MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imauni Structured version   Visualization version   GIF version

Theorem imauni 7283
Description: The image of a union is the indexed union of the images. Theorem 3K(a) of [Enderton] p. 50. (Contributed by NM, 9-Aug-2004.) (Proof shortened by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
imauni (𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem imauni
StepHypRef Expression
1 uniiun 5081 . . 3 𝐵 = 𝑥𝐵 𝑥
21imaeq2i 6087 . 2 (𝐴 𝐵) = (𝐴 𝑥𝐵 𝑥)
3 imaiun 7282 . 2 (𝐴 𝑥𝐵 𝑥) = 𝑥𝐵 (𝐴𝑥)
42, 3eqtri 2768 1 (𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537   cuni 4931   ciun 5015  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  enfin2i  10390  tgcn  23281  cncmp  23421  qtoptop2  23728  mbfimaopnlem  25709  fnpreimac  32689
  Copyright terms: Public domain W3C validator