| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imauni | Structured version Visualization version GIF version | ||
| Description: The image of a union is the indexed union of the images. Theorem 3K(a) of [Enderton] p. 50. (Contributed by NM, 9-Aug-2004.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| imauni | ⊢ (𝐴 “ ∪ 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniiun 5011 | . . 3 ⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 | |
| 2 | 1 | imaeq2i 6014 | . 2 ⊢ (𝐴 “ ∪ 𝐵) = (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝑥) |
| 3 | imaiun 7188 | . 2 ⊢ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝑥) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝑥) | |
| 4 | 2, 3 | eqtri 2756 | 1 ⊢ (𝐴 “ ∪ 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cuni 4860 ∪ ciun 4943 “ cima 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-xp 5627 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 |
| This theorem is referenced by: enfin2i 10223 tgcn 23187 cncmp 23327 qtoptop2 23634 mbfimaopnlem 25603 fnpreimac 32675 |
| Copyright terms: Public domain | W3C validator |