Proof of Theorem grlicrcl
StepHypRef Expression
1 brgrlic 48035 . 2 (𝐺𝑙𝑔𝑟 𝑆 ↔ (𝐺 GraphLocIso 𝑆) ≠ ∅)
2 grlimdmrel 48011 . . . 4 Rel dom GraphLocIso
32ovprc 7379 . . 3 (¬ (𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝐺 GraphLocIso 𝑆) = ∅)
43necon1ai 2955 . 2 ((𝐺 GraphLocIso 𝑆) ≠ ∅ → (𝐺 ∈ V ∧ 𝑆 ∈ V))
51, 4sylbi 217 1 (𝐺𝑙𝑔𝑟 𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wne 2928  Vcvv 3436  c0 4278   class class class wbr 5086  (class class class)co 7341   GraphLocIso cgrlim 48007  𝑙𝑔𝑟 cgrlic 48008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-1o 8380  df-grlim 48009  df-grlic 48012
This theorem is referenced by:  grilcbri  48040  grlicsym  48044  grlictr  48046
  Copyright terms: Public domain W3C validator