MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htalem Structured version   Visualization version   GIF version

Theorem htalem 9512
Description: Lemma for defining an emulation of Hilbert's epsilon. Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem is equivalent to Hilbert's "transfinite axiom", described on that page, with the additional 𝑅 We 𝐴 antecedent. The element 𝐵 is the epsilon that the theorem emulates. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
htalem.1 𝐴 ∈ V
htalem.2 𝐵 = (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
Assertion
Ref Expression
htalem ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐵𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem htalem
StepHypRef Expression
1 htalem.2 . 2 𝐵 = (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
2 simpl 486 . . . 4 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝑅 We 𝐴)
3 htalem.1 . . . . 5 𝐴 ∈ V
43a1i 11 . . . 4 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐴 ∈ V)
5 ssidd 3924 . . . 4 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐴𝐴)
6 simpr 488 . . . 4 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐴 ≠ ∅)
7 wereu 5547 . . . 4 ((𝑅 We 𝐴 ∧ (𝐴 ∈ V ∧ 𝐴𝐴𝐴 ≠ ∅)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
82, 4, 5, 6, 7syl13anc 1374 . . 3 ((𝑅 We 𝐴𝐴 ≠ ∅) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
9 riotacl 7188 . . 3 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥 → (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) ∈ 𝐴)
108, 9syl 17 . 2 ((𝑅 We 𝐴𝐴 ≠ ∅) → (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) ∈ 𝐴)
111, 10eqeltrid 2842 1 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2940  wral 3061  ∃!wreu 3063  Vcvv 3408  wss 3866  c0 4237   class class class wbr 5053   We wwe 5508  crio 7169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-iota 6338  df-riota 7170
This theorem is referenced by:  hta  9513
  Copyright terms: Public domain W3C validator