MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imauni Structured version   Visualization version   GIF version

Theorem imauni 7223
Description: The image of a union is the indexed union of the images. Theorem 3K(a) of [Enderton] p. 50. (Contributed by NM, 9-Aug-2004.) (Proof shortened by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
imauni (𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem imauni
StepHypRef Expression
1 uniiun 5025 . . 3 𝐵 = 𝑥𝐵 𝑥
21imaeq2i 6032 . 2 (𝐴 𝐵) = (𝐴 𝑥𝐵 𝑥)
3 imaiun 7222 . 2 (𝐴 𝑥𝐵 𝑥) = 𝑥𝐵 (𝐴𝑥)
42, 3eqtri 2753 1 (𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   cuni 4874   ciun 4958  cima 5644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654
This theorem is referenced by:  enfin2i  10281  tgcn  23146  cncmp  23286  qtoptop2  23593  mbfimaopnlem  25563  fnpreimac  32602
  Copyright terms: Public domain W3C validator