Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlicrcl Structured version   Visualization version   GIF version

Theorem grlicrcl 47972
Description: Reverse closure of the "is locally isomorphic to" relation for graphs. (Contributed by AV, 9-Jun-2025.)
Assertion
Ref Expression
grlicrcl (𝐺𝑙𝑔𝑟 𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V))

Proof of Theorem grlicrcl
StepHypRef Expression
1 brgrlic 47969 . 2 (𝐺𝑙𝑔𝑟 𝑆 ↔ (𝐺 GraphLocIso 𝑆) ≠ ∅)
2 grlimdmrel 47952 . . . 4 Rel dom GraphLocIso
32ovprc 7407 . . 3 (¬ (𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝐺 GraphLocIso 𝑆) = ∅)
43necon1ai 2952 . 2 ((𝐺 GraphLocIso 𝑆) ≠ ∅ → (𝐺 ∈ V ∧ 𝑆 ∈ V))
51, 4sylbi 217 1 (𝐺𝑙𝑔𝑟 𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2925  Vcvv 3444  c0 4292   class class class wbr 5102  (class class class)co 7369   GraphLocIso cgrlim 47948  𝑙𝑔𝑟 cgrlic 47949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-1o 8411  df-grlim 47950  df-grlic 47953
This theorem is referenced by:  grilcbri  47974  grlicsym  47978  grlictr  47980
  Copyright terms: Public domain W3C validator