| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hta | Structured version Visualization version GIF version | ||
| Description: A ZFC emulation of
Hilbert's transfinite axiom. The set 𝐵 has the
properties of Hilbert's epsilon, except that it also depends on a
well-ordering 𝑅. This theorem arose from
discussions with Raph
Levien on 5-Mar-2004 about translating the HOL proof language, which
uses Hilbert's epsilon. See
https://us.metamath.org/downloads/choice.txt
(copy of obsolete link
http://ghilbert.org/choice.txt) and
https://us.metamath.org/downloads/megillaward2005he.pdf.
Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem differs from Hilbert's transfinite axiom described on that page in that it requires 𝑅 We 𝐴 as an antecedent. Class 𝐴 collects the sets of the least rank for which 𝜑(𝑥) is true. Class 𝐵, which emulates Hilbert's epsilon, is the minimum element in a well-ordering 𝑅 on 𝐴. If a well-ordering 𝑅 on 𝐴 can be expressed in a closed form, as might be the case if we are working with say natural numbers, we can eliminate the antecedent with modus ponens, giving us the exact equivalent of Hilbert's transfinite axiom. Otherwise, we replace 𝑅 with a dummy setvar variable, say 𝑤, and attach 𝑤 We 𝐴 as an antecedent in each step of the ZFC version of the HOL proof until the epsilon is eliminated. At that point, 𝐵 (which will have 𝑤 as a free variable) will no longer be present, and we can eliminate 𝑤 We 𝐴 by applying exlimiv 1931 and weth 10383, using scottexs 9777 to establish the existence of 𝐴. For a version of this theorem scheme using class (meta)variables instead of wff (meta)variables, see htalem 9786. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| Ref | Expression |
|---|---|
| hta.1 | ⊢ 𝐴 = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
| hta.2 | ⊢ 𝐵 = (℩𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧) |
| Ref | Expression |
|---|---|
| hta | ⊢ (𝑅 We 𝐴 → (𝜑 → [𝐵 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 2184 | . . 3 ⊢ (𝜑 → ∃𝑥𝜑) | |
| 2 | scott0s 9778 | . . . 4 ⊢ (∃𝑥𝜑 ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅) | |
| 3 | hta.1 | . . . . 5 ⊢ 𝐴 = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} | |
| 4 | 3 | neeq1i 2992 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅) |
| 5 | 2, 4 | bitr4i 278 | . . 3 ⊢ (∃𝑥𝜑 ↔ 𝐴 ≠ ∅) |
| 6 | 1, 5 | sylib 218 | . 2 ⊢ (𝜑 → 𝐴 ≠ ∅) |
| 7 | scottexs 9777 | . . . . 5 ⊢ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V | |
| 8 | 3, 7 | eqeltri 2827 | . . . 4 ⊢ 𝐴 ∈ V |
| 9 | hta.2 | . . . 4 ⊢ 𝐵 = (℩𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧) | |
| 10 | 8, 9 | htalem 9786 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ 𝐴) |
| 11 | 10 | ex 412 | . 2 ⊢ (𝑅 We 𝐴 → (𝐴 ≠ ∅ → 𝐵 ∈ 𝐴)) |
| 12 | simpl 482 | . . . . . 6 ⊢ ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦))) → 𝜑) | |
| 13 | 12 | ss2abi 4018 | . . . . 5 ⊢ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ⊆ {𝑥 ∣ 𝜑} |
| 14 | 3, 13 | eqsstri 3981 | . . . 4 ⊢ 𝐴 ⊆ {𝑥 ∣ 𝜑} |
| 15 | 14 | sseli 3930 | . . 3 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ {𝑥 ∣ 𝜑}) |
| 16 | df-sbc 3742 | . . 3 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
| 17 | 15, 16 | sylibr 234 | . 2 ⊢ (𝐵 ∈ 𝐴 → [𝐵 / 𝑥]𝜑) |
| 18 | 6, 11, 17 | syl56 36 | 1 ⊢ (𝑅 We 𝐴 → (𝜑 → [𝐵 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 ≠ wne 2928 ∀wral 3047 Vcvv 3436 [wsbc 3741 ⊆ wss 3902 ∅c0 4283 class class class wbr 5091 We wwe 5568 ‘cfv 6481 ℩crio 7302 rankcrnk 9653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-reg 9478 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9654 df-rank 9655 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |