MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hta Structured version   Visualization version   GIF version

Theorem hta 9797
Description: A ZFC emulation of Hilbert's transfinite axiom. The set 𝐵 has the properties of Hilbert's epsilon, except that it also depends on a well-ordering 𝑅. This theorem arose from discussions with Raph Levien on 5-Mar-2004 about translating the HOL proof language, which uses Hilbert's epsilon. See https://us.metamath.org/downloads/choice.txt (copy of obsolete link http://ghilbert.org/choice.txt) and https://us.metamath.org/downloads/megillaward2005he.pdf.

Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem differs from Hilbert's transfinite axiom described on that page in that it requires 𝑅 We 𝐴 as an antecedent. Class 𝐴 collects the sets of the least rank for which 𝜑(𝑥) is true. Class 𝐵, which emulates Hilbert's epsilon, is the minimum element in a well-ordering 𝑅 on 𝐴.

If a well-ordering 𝑅 on 𝐴 can be expressed in a closed form, as might be the case if we are working with say natural numbers, we can eliminate the antecedent with modus ponens, giving us the exact equivalent of Hilbert's transfinite axiom. Otherwise, we replace 𝑅 with a dummy setvar variable, say 𝑤, and attach 𝑤 We 𝐴 as an antecedent in each step of the ZFC version of the HOL proof until the epsilon is eliminated. At that point, 𝐵 (which will have 𝑤 as a free variable) will no longer be present, and we can eliminate 𝑤 We 𝐴 by applying exlimiv 1931 and weth 10393, using scottexs 9787 to establish the existence of 𝐴.

For a version of this theorem scheme using class (meta)variables instead of wff (meta)variables, see htalem 9796. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.)

Hypotheses
Ref Expression
hta.1 𝐴 = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
hta.2 𝐵 = (𝑧𝐴𝑤𝐴 ¬ 𝑤𝑅𝑧)
Assertion
Ref Expression
hta (𝑅 We 𝐴 → (𝜑[𝐵 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝑦   𝑧,𝑤,𝐴   𝜑,𝑦   𝑤,𝑅,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑤)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦)

Proof of Theorem hta
StepHypRef Expression
1 19.8a 2186 . . 3 (𝜑 → ∃𝑥𝜑)
2 scott0s 9788 . . . 4 (∃𝑥𝜑 ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
3 hta.1 . . . . 5 𝐴 = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
43neeq1i 2993 . . . 4 (𝐴 ≠ ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
52, 4bitr4i 278 . . 3 (∃𝑥𝜑𝐴 ≠ ∅)
61, 5sylib 218 . 2 (𝜑𝐴 ≠ ∅)
7 scottexs 9787 . . . . 5 {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V
83, 7eqeltri 2829 . . . 4 𝐴 ∈ V
9 hta.2 . . . 4 𝐵 = (𝑧𝐴𝑤𝐴 ¬ 𝑤𝑅𝑧)
108, 9htalem 9796 . . 3 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐵𝐴)
1110ex 412 . 2 (𝑅 We 𝐴 → (𝐴 ≠ ∅ → 𝐵𝐴))
12 simpl 482 . . . . . 6 ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦))) → 𝜑)
1312ss2abi 4015 . . . . 5 {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ⊆ {𝑥𝜑}
143, 13eqsstri 3977 . . . 4 𝐴 ⊆ {𝑥𝜑}
1514sseli 3926 . . 3 (𝐵𝐴𝐵 ∈ {𝑥𝜑})
16 df-sbc 3738 . . 3 ([𝐵 / 𝑥]𝜑𝐵 ∈ {𝑥𝜑})
1715, 16sylibr 234 . 2 (𝐵𝐴[𝐵 / 𝑥]𝜑)
186, 11, 17syl56 36 1 (𝑅 We 𝐴 → (𝜑[𝐵 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2113  {cab 2711  wne 2929  wral 3048  Vcvv 3437  [wsbc 3737  wss 3898  c0 4282   class class class wbr 5093   We wwe 5571  cfv 6486  crio 7308  rankcrnk 9663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-reg 9485  ax-inf2 9538
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-r1 9664  df-rank 9665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator