MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruixp Structured version   Visualization version   GIF version

Theorem gruixp 10818
Description: A Grothendieck universe contains indexed cartesian products of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruixp ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → X𝑥𝐴 𝐵𝑈)
Distinct variable groups:   𝑥,𝑈   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem gruixp
StepHypRef Expression
1 simp1 1134 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → 𝑈 ∈ Univ)
2 gruiun 10808 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → 𝑥𝐴 𝐵𝑈)
3 simp2 1135 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → 𝐴𝑈)
4 grumap 10817 . . 3 ((𝑈 ∈ Univ ∧ 𝑥𝐴 𝐵𝑈𝐴𝑈) → ( 𝑥𝐴 𝐵m 𝐴) ∈ 𝑈)
51, 2, 3, 4syl3anc 1369 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → ( 𝑥𝐴 𝐵m 𝐴) ∈ 𝑈)
6 ixpssmapg 8936 . . 3 (∀𝑥𝐴 𝐵𝑈X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
763ad2ant3 1133 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
8 gruss 10805 . 2 ((𝑈 ∈ Univ ∧ ( 𝑥𝐴 𝐵m 𝐴) ∈ 𝑈X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴)) → X𝑥𝐴 𝐵𝑈)
91, 5, 7, 8syl3anc 1369 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → X𝑥𝐴 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085  wcel 2099  wral 3056  wss 3944   ciun 4991  (class class class)co 7414  m cmap 8834  Xcixp 8905  Univcgru 10799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7985  df-2nd 7986  df-map 8836  df-pm 8837  df-ixp 8906  df-gru 10800
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator