![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imauni | Structured version Visualization version GIF version |
Description: The image of a union is the indexed union of the images. Theorem 3K(a) of [Enderton] p. 50. (Contributed by NM, 9-Aug-2004.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
imauni | ⊢ (𝐴 “ ∪ 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 5063 | . . 3 ⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 | |
2 | 1 | imaeq2i 6078 | . 2 ⊢ (𝐴 “ ∪ 𝐵) = (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝑥) |
3 | imaiun 7265 | . 2 ⊢ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝑥) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝑥) | |
4 | 2, 3 | eqtri 2763 | 1 ⊢ (𝐴 “ ∪ 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cuni 4912 ∪ ciun 4996 “ cima 5692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-11 2155 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 |
This theorem is referenced by: enfin2i 10359 tgcn 23276 cncmp 23416 qtoptop2 23723 mbfimaopnlem 25704 fnpreimac 32688 |
Copyright terms: Public domain | W3C validator |