![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruixp | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains indexed cartesian products of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruixp | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → X𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → 𝑈 ∈ Univ) | |
2 | gruiun 10800 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) | |
3 | simp2 1136 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → 𝐴 ∈ 𝑈) | |
4 | grumap 10809 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ∧ 𝐴 ∈ 𝑈) → (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ∈ 𝑈) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ∈ 𝑈) |
6 | ixpssmapg 8928 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) | |
7 | 6 | 3ad2ant3 1134 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
8 | gruss 10797 | . 2 ⊢ ((𝑈 ∈ Univ ∧ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ∈ 𝑈 ∧ X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) → X𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) | |
9 | 1, 5, 7, 8 | syl3anc 1370 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → X𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2105 ∀wral 3060 ⊆ wss 3948 ∪ ciun 4997 (class class class)co 7412 ↑m cmap 8826 Xcixp 8897 Univcgru 10791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-map 8828 df-pm 8829 df-ixp 8898 df-gru 10792 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |