![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imauni | Structured version Visualization version GIF version |
Description: The image of a union is the indexed union of the images. Theorem 3K(a) of [Enderton] p. 50. (Contributed by NM, 9-Aug-2004.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
imauni | ⊢ (𝐴 “ ∪ 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 5081 | . . 3 ⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 | |
2 | 1 | imaeq2i 6087 | . 2 ⊢ (𝐴 “ ∪ 𝐵) = (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝑥) |
3 | imaiun 7282 | . 2 ⊢ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝑥) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝑥) | |
4 | 2, 3 | eqtri 2768 | 1 ⊢ (𝐴 “ ∪ 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cuni 4931 ∪ ciun 5015 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: enfin2i 10390 tgcn 23281 cncmp 23421 qtoptop2 23728 mbfimaopnlem 25709 fnpreimac 32689 |
Copyright terms: Public domain | W3C validator |