| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hta | Structured version Visualization version GIF version | ||
| Description: A ZFC emulation of
Hilbert's transfinite axiom. The set 𝐵 has the
properties of Hilbert's epsilon, except that it also depends on a
well-ordering 𝑅. This theorem arose from
discussions with Raph
Levien on 5-Mar-2004 about translating the HOL proof language, which
uses Hilbert's epsilon. See
https://us.metamath.org/downloads/choice.txt
(copy of obsolete link
http://ghilbert.org/choice.txt) and
https://us.metamath.org/downloads/megillaward2005he.pdf.
Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem differs from Hilbert's transfinite axiom described on that page in that it requires 𝑅 We 𝐴 as an antecedent. Class 𝐴 collects the sets of the least rank for which 𝜑(𝑥) is true. Class 𝐵, which emulates Hilbert's epsilon, is the minimum element in a well-ordering 𝑅 on 𝐴. If a well-ordering 𝑅 on 𝐴 can be expressed in a closed form, as might be the case if we are working with say natural numbers, we can eliminate the antecedent with modus ponens, giving us the exact equivalent of Hilbert's transfinite axiom. Otherwise, we replace 𝑅 with a dummy setvar variable, say 𝑤, and attach 𝑤 We 𝐴 as an antecedent in each step of the ZFC version of the HOL proof until the epsilon is eliminated. At that point, 𝐵 (which will have 𝑤 as a free variable) will no longer be present, and we can eliminate 𝑤 We 𝐴 by applying exlimiv 1930 and weth 10448, using scottexs 9840 to establish the existence of 𝐴. For a version of this theorem scheme using class (meta)variables instead of wff (meta)variables, see htalem 9849. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| Ref | Expression |
|---|---|
| hta.1 | ⊢ 𝐴 = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
| hta.2 | ⊢ 𝐵 = (℩𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧) |
| Ref | Expression |
|---|---|
| hta | ⊢ (𝑅 We 𝐴 → (𝜑 → [𝐵 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 2182 | . . 3 ⊢ (𝜑 → ∃𝑥𝜑) | |
| 2 | scott0s 9841 | . . . 4 ⊢ (∃𝑥𝜑 ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅) | |
| 3 | hta.1 | . . . . 5 ⊢ 𝐴 = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} | |
| 4 | 3 | neeq1i 2989 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅) |
| 5 | 2, 4 | bitr4i 278 | . . 3 ⊢ (∃𝑥𝜑 ↔ 𝐴 ≠ ∅) |
| 6 | 1, 5 | sylib 218 | . 2 ⊢ (𝜑 → 𝐴 ≠ ∅) |
| 7 | scottexs 9840 | . . . . 5 ⊢ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V | |
| 8 | 3, 7 | eqeltri 2824 | . . . 4 ⊢ 𝐴 ∈ V |
| 9 | hta.2 | . . . 4 ⊢ 𝐵 = (℩𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧) | |
| 10 | 8, 9 | htalem 9849 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ 𝐴) |
| 11 | 10 | ex 412 | . 2 ⊢ (𝑅 We 𝐴 → (𝐴 ≠ ∅ → 𝐵 ∈ 𝐴)) |
| 12 | simpl 482 | . . . . . 6 ⊢ ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦))) → 𝜑) | |
| 13 | 12 | ss2abi 4030 | . . . . 5 ⊢ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ⊆ {𝑥 ∣ 𝜑} |
| 14 | 3, 13 | eqsstri 3993 | . . . 4 ⊢ 𝐴 ⊆ {𝑥 ∣ 𝜑} |
| 15 | 14 | sseli 3942 | . . 3 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ {𝑥 ∣ 𝜑}) |
| 16 | df-sbc 3754 | . . 3 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
| 17 | 15, 16 | sylibr 234 | . 2 ⊢ (𝐵 ∈ 𝐴 → [𝐵 / 𝑥]𝜑) |
| 18 | 6, 11, 17 | syl56 36 | 1 ⊢ (𝑅 We 𝐴 → (𝜑 → [𝐵 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ≠ wne 2925 ∀wral 3044 Vcvv 3447 [wsbc 3753 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 We wwe 5590 ‘cfv 6511 ℩crio 7343 rankcrnk 9716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-r1 9717 df-rank 9718 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |