MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hta Structured version   Visualization version   GIF version

Theorem hta 9892
Description: A ZFC emulation of Hilbert's transfinite axiom. The set 𝐡 has the properties of Hilbert's epsilon, except that it also depends on a well-ordering 𝑅. This theorem arose from discussions with Raph Levien on 5-Mar-2004 about translating the HOL proof language, which uses Hilbert's epsilon. See https://us.metamath.org/downloads/choice.txt (copy of obsolete link http://ghilbert.org/choice.txt) and https://us.metamath.org/downloads/megillaward2005he.pdf.

Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem differs from Hilbert's transfinite axiom described on that page in that it requires 𝑅 We 𝐴 as an antecedent. Class 𝐴 collects the sets of the least rank for which πœ‘(π‘₯) is true. Class 𝐡, which emulates Hilbert's epsilon, is the minimum element in a well-ordering 𝑅 on 𝐴.

If a well-ordering 𝑅 on 𝐴 can be expressed in a closed form, as might be the case if we are working with say natural numbers, we can eliminate the antecedent with modus ponens, giving us the exact equivalent of Hilbert's transfinite axiom. Otherwise, we replace 𝑅 with a dummy setvar variable, say 𝑀, and attach 𝑀 We 𝐴 as an antecedent in each step of the ZFC version of the HOL proof until the epsilon is eliminated. At that point, 𝐡 (which will have 𝑀 as a free variable) will no longer be present, and we can eliminate 𝑀 We 𝐴 by applying exlimiv 1934 and weth 10490, using scottexs 9882 to establish the existence of 𝐴.

For a version of this theorem scheme using class (meta)variables instead of wff (meta)variables, see htalem 9891. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.)

Hypotheses
Ref Expression
hta.1 𝐴 = {π‘₯ ∣ (πœ‘ ∧ βˆ€π‘¦([𝑦 / π‘₯]πœ‘ β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))}
hta.2 𝐡 = (℩𝑧 ∈ 𝐴 βˆ€π‘€ ∈ 𝐴 Β¬ 𝑀𝑅𝑧)
Assertion
Ref Expression
hta (𝑅 We 𝐴 β†’ (πœ‘ β†’ [𝐡 / π‘₯]πœ‘))
Distinct variable groups:   π‘₯,𝑦   𝑧,𝑀,𝐴   πœ‘,𝑦   𝑀,𝑅,𝑧
Allowed substitution hints:   πœ‘(π‘₯,𝑧,𝑀)   𝐴(π‘₯,𝑦)   𝐡(π‘₯,𝑦,𝑧,𝑀)   𝑅(π‘₯,𝑦)

Proof of Theorem hta
StepHypRef Expression
1 19.8a 2175 . . 3 (πœ‘ β†’ βˆƒπ‘₯πœ‘)
2 scott0s 9883 . . . 4 (βˆƒπ‘₯πœ‘ ↔ {π‘₯ ∣ (πœ‘ ∧ βˆ€π‘¦([𝑦 / π‘₯]πœ‘ β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))} β‰  βˆ…)
3 hta.1 . . . . 5 𝐴 = {π‘₯ ∣ (πœ‘ ∧ βˆ€π‘¦([𝑦 / π‘₯]πœ‘ β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))}
43neeq1i 3006 . . . 4 (𝐴 β‰  βˆ… ↔ {π‘₯ ∣ (πœ‘ ∧ βˆ€π‘¦([𝑦 / π‘₯]πœ‘ β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))} β‰  βˆ…)
52, 4bitr4i 278 . . 3 (βˆƒπ‘₯πœ‘ ↔ 𝐴 β‰  βˆ…)
61, 5sylib 217 . 2 (πœ‘ β†’ 𝐴 β‰  βˆ…)
7 scottexs 9882 . . . . 5 {π‘₯ ∣ (πœ‘ ∧ βˆ€π‘¦([𝑦 / π‘₯]πœ‘ β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))} ∈ V
83, 7eqeltri 2830 . . . 4 𝐴 ∈ V
9 hta.2 . . . 4 𝐡 = (℩𝑧 ∈ 𝐴 βˆ€π‘€ ∈ 𝐴 Β¬ 𝑀𝑅𝑧)
108, 9htalem 9891 . . 3 ((𝑅 We 𝐴 ∧ 𝐴 β‰  βˆ…) β†’ 𝐡 ∈ 𝐴)
1110ex 414 . 2 (𝑅 We 𝐴 β†’ (𝐴 β‰  βˆ… β†’ 𝐡 ∈ 𝐴))
12 simpl 484 . . . . . 6 ((πœ‘ ∧ βˆ€π‘¦([𝑦 / π‘₯]πœ‘ β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))) β†’ πœ‘)
1312ss2abi 4064 . . . . 5 {π‘₯ ∣ (πœ‘ ∧ βˆ€π‘¦([𝑦 / π‘₯]πœ‘ β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))} βŠ† {π‘₯ ∣ πœ‘}
143, 13eqsstri 4017 . . . 4 𝐴 βŠ† {π‘₯ ∣ πœ‘}
1514sseli 3979 . . 3 (𝐡 ∈ 𝐴 β†’ 𝐡 ∈ {π‘₯ ∣ πœ‘})
16 df-sbc 3779 . . 3 ([𝐡 / π‘₯]πœ‘ ↔ 𝐡 ∈ {π‘₯ ∣ πœ‘})
1715, 16sylibr 233 . 2 (𝐡 ∈ 𝐴 β†’ [𝐡 / π‘₯]πœ‘)
186, 11, 17syl56 36 1 (𝑅 We 𝐴 β†’ (πœ‘ β†’ [𝐡 / π‘₯]πœ‘))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397  βˆ€wal 1540   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107  {cab 2710   β‰  wne 2941  βˆ€wral 3062  Vcvv 3475  [wsbc 3778   βŠ† wss 3949  βˆ…c0 4323   class class class wbr 5149   We wwe 5631  β€˜cfv 6544  β„©crio 7364  rankcrnk 9758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-reg 9587  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-r1 9759  df-rank 9760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator