MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hta Structured version   Visualization version   GIF version

Theorem hta 9966
Description: A ZFC emulation of Hilbert's transfinite axiom. The set 𝐵 has the properties of Hilbert's epsilon, except that it also depends on a well-ordering 𝑅. This theorem arose from discussions with Raph Levien on 5-Mar-2004 about translating the HOL proof language, which uses Hilbert's epsilon. See https://us.metamath.org/downloads/choice.txt (copy of obsolete link http://ghilbert.org/choice.txt) and https://us.metamath.org/downloads/megillaward2005he.pdf.

Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem differs from Hilbert's transfinite axiom described on that page in that it requires 𝑅 We 𝐴 as an antecedent. Class 𝐴 collects the sets of the least rank for which 𝜑(𝑥) is true. Class 𝐵, which emulates Hilbert's epsilon, is the minimum element in a well-ordering 𝑅 on 𝐴.

If a well-ordering 𝑅 on 𝐴 can be expressed in a closed form, as might be the case if we are working with say natural numbers, we can eliminate the antecedent with modus ponens, giving us the exact equivalent of Hilbert's transfinite axiom. Otherwise, we replace 𝑅 with a dummy setvar variable, say 𝑤, and attach 𝑤 We 𝐴 as an antecedent in each step of the ZFC version of the HOL proof until the epsilon is eliminated. At that point, 𝐵 (which will have 𝑤 as a free variable) will no longer be present, and we can eliminate 𝑤 We 𝐴 by applying exlimiv 1929 and weth 10564, using scottexs 9956 to establish the existence of 𝐴.

For a version of this theorem scheme using class (meta)variables instead of wff (meta)variables, see htalem 9965. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.)

Hypotheses
Ref Expression
hta.1 𝐴 = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
hta.2 𝐵 = (𝑧𝐴𝑤𝐴 ¬ 𝑤𝑅𝑧)
Assertion
Ref Expression
hta (𝑅 We 𝐴 → (𝜑[𝐵 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝑦   𝑧,𝑤,𝐴   𝜑,𝑦   𝑤,𝑅,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑤)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦)

Proof of Theorem hta
StepHypRef Expression
1 19.8a 2182 . . 3 (𝜑 → ∃𝑥𝜑)
2 scott0s 9957 . . . 4 (∃𝑥𝜑 ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
3 hta.1 . . . . 5 𝐴 = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
43neeq1i 3011 . . . 4 (𝐴 ≠ ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
52, 4bitr4i 278 . . 3 (∃𝑥𝜑𝐴 ≠ ∅)
61, 5sylib 218 . 2 (𝜑𝐴 ≠ ∅)
7 scottexs 9956 . . . . 5 {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V
83, 7eqeltri 2840 . . . 4 𝐴 ∈ V
9 hta.2 . . . 4 𝐵 = (𝑧𝐴𝑤𝐴 ¬ 𝑤𝑅𝑧)
108, 9htalem 9965 . . 3 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐵𝐴)
1110ex 412 . 2 (𝑅 We 𝐴 → (𝐴 ≠ ∅ → 𝐵𝐴))
12 simpl 482 . . . . . 6 ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦))) → 𝜑)
1312ss2abi 4090 . . . . 5 {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ⊆ {𝑥𝜑}
143, 13eqsstri 4043 . . . 4 𝐴 ⊆ {𝑥𝜑}
1514sseli 4004 . . 3 (𝐵𝐴𝐵 ∈ {𝑥𝜑})
16 df-sbc 3805 . . 3 ([𝐵 / 𝑥]𝜑𝐵 ∈ {𝑥𝜑})
1715, 16sylibr 234 . 2 (𝐵𝐴[𝐵 / 𝑥]𝜑)
186, 11, 17syl56 36 1 (𝑅 We 𝐴 → (𝜑[𝐵 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wral 3067  Vcvv 3488  [wsbc 3804  wss 3976  c0 4352   class class class wbr 5166   We wwe 5651  cfv 6573  crio 7403  rankcrnk 9832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-r1 9833  df-rank 9834
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator