MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruixp Structured version   Visualization version   GIF version

Theorem gruixp 10700
Description: A Grothendieck universe contains indexed cartesian products of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruixp ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → X𝑥𝐴 𝐵𝑈)
Distinct variable groups:   𝑥,𝑈   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem gruixp
StepHypRef Expression
1 simp1 1136 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → 𝑈 ∈ Univ)
2 gruiun 10690 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → 𝑥𝐴 𝐵𝑈)
3 simp2 1137 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → 𝐴𝑈)
4 grumap 10699 . . 3 ((𝑈 ∈ Univ ∧ 𝑥𝐴 𝐵𝑈𝐴𝑈) → ( 𝑥𝐴 𝐵m 𝐴) ∈ 𝑈)
51, 2, 3, 4syl3anc 1373 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → ( 𝑥𝐴 𝐵m 𝐴) ∈ 𝑈)
6 ixpssmapg 8852 . . 3 (∀𝑥𝐴 𝐵𝑈X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
763ad2ant3 1135 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
8 gruss 10687 . 2 ((𝑈 ∈ Univ ∧ ( 𝑥𝐴 𝐵m 𝐴) ∈ 𝑈X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴)) → X𝑥𝐴 𝐵𝑈)
91, 5, 7, 8syl3anc 1373 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → X𝑥𝐴 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2111  wral 3047  wss 3897   ciun 4939  (class class class)co 7346  m cmap 8750  Xcixp 8821  Univcgru 10681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-pm 8753  df-ixp 8822  df-gru 10682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator