MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htalem Structured version   Visualization version   GIF version

Theorem htalem 9926
Description: Lemma for defining an emulation of Hilbert's epsilon. Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem is equivalent to Hilbert's "transfinite axiom", described on that page, with the additional 𝑅 We 𝐴 antecedent. The element 𝐵 is the epsilon that the theorem emulates. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
htalem.1 𝐴 ∈ V
htalem.2 𝐵 = (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
Assertion
Ref Expression
htalem ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐵𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem htalem
StepHypRef Expression
1 htalem.2 . 2 𝐵 = (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
2 simpl 481 . . . 4 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝑅 We 𝐴)
3 htalem.1 . . . . 5 𝐴 ∈ V
43a1i 11 . . . 4 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐴 ∈ V)
5 ssidd 4000 . . . 4 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐴𝐴)
6 simpr 483 . . . 4 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐴 ≠ ∅)
7 wereu 5674 . . . 4 ((𝑅 We 𝐴 ∧ (𝐴 ∈ V ∧ 𝐴𝐴𝐴 ≠ ∅)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
82, 4, 5, 6, 7syl13anc 1369 . . 3 ((𝑅 We 𝐴𝐴 ≠ ∅) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
9 riotacl 7393 . . 3 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥 → (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) ∈ 𝐴)
108, 9syl 17 . 2 ((𝑅 We 𝐴𝐴 ≠ ∅) → (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) ∈ 𝐴)
111, 10eqeltrid 2829 1 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2929  wral 3050  ∃!wreu 3361  Vcvv 3461  wss 3944  c0 4322   class class class wbr 5149   We wwe 5632  crio 7374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-iota 6501  df-riota 7375
This theorem is referenced by:  hta  9927
  Copyright terms: Public domain W3C validator