![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hta | Structured version Visualization version GIF version |
Description: A ZFC emulation of
Hilbert's transfinite axiom. The set π΅ has the
properties of Hilbert's epsilon, except that it also depends on a
well-ordering π
. This theorem arose from
discussions with Raph
Levien on 5-Mar-2004 about translating the HOL proof language, which
uses Hilbert's epsilon. See
https://us.metamath.org/downloads/choice.txt
(copy of obsolete link
http://ghilbert.org/choice.txt) and
https://us.metamath.org/downloads/megillaward2005he.pdf.
Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem differs from Hilbert's transfinite axiom described on that page in that it requires π We π΄ as an antecedent. Class π΄ collects the sets of the least rank for which π(π₯) is true. Class π΅, which emulates Hilbert's epsilon, is the minimum element in a well-ordering π on π΄. If a well-ordering π on π΄ can be expressed in a closed form, as might be the case if we are working with say natural numbers, we can eliminate the antecedent with modus ponens, giving us the exact equivalent of Hilbert's transfinite axiom. Otherwise, we replace π with a dummy setvar variable, say π€, and attach π€ We π΄ as an antecedent in each step of the ZFC version of the HOL proof until the epsilon is eliminated. At that point, π΅ (which will have π€ as a free variable) will no longer be present, and we can eliminate π€ We π΄ by applying exlimiv 1934 and weth 10490, using scottexs 9882 to establish the existence of π΄. For a version of this theorem scheme using class (meta)variables instead of wff (meta)variables, see htalem 9891. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
hta.1 | β’ π΄ = {π₯ β£ (π β§ βπ¦([π¦ / π₯]π β (rankβπ₯) β (rankβπ¦)))} |
hta.2 | β’ π΅ = (β©π§ β π΄ βπ€ β π΄ Β¬ π€π π§) |
Ref | Expression |
---|---|
hta | β’ (π We π΄ β (π β [π΅ / π₯]π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2175 | . . 3 β’ (π β βπ₯π) | |
2 | scott0s 9883 | . . . 4 β’ (βπ₯π β {π₯ β£ (π β§ βπ¦([π¦ / π₯]π β (rankβπ₯) β (rankβπ¦)))} β β ) | |
3 | hta.1 | . . . . 5 β’ π΄ = {π₯ β£ (π β§ βπ¦([π¦ / π₯]π β (rankβπ₯) β (rankβπ¦)))} | |
4 | 3 | neeq1i 3006 | . . . 4 β’ (π΄ β β β {π₯ β£ (π β§ βπ¦([π¦ / π₯]π β (rankβπ₯) β (rankβπ¦)))} β β ) |
5 | 2, 4 | bitr4i 278 | . . 3 β’ (βπ₯π β π΄ β β ) |
6 | 1, 5 | sylib 217 | . 2 β’ (π β π΄ β β ) |
7 | scottexs 9882 | . . . . 5 β’ {π₯ β£ (π β§ βπ¦([π¦ / π₯]π β (rankβπ₯) β (rankβπ¦)))} β V | |
8 | 3, 7 | eqeltri 2830 | . . . 4 β’ π΄ β V |
9 | hta.2 | . . . 4 β’ π΅ = (β©π§ β π΄ βπ€ β π΄ Β¬ π€π π§) | |
10 | 8, 9 | htalem 9891 | . . 3 β’ ((π We π΄ β§ π΄ β β ) β π΅ β π΄) |
11 | 10 | ex 414 | . 2 β’ (π We π΄ β (π΄ β β β π΅ β π΄)) |
12 | simpl 484 | . . . . . 6 β’ ((π β§ βπ¦([π¦ / π₯]π β (rankβπ₯) β (rankβπ¦))) β π) | |
13 | 12 | ss2abi 4064 | . . . . 5 β’ {π₯ β£ (π β§ βπ¦([π¦ / π₯]π β (rankβπ₯) β (rankβπ¦)))} β {π₯ β£ π} |
14 | 3, 13 | eqsstri 4017 | . . . 4 β’ π΄ β {π₯ β£ π} |
15 | 14 | sseli 3979 | . . 3 β’ (π΅ β π΄ β π΅ β {π₯ β£ π}) |
16 | df-sbc 3779 | . . 3 β’ ([π΅ / π₯]π β π΅ β {π₯ β£ π}) | |
17 | 15, 16 | sylibr 233 | . 2 β’ (π΅ β π΄ β [π΅ / π₯]π) |
18 | 6, 11, 17 | syl56 36 | 1 β’ (π We π΄ β (π β [π΅ / π₯]π)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 βwal 1540 = wceq 1542 βwex 1782 β wcel 2107 {cab 2710 β wne 2941 βwral 3062 Vcvv 3475 [wsbc 3778 β wss 3949 β c0 4323 class class class wbr 5149 We wwe 5631 βcfv 6544 β©crio 7364 rankcrnk 9758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-reg 9587 ax-inf2 9636 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-r1 9759 df-rank 9760 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |