Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  imauni Structured version   Visualization version   GIF version

Theorem imauni 6997
 Description: The image of a union is the indexed union of the images. Theorem 3K(a) of [Enderton] p. 50. (Contributed by NM, 9-Aug-2004.) (Proof shortened by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
imauni (𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem imauni
StepHypRef Expression
1 uniiun 4973 . . 3 𝐵 = 𝑥𝐵 𝑥
21imaeq2i 5920 . 2 (𝐴 𝐵) = (𝐴 𝑥𝐵 𝑥)
3 imaiun 6996 . 2 (𝐴 𝑥𝐵 𝑥) = 𝑥𝐵 (𝐴𝑥)
42, 3eqtri 2842 1 (𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1530  ∪ cuni 4830  ∪ ciun 4910   “ cima 5551 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-xp 5554  df-cnv 5556  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561 This theorem is referenced by:  enfin2i  9735  tgcn  21852  cncmp  21992  qtoptop2  22299  mbfimaopnlem  24248  fnpreimac  30408
 Copyright terms: Public domain W3C validator