MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hta Structured version   Visualization version   GIF version

Theorem hta 9655
Description: A ZFC emulation of Hilbert's transfinite axiom. The set 𝐵 has the properties of Hilbert's epsilon, except that it also depends on a well-ordering 𝑅. This theorem arose from discussions with Raph Levien on 5-Mar-2004 about translating the HOL proof language, which uses Hilbert's epsilon. See https://us.metamath.org/downloads/choice.txt (copy of obsolete link http://ghilbert.org/choice.txt) and https://us.metamath.org/downloads/megillaward2005he.pdf.

Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem differs from Hilbert's transfinite axiom described on that page in that it requires 𝑅 We 𝐴 as an antecedent. Class 𝐴 collects the sets of the least rank for which 𝜑(𝑥) is true. Class 𝐵, which emulates Hilbert's epsilon, is the minimum element in a well-ordering 𝑅 on 𝐴.

If a well-ordering 𝑅 on 𝐴 can be expressed in a closed form, as might be the case if we are working with say natural numbers, we can eliminate the antecedent with modus ponens, giving us the exact equivalent of Hilbert's transfinite axiom. Otherwise, we replace 𝑅 with a dummy setvar variable, say 𝑤, and attach 𝑤 We 𝐴 as an antecedent in each step of the ZFC version of the HOL proof until the epsilon is eliminated. At that point, 𝐵 (which will have 𝑤 as a free variable) will no longer be present, and we can eliminate 𝑤 We 𝐴 by applying exlimiv 1933 and weth 10251, using scottexs 9645 to establish the existence of 𝐴.

For a version of this theorem scheme using class (meta)variables instead of wff (meta)variables, see htalem 9654. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.)

Hypotheses
Ref Expression
hta.1 𝐴 = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
hta.2 𝐵 = (𝑧𝐴𝑤𝐴 ¬ 𝑤𝑅𝑧)
Assertion
Ref Expression
hta (𝑅 We 𝐴 → (𝜑[𝐵 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝑦   𝑧,𝑤,𝐴   𝜑,𝑦   𝑤,𝑅,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑤)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦)

Proof of Theorem hta
StepHypRef Expression
1 19.8a 2174 . . 3 (𝜑 → ∃𝑥𝜑)
2 scott0s 9646 . . . 4 (∃𝑥𝜑 ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
3 hta.1 . . . . 5 𝐴 = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
43neeq1i 3008 . . . 4 (𝐴 ≠ ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
52, 4bitr4i 277 . . 3 (∃𝑥𝜑𝐴 ≠ ∅)
61, 5sylib 217 . 2 (𝜑𝐴 ≠ ∅)
7 scottexs 9645 . . . . 5 {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V
83, 7eqeltri 2835 . . . 4 𝐴 ∈ V
9 hta.2 . . . 4 𝐵 = (𝑧𝐴𝑤𝐴 ¬ 𝑤𝑅𝑧)
108, 9htalem 9654 . . 3 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐵𝐴)
1110ex 413 . 2 (𝑅 We 𝐴 → (𝐴 ≠ ∅ → 𝐵𝐴))
12 simpl 483 . . . . . 6 ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦))) → 𝜑)
1312ss2abi 4000 . . . . 5 {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ⊆ {𝑥𝜑}
143, 13eqsstri 3955 . . . 4 𝐴 ⊆ {𝑥𝜑}
1514sseli 3917 . . 3 (𝐵𝐴𝐵 ∈ {𝑥𝜑})
16 df-sbc 3717 . . 3 ([𝐵 / 𝑥]𝜑𝐵 ∈ {𝑥𝜑})
1715, 16sylibr 233 . 2 (𝐵𝐴[𝐵 / 𝑥]𝜑)
186, 11, 17syl56 36 1 (𝑅 We 𝐴 → (𝜑[𝐵 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wne 2943  wral 3064  Vcvv 3432  [wsbc 3716  wss 3887  c0 4256   class class class wbr 5074   We wwe 5543  cfv 6433  crio 7231  rankcrnk 9521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-r1 9522  df-rank 9523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator