![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > htalem | Structured version Visualization version GIF version |
Description: Lemma for defining an emulation of Hilbert's epsilon. Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem is equivalent to Hilbert's "transfinite axiom", described on that page, with the additional 𝑅 We 𝐴 antecedent. The element 𝐵 is the epsilon that the theorem emulates. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
htalem.1 | ⊢ 𝐴 ∈ V |
htalem.2 | ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |
Ref | Expression |
---|---|
htalem | ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | htalem.2 | . 2 ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | |
2 | simpl 482 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝑅 We 𝐴) | |
3 | htalem.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
4 | 3 | a1i 11 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V) |
5 | ssidd 4032 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ 𝐴) | |
6 | simpr 484 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
7 | wereu 5696 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ (𝐴 ∈ V ∧ 𝐴 ⊆ 𝐴 ∧ 𝐴 ≠ ∅)) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | |
8 | 2, 4, 5, 6, 7 | syl13anc 1372 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |
9 | riotacl 7422 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) ∈ 𝐴) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) ∈ 𝐴) |
11 | 1, 10 | eqeltrid 2848 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃!wreu 3386 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 We wwe 5651 ℩crio 7403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-iota 6525 df-riota 7404 |
This theorem is referenced by: hta 9966 |
Copyright terms: Public domain | W3C validator |