![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imauni | Structured version Visualization version GIF version |
Description: The image of a union is the indexed union of the images. Theorem 3K(a) of [Enderton] p. 50. (Contributed by NM, 9-Aug-2004.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
imauni | ⊢ (𝐴 “ ∪ 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 5019 | . . 3 ⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 | |
2 | 1 | imaeq2i 6012 | . 2 ⊢ (𝐴 “ ∪ 𝐵) = (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝑥) |
3 | imaiun 7193 | . 2 ⊢ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝑥) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝑥) | |
4 | 2, 3 | eqtri 2761 | 1 ⊢ (𝐴 “ ∪ 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∪ cuni 4866 ∪ ciun 4955 “ cima 5637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-xp 5640 df-cnv 5642 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 |
This theorem is referenced by: enfin2i 10262 tgcn 22619 cncmp 22759 qtoptop2 23066 mbfimaopnlem 25035 fnpreimac 31633 |
Copyright terms: Public domain | W3C validator |