Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > htalem | Structured version Visualization version GIF version |
Description: Lemma for defining an emulation of Hilbert's epsilon. Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem is equivalent to Hilbert's "transfinite axiom", described on that page, with the additional 𝑅 We 𝐴 antecedent. The element 𝐵 is the epsilon that the theorem emulates. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
htalem.1 | ⊢ 𝐴 ∈ V |
htalem.2 | ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |
Ref | Expression |
---|---|
htalem | ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | htalem.2 | . 2 ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | |
2 | simpl 486 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝑅 We 𝐴) | |
3 | htalem.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
4 | 3 | a1i 11 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V) |
5 | ssidd 3924 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ 𝐴) | |
6 | simpr 488 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
7 | wereu 5547 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ (𝐴 ∈ V ∧ 𝐴 ⊆ 𝐴 ∧ 𝐴 ≠ ∅)) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | |
8 | 2, 4, 5, 6, 7 | syl13anc 1374 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |
9 | riotacl 7188 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) ∈ 𝐴) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) ∈ 𝐴) |
11 | 1, 10 | eqeltrid 2842 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∀wral 3061 ∃!wreu 3063 Vcvv 3408 ⊆ wss 3866 ∅c0 4237 class class class wbr 5053 We wwe 5508 ℩crio 7169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-iota 6338 df-riota 7170 |
This theorem is referenced by: hta 9513 |
Copyright terms: Public domain | W3C validator |