![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hta | Structured version Visualization version GIF version |
Description: A ZFC emulation of
Hilbert's transfinite axiom. The set 𝐵 has the
properties of Hilbert's epsilon, except that it also depends on a
well-ordering 𝑅. This theorem arose from
discussions with Raph
Levien on 5-Mar-2004 about translating the HOL proof language, which
uses Hilbert's epsilon. See
https://us.metamath.org/downloads/choice.txt
(copy of obsolete link
http://ghilbert.org/choice.txt) and
https://us.metamath.org/downloads/megillaward2005he.pdf.
Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem differs from Hilbert's transfinite axiom described on that page in that it requires 𝑅 We 𝐴 as an antecedent. Class 𝐴 collects the sets of the least rank for which 𝜑(𝑥) is true. Class 𝐵, which emulates Hilbert's epsilon, is the minimum element in a well-ordering 𝑅 on 𝐴. If a well-ordering 𝑅 on 𝐴 can be expressed in a closed form, as might be the case if we are working with say natural numbers, we can eliminate the antecedent with modus ponens, giving us the exact equivalent of Hilbert's transfinite axiom. Otherwise, we replace 𝑅 with a dummy setvar variable, say 𝑤, and attach 𝑤 We 𝐴 as an antecedent in each step of the ZFC version of the HOL proof until the epsilon is eliminated. At that point, 𝐵 (which will have 𝑤 as a free variable) will no longer be present, and we can eliminate 𝑤 We 𝐴 by applying exlimiv 1933 and weth 10440, using scottexs 9832 to establish the existence of 𝐴. For a version of this theorem scheme using class (meta)variables instead of wff (meta)variables, see htalem 9841. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
hta.1 | ⊢ 𝐴 = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
hta.2 | ⊢ 𝐵 = (℩𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧) |
Ref | Expression |
---|---|
hta | ⊢ (𝑅 We 𝐴 → (𝜑 → [𝐵 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2174 | . . 3 ⊢ (𝜑 → ∃𝑥𝜑) | |
2 | scott0s 9833 | . . . 4 ⊢ (∃𝑥𝜑 ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅) | |
3 | hta.1 | . . . . 5 ⊢ 𝐴 = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} | |
4 | 3 | neeq1i 3004 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅) |
5 | 2, 4 | bitr4i 277 | . . 3 ⊢ (∃𝑥𝜑 ↔ 𝐴 ≠ ∅) |
6 | 1, 5 | sylib 217 | . 2 ⊢ (𝜑 → 𝐴 ≠ ∅) |
7 | scottexs 9832 | . . . . 5 ⊢ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V | |
8 | 3, 7 | eqeltri 2828 | . . . 4 ⊢ 𝐴 ∈ V |
9 | hta.2 | . . . 4 ⊢ 𝐵 = (℩𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧) | |
10 | 8, 9 | htalem 9841 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ 𝐴) |
11 | 10 | ex 413 | . 2 ⊢ (𝑅 We 𝐴 → (𝐴 ≠ ∅ → 𝐵 ∈ 𝐴)) |
12 | simpl 483 | . . . . . 6 ⊢ ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦))) → 𝜑) | |
13 | 12 | ss2abi 4028 | . . . . 5 ⊢ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ⊆ {𝑥 ∣ 𝜑} |
14 | 3, 13 | eqsstri 3981 | . . . 4 ⊢ 𝐴 ⊆ {𝑥 ∣ 𝜑} |
15 | 14 | sseli 3943 | . . 3 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ {𝑥 ∣ 𝜑}) |
16 | df-sbc 3743 | . . 3 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
17 | 15, 16 | sylibr 233 | . 2 ⊢ (𝐵 ∈ 𝐴 → [𝐵 / 𝑥]𝜑) |
18 | 6, 11, 17 | syl56 36 | 1 ⊢ (𝑅 We 𝐴 → (𝜑 → [𝐵 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∀wal 1539 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2708 ≠ wne 2939 ∀wral 3060 Vcvv 3446 [wsbc 3742 ⊆ wss 3913 ∅c0 4287 class class class wbr 5110 We wwe 5592 ‘cfv 6501 ℩crio 7317 rankcrnk 9708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-reg 9537 ax-inf2 9586 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3448 df-sbc 3743 df-csb 3859 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-pss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-iin 4962 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-om 7808 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-r1 9709 df-rank 9710 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |