MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfslb Structured version   Visualization version   GIF version

Theorem cfslb 10257
Description: Any cofinal subset of 𝐴 is at least as large as (cf‘𝐴). (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfslb.1 𝐴 ∈ V
Assertion
Ref Expression
cfslb ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → (cf‘𝐴) ≼ 𝐵)

Proof of Theorem cfslb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvex 6901 . . 3 (card‘𝐵) ∈ V
2 ssid 4003 . . . . . . 7 (card‘𝐵) ⊆ (card‘𝐵)
3 cfslb.1 . . . . . . . . . . 11 𝐴 ∈ V
43ssex 5320 . . . . . . . . . 10 (𝐵𝐴𝐵 ∈ V)
54ad2antrr 725 . . . . . . . . 9 (((𝐵𝐴 𝐵 = 𝐴) ∧ (card‘𝐵) ⊆ (card‘𝐵)) → 𝐵 ∈ V)
6 velpw 4606 . . . . . . . . . . . . 13 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
7 sseq1 4006 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
86, 7bitrid 283 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝑥 ∈ 𝒫 𝐴𝐵𝐴))
9 unieq 4918 . . . . . . . . . . . . 13 (𝑥 = 𝐵 𝑥 = 𝐵)
109eqeq1d 2735 . . . . . . . . . . . 12 (𝑥 = 𝐵 → ( 𝑥 = 𝐴 𝐵 = 𝐴))
118, 10anbi12d 632 . . . . . . . . . . 11 (𝑥 = 𝐵 → ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ↔ (𝐵𝐴 𝐵 = 𝐴)))
12 fveq2 6888 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (card‘𝑥) = (card‘𝐵))
1312sseq1d 4012 . . . . . . . . . . 11 (𝑥 = 𝐵 → ((card‘𝑥) ⊆ (card‘𝐵) ↔ (card‘𝐵) ⊆ (card‘𝐵)))
1411, 13anbi12d 632 . . . . . . . . . 10 (𝑥 = 𝐵 → (((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝑥) ⊆ (card‘𝐵)) ↔ ((𝐵𝐴 𝐵 = 𝐴) ∧ (card‘𝐵) ⊆ (card‘𝐵))))
1514spcegv 3587 . . . . . . . . 9 (𝐵 ∈ V → (((𝐵𝐴 𝐵 = 𝐴) ∧ (card‘𝐵) ⊆ (card‘𝐵)) → ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝑥) ⊆ (card‘𝐵))))
165, 15mpcom 38 . . . . . . . 8 (((𝐵𝐴 𝐵 = 𝐴) ∧ (card‘𝐵) ⊆ (card‘𝐵)) → ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝑥) ⊆ (card‘𝐵)))
17 df-rex 3072 . . . . . . . . 9 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝑥) ⊆ (card‘𝐵)))
18 rabid 3453 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴))
1918anbi1i 625 . . . . . . . . . 10 ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝑥) ⊆ (card‘𝐵)) ↔ ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝑥) ⊆ (card‘𝐵)))
2019exbii 1851 . . . . . . . . 9 (∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝑥) ⊆ (card‘𝐵)) ↔ ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝑥) ⊆ (card‘𝐵)))
2117, 20bitri 275 . . . . . . . 8 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵) ↔ ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝑥) ⊆ (card‘𝐵)))
2216, 21sylibr 233 . . . . . . 7 (((𝐵𝐴 𝐵 = 𝐴) ∧ (card‘𝐵) ⊆ (card‘𝐵)) → ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵))
232, 22mpan2 690 . . . . . 6 ((𝐵𝐴 𝐵 = 𝐴) → ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵))
24 iinss 5058 . . . . . 6 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵))
2523, 24syl 17 . . . . 5 ((𝐵𝐴 𝐵 = 𝐴) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵))
263cflim3 10253 . . . . . 6 (Lim 𝐴 → (cf‘𝐴) = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
2726sseq1d 4012 . . . . 5 (Lim 𝐴 → ((cf‘𝐴) ⊆ (card‘𝐵) ↔ 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵)))
2825, 27imbitrrid 245 . . . 4 (Lim 𝐴 → ((𝐵𝐴 𝐵 = 𝐴) → (cf‘𝐴) ⊆ (card‘𝐵)))
29283impib 1117 . . 3 ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → (cf‘𝐴) ⊆ (card‘𝐵))
30 ssdomg 8992 . . 3 ((card‘𝐵) ∈ V → ((cf‘𝐴) ⊆ (card‘𝐵) → (cf‘𝐴) ≼ (card‘𝐵)))
311, 29, 30mpsyl 68 . 2 ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → (cf‘𝐴) ≼ (card‘𝐵))
32 limord 6421 . . . . . . 7 (Lim 𝐴 → Ord 𝐴)
33 ordsson 7765 . . . . . . 7 (Ord 𝐴𝐴 ⊆ On)
3432, 33syl 17 . . . . . 6 (Lim 𝐴𝐴 ⊆ On)
35 sstr2 3988 . . . . . 6 (𝐵𝐴 → (𝐴 ⊆ On → 𝐵 ⊆ On))
3634, 35mpan9 508 . . . . 5 ((Lim 𝐴𝐵𝐴) → 𝐵 ⊆ On)
37 onssnum 10031 . . . . 5 ((𝐵 ∈ V ∧ 𝐵 ⊆ On) → 𝐵 ∈ dom card)
384, 36, 37syl2an2 685 . . . 4 ((Lim 𝐴𝐵𝐴) → 𝐵 ∈ dom card)
39 cardid2 9944 . . . 4 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
4038, 39syl 17 . . 3 ((Lim 𝐴𝐵𝐴) → (card‘𝐵) ≈ 𝐵)
41403adant3 1133 . 2 ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → (card‘𝐵) ≈ 𝐵)
42 domentr 9005 . 2 (((cf‘𝐴) ≼ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → (cf‘𝐴) ≼ 𝐵)
4331, 41, 42syl2anc 585 1 ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → (cf‘𝐴) ≼ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wrex 3071  {crab 3433  Vcvv 3475  wss 3947  𝒫 cpw 4601   cuni 4907   ciin 4997   class class class wbr 5147  dom cdm 5675  Ord word 6360  Oncon0 6361  Lim wlim 6362  cfv 6540  cen 8932  cdom 8933  cardccrd 9926  cfccf 9928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-er 8699  df-en 8936  df-dom 8937  df-card 9930  df-cf 9932
This theorem is referenced by:  cfslbn  10258  cfslb2n  10259  rankcf  10768
  Copyright terms: Public domain W3C validator