MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htalem Structured version   Visualization version   GIF version

Theorem htalem 9891
Description: Lemma for defining an emulation of Hilbert's epsilon. Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem is equivalent to Hilbert's "transfinite axiom", described on that page, with the additional 𝑅 We 𝐴 antecedent. The element 𝐵 is the epsilon that the theorem emulates. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
htalem.1 𝐴 ∈ V
htalem.2 𝐵 = (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
Assertion
Ref Expression
htalem ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐵𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem htalem
StepHypRef Expression
1 htalem.2 . 2 𝐵 = (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
2 simpl 484 . . . 4 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝑅 We 𝐴)
3 htalem.1 . . . . 5 𝐴 ∈ V
43a1i 11 . . . 4 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐴 ∈ V)
5 ssidd 4006 . . . 4 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐴𝐴)
6 simpr 486 . . . 4 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐴 ≠ ∅)
7 wereu 5673 . . . 4 ((𝑅 We 𝐴 ∧ (𝐴 ∈ V ∧ 𝐴𝐴𝐴 ≠ ∅)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
82, 4, 5, 6, 7syl13anc 1373 . . 3 ((𝑅 We 𝐴𝐴 ≠ ∅) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
9 riotacl 7383 . . 3 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥 → (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) ∈ 𝐴)
108, 9syl 17 . 2 ((𝑅 We 𝐴𝐴 ≠ ∅) → (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) ∈ 𝐴)
111, 10eqeltrid 2838 1 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  wral 3062  ∃!wreu 3375  Vcvv 3475  wss 3949  c0 4323   class class class wbr 5149   We wwe 5631  crio 7364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-iota 6496  df-riota 7365
This theorem is referenced by:  hta  9892
  Copyright terms: Public domain W3C validator