|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > htalem | Structured version Visualization version GIF version | ||
| Description: Lemma for defining an emulation of Hilbert's epsilon. Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem is equivalent to Hilbert's "transfinite axiom", described on that page, with the additional 𝑅 We 𝐴 antecedent. The element 𝐵 is the epsilon that the theorem emulates. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.) | 
| Ref | Expression | 
|---|---|
| htalem.1 | ⊢ 𝐴 ∈ V | 
| htalem.2 | ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | 
| Ref | Expression | 
|---|---|
| htalem | ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | htalem.2 | . 2 ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | |
| 2 | simpl 482 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝑅 We 𝐴) | |
| 3 | htalem.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V) | 
| 5 | ssidd 4006 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ 𝐴) | |
| 6 | simpr 484 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
| 7 | wereu 5680 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ (𝐴 ∈ V ∧ 𝐴 ⊆ 𝐴 ∧ 𝐴 ≠ ∅)) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | |
| 8 | 2, 4, 5, 6, 7 | syl13anc 1373 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | 
| 9 | riotacl 7406 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) ∈ 𝐴) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) ∈ 𝐴) | 
| 11 | 1, 10 | eqeltrid 2844 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 ∃!wreu 3377 Vcvv 3479 ⊆ wss 3950 ∅c0 4332 class class class wbr 5142 We wwe 5635 ℩crio 7388 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-iota 6513 df-riota 7389 | 
| This theorem is referenced by: hta 9938 | 
| Copyright terms: Public domain | W3C validator |