| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > htalem | Structured version Visualization version GIF version | ||
| Description: Lemma for defining an emulation of Hilbert's epsilon. Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem is equivalent to Hilbert's "transfinite axiom", described on that page, with the additional 𝑅 We 𝐴 antecedent. The element 𝐵 is the epsilon that the theorem emulates. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| Ref | Expression |
|---|---|
| htalem.1 | ⊢ 𝐴 ∈ V |
| htalem.2 | ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |
| Ref | Expression |
|---|---|
| htalem | ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | htalem.2 | . 2 ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | |
| 2 | simpl 482 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝑅 We 𝐴) | |
| 3 | htalem.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V) |
| 5 | ssidd 3970 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ 𝐴) | |
| 6 | simpr 484 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
| 7 | wereu 5634 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ (𝐴 ∈ V ∧ 𝐴 ⊆ 𝐴 ∧ 𝐴 ≠ ∅)) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | |
| 8 | 2, 4, 5, 6, 7 | syl13anc 1374 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |
| 9 | riotacl 7361 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) ∈ 𝐴) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) ∈ 𝐴) |
| 11 | 1, 10 | eqeltrid 2832 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃!wreu 3352 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 We wwe 5590 ℩crio 7343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-iota 6464 df-riota 7344 |
| This theorem is referenced by: hta 9850 |
| Copyright terms: Public domain | W3C validator |