MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfslb Structured version   Visualization version   GIF version

Theorem cfslb 10226
Description: Any cofinal subset of 𝐴 is at least as large as (cfβ€˜π΄). (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfslb.1 𝐴 ∈ V
Assertion
Ref Expression
cfslb ((Lim 𝐴 ∧ 𝐡 βŠ† 𝐴 ∧ βˆͺ 𝐡 = 𝐴) β†’ (cfβ€˜π΄) β‰Ό 𝐡)

Proof of Theorem cfslb
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 fvex 6875 . . 3 (cardβ€˜π΅) ∈ V
2 ssid 3984 . . . . . . 7 (cardβ€˜π΅) βŠ† (cardβ€˜π΅)
3 cfslb.1 . . . . . . . . . . 11 𝐴 ∈ V
43ssex 5298 . . . . . . . . . 10 (𝐡 βŠ† 𝐴 β†’ 𝐡 ∈ V)
54ad2antrr 724 . . . . . . . . 9 (((𝐡 βŠ† 𝐴 ∧ βˆͺ 𝐡 = 𝐴) ∧ (cardβ€˜π΅) βŠ† (cardβ€˜π΅)) β†’ 𝐡 ∈ V)
6 velpw 4585 . . . . . . . . . . . . 13 (π‘₯ ∈ 𝒫 𝐴 ↔ π‘₯ βŠ† 𝐴)
7 sseq1 3987 . . . . . . . . . . . . 13 (π‘₯ = 𝐡 β†’ (π‘₯ βŠ† 𝐴 ↔ 𝐡 βŠ† 𝐴))
86, 7bitrid 282 . . . . . . . . . . . 12 (π‘₯ = 𝐡 β†’ (π‘₯ ∈ 𝒫 𝐴 ↔ 𝐡 βŠ† 𝐴))
9 unieq 4896 . . . . . . . . . . . . 13 (π‘₯ = 𝐡 β†’ βˆͺ π‘₯ = βˆͺ 𝐡)
109eqeq1d 2733 . . . . . . . . . . . 12 (π‘₯ = 𝐡 β†’ (βˆͺ π‘₯ = 𝐴 ↔ βˆͺ 𝐡 = 𝐴))
118, 10anbi12d 631 . . . . . . . . . . 11 (π‘₯ = 𝐡 β†’ ((π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴) ↔ (𝐡 βŠ† 𝐴 ∧ βˆͺ 𝐡 = 𝐴)))
12 fveq2 6862 . . . . . . . . . . . 12 (π‘₯ = 𝐡 β†’ (cardβ€˜π‘₯) = (cardβ€˜π΅))
1312sseq1d 3993 . . . . . . . . . . 11 (π‘₯ = 𝐡 β†’ ((cardβ€˜π‘₯) βŠ† (cardβ€˜π΅) ↔ (cardβ€˜π΅) βŠ† (cardβ€˜π΅)))
1411, 13anbi12d 631 . . . . . . . . . 10 (π‘₯ = 𝐡 β†’ (((π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴) ∧ (cardβ€˜π‘₯) βŠ† (cardβ€˜π΅)) ↔ ((𝐡 βŠ† 𝐴 ∧ βˆͺ 𝐡 = 𝐴) ∧ (cardβ€˜π΅) βŠ† (cardβ€˜π΅))))
1514spcegv 3570 . . . . . . . . 9 (𝐡 ∈ V β†’ (((𝐡 βŠ† 𝐴 ∧ βˆͺ 𝐡 = 𝐴) ∧ (cardβ€˜π΅) βŠ† (cardβ€˜π΅)) β†’ βˆƒπ‘₯((π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴) ∧ (cardβ€˜π‘₯) βŠ† (cardβ€˜π΅))))
165, 15mpcom 38 . . . . . . . 8 (((𝐡 βŠ† 𝐴 ∧ βˆͺ 𝐡 = 𝐴) ∧ (cardβ€˜π΅) βŠ† (cardβ€˜π΅)) β†’ βˆƒπ‘₯((π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴) ∧ (cardβ€˜π‘₯) βŠ† (cardβ€˜π΅)))
17 df-rex 3070 . . . . . . . . 9 (βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cardβ€˜π‘₯) βŠ† (cardβ€˜π΅) ↔ βˆƒπ‘₯(π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cardβ€˜π‘₯) βŠ† (cardβ€˜π΅)))
18 rabid 3438 . . . . . . . . . . 11 (π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ↔ (π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴))
1918anbi1i 624 . . . . . . . . . 10 ((π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cardβ€˜π‘₯) βŠ† (cardβ€˜π΅)) ↔ ((π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴) ∧ (cardβ€˜π‘₯) βŠ† (cardβ€˜π΅)))
2019exbii 1850 . . . . . . . . 9 (βˆƒπ‘₯(π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cardβ€˜π‘₯) βŠ† (cardβ€˜π΅)) ↔ βˆƒπ‘₯((π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴) ∧ (cardβ€˜π‘₯) βŠ† (cardβ€˜π΅)))
2117, 20bitri 274 . . . . . . . 8 (βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cardβ€˜π‘₯) βŠ† (cardβ€˜π΅) ↔ βˆƒπ‘₯((π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴) ∧ (cardβ€˜π‘₯) βŠ† (cardβ€˜π΅)))
2216, 21sylibr 233 . . . . . . 7 (((𝐡 βŠ† 𝐴 ∧ βˆͺ 𝐡 = 𝐴) ∧ (cardβ€˜π΅) βŠ† (cardβ€˜π΅)) β†’ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cardβ€˜π‘₯) βŠ† (cardβ€˜π΅))
232, 22mpan2 689 . . . . . 6 ((𝐡 βŠ† 𝐴 ∧ βˆͺ 𝐡 = 𝐴) β†’ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cardβ€˜π‘₯) βŠ† (cardβ€˜π΅))
24 iinss 5036 . . . . . 6 (βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cardβ€˜π‘₯) βŠ† (cardβ€˜π΅) β†’ ∩ π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cardβ€˜π‘₯) βŠ† (cardβ€˜π΅))
2523, 24syl 17 . . . . 5 ((𝐡 βŠ† 𝐴 ∧ βˆͺ 𝐡 = 𝐴) β†’ ∩ π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cardβ€˜π‘₯) βŠ† (cardβ€˜π΅))
263cflim3 10222 . . . . . 6 (Lim 𝐴 β†’ (cfβ€˜π΄) = ∩ π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cardβ€˜π‘₯))
2726sseq1d 3993 . . . . 5 (Lim 𝐴 β†’ ((cfβ€˜π΄) βŠ† (cardβ€˜π΅) ↔ ∩ π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cardβ€˜π‘₯) βŠ† (cardβ€˜π΅)))
2825, 27imbitrrid 245 . . . 4 (Lim 𝐴 β†’ ((𝐡 βŠ† 𝐴 ∧ βˆͺ 𝐡 = 𝐴) β†’ (cfβ€˜π΄) βŠ† (cardβ€˜π΅)))
29283impib 1116 . . 3 ((Lim 𝐴 ∧ 𝐡 βŠ† 𝐴 ∧ βˆͺ 𝐡 = 𝐴) β†’ (cfβ€˜π΄) βŠ† (cardβ€˜π΅))
30 ssdomg 8962 . . 3 ((cardβ€˜π΅) ∈ V β†’ ((cfβ€˜π΄) βŠ† (cardβ€˜π΅) β†’ (cfβ€˜π΄) β‰Ό (cardβ€˜π΅)))
311, 29, 30mpsyl 68 . 2 ((Lim 𝐴 ∧ 𝐡 βŠ† 𝐴 ∧ βˆͺ 𝐡 = 𝐴) β†’ (cfβ€˜π΄) β‰Ό (cardβ€˜π΅))
32 limord 6397 . . . . . . 7 (Lim 𝐴 β†’ Ord 𝐴)
33 ordsson 7737 . . . . . . 7 (Ord 𝐴 β†’ 𝐴 βŠ† On)
3432, 33syl 17 . . . . . 6 (Lim 𝐴 β†’ 𝐴 βŠ† On)
35 sstr2 3969 . . . . . 6 (𝐡 βŠ† 𝐴 β†’ (𝐴 βŠ† On β†’ 𝐡 βŠ† On))
3634, 35mpan9 507 . . . . 5 ((Lim 𝐴 ∧ 𝐡 βŠ† 𝐴) β†’ 𝐡 βŠ† On)
37 onssnum 10000 . . . . 5 ((𝐡 ∈ V ∧ 𝐡 βŠ† On) β†’ 𝐡 ∈ dom card)
384, 36, 37syl2an2 684 . . . 4 ((Lim 𝐴 ∧ 𝐡 βŠ† 𝐴) β†’ 𝐡 ∈ dom card)
39 cardid2 9913 . . . 4 (𝐡 ∈ dom card β†’ (cardβ€˜π΅) β‰ˆ 𝐡)
4038, 39syl 17 . . 3 ((Lim 𝐴 ∧ 𝐡 βŠ† 𝐴) β†’ (cardβ€˜π΅) β‰ˆ 𝐡)
41403adant3 1132 . 2 ((Lim 𝐴 ∧ 𝐡 βŠ† 𝐴 ∧ βˆͺ 𝐡 = 𝐴) β†’ (cardβ€˜π΅) β‰ˆ 𝐡)
42 domentr 8975 . 2 (((cfβ€˜π΄) β‰Ό (cardβ€˜π΅) ∧ (cardβ€˜π΅) β‰ˆ 𝐡) β†’ (cfβ€˜π΄) β‰Ό 𝐡)
4331, 41, 42syl2anc 584 1 ((Lim 𝐴 ∧ 𝐡 βŠ† 𝐴 ∧ βˆͺ 𝐡 = 𝐴) β†’ (cfβ€˜π΄) β‰Ό 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆƒwrex 3069  {crab 3418  Vcvv 3459   βŠ† wss 3928  π’« cpw 4580  βˆͺ cuni 4885  βˆ© ciin 4975   class class class wbr 5125  dom cdm 5653  Ord word 6336  Oncon0 6337  Lim wlim 6338  β€˜cfv 6516   β‰ˆ cen 8902   β‰Ό cdom 8903  cardccrd 9895  cfccf 9897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5262  ax-sep 5276  ax-nul 5283  ax-pow 5340  ax-pr 5404  ax-un 7692
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3364  df-reu 3365  df-rab 3419  df-v 3461  df-sbc 3758  df-csb 3874  df-dif 3931  df-un 3933  df-in 3935  df-ss 3945  df-pss 3947  df-nul 4303  df-if 4507  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4886  df-int 4928  df-iun 4976  df-iin 4977  df-br 5126  df-opab 5188  df-mpt 5209  df-tr 5243  df-id 5551  df-eprel 5557  df-po 5565  df-so 5566  df-fr 5608  df-se 5609  df-we 5610  df-xp 5659  df-rel 5660  df-cnv 5661  df-co 5662  df-dm 5663  df-rn 5664  df-res 5665  df-ima 5666  df-pred 6273  df-ord 6340  df-on 6341  df-lim 6342  df-suc 6343  df-iota 6468  df-fun 6518  df-fn 6519  df-f 6520  df-f1 6521  df-fo 6522  df-f1o 6523  df-fv 6524  df-isom 6525  df-riota 7333  df-ov 7380  df-2nd 7942  df-frecs 8232  df-wrecs 8263  df-recs 8337  df-er 8670  df-en 8906  df-dom 8907  df-card 9899  df-cf 9901
This theorem is referenced by:  cfslbn  10227  cfslb2n  10228  rankcf  10737
  Copyright terms: Public domain W3C validator