MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imauni Structured version   Visualization version   GIF version

Theorem imauni 7202
Description: The image of a union is the indexed union of the images. Theorem 3K(a) of [Enderton] p. 50. (Contributed by NM, 9-Aug-2004.) (Proof shortened by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
imauni (𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem imauni
StepHypRef Expression
1 uniiun 5017 . . 3 𝐵 = 𝑥𝐵 𝑥
21imaeq2i 6018 . 2 (𝐴 𝐵) = (𝐴 𝑥𝐵 𝑥)
3 imaiun 7201 . 2 (𝐴 𝑥𝐵 𝑥) = 𝑥𝐵 (𝐴𝑥)
42, 3eqtri 2752 1 (𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   cuni 4867   ciun 4951  cima 5634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644
This theorem is referenced by:  enfin2i  10250  tgcn  23115  cncmp  23255  qtoptop2  23562  mbfimaopnlem  25532  fnpreimac  32568
  Copyright terms: Public domain W3C validator