| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imauni | Structured version Visualization version GIF version | ||
| Description: The image of a union is the indexed union of the images. Theorem 3K(a) of [Enderton] p. 50. (Contributed by NM, 9-Aug-2004.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| imauni | ⊢ (𝐴 “ ∪ 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniiun 5022 | . . 3 ⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 | |
| 2 | 1 | imaeq2i 6029 | . 2 ⊢ (𝐴 “ ∪ 𝐵) = (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝑥) |
| 3 | imaiun 7219 | . 2 ⊢ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝑥) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝑥) | |
| 4 | 2, 3 | eqtri 2752 | 1 ⊢ (𝐴 “ ∪ 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cuni 4871 ∪ ciun 4955 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: enfin2i 10274 tgcn 23139 cncmp 23279 qtoptop2 23586 mbfimaopnlem 25556 fnpreimac 32595 |
| Copyright terms: Public domain | W3C validator |