MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfimaopnlem Structured version   Visualization version   GIF version

Theorem mbfimaopnlem 24255
Description: Lemma for mbfimaopn 24256. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
mbfimaopn.1 𝐽 = (TopOpen‘ℂfld)
mbfimaopn.2 𝐺 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
mbfimaopn.3 𝐵 = ((,) “ (ℚ × ℚ))
mbfimaopn.4 𝐾 = ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
mbfimaopnlem ((𝐹 ∈ MblFn ∧ 𝐴𝐽) → (𝐹𝐴) ∈ dom vol)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐽,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem mbfimaopnlem
Dummy variables 𝑡 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfimaopn.2 . . . . . . . 8 𝐺 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
2 eqid 2821 . . . . . . . 8 (topGen‘ran (,)) = (topGen‘ran (,))
3 mbfimaopn.1 . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
41, 2, 3cnrehmeo 23556 . . . . . . 7 𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽)
5 hmeocn 22367 . . . . . . 7 (𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽) → 𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽))
64, 5ax-mp 5 . . . . . 6 𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽)
7 cnima 21872 . . . . . 6 ((𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ 𝐴𝐽) → (𝐺𝐴) ∈ ((topGen‘ran (,)) ×t (topGen‘ran (,))))
86, 7mpan 688 . . . . 5 (𝐴𝐽 → (𝐺𝐴) ∈ ((topGen‘ran (,)) ×t (topGen‘ran (,))))
9 mbfimaopn.3 . . . . . . . . 9 𝐵 = ((,) “ (ℚ × ℚ))
109fveq2i 6672 . . . . . . . 8 (topGen‘𝐵) = (topGen‘((,) “ (ℚ × ℚ)))
1110tgqioo 23407 . . . . . . 7 (topGen‘ran (,)) = (topGen‘𝐵)
1211, 11oveq12i 7167 . . . . . 6 ((topGen‘ran (,)) ×t (topGen‘ran (,))) = ((topGen‘𝐵) ×t (topGen‘𝐵))
13 qtopbas 23367 . . . . . . . 8 ((,) “ (ℚ × ℚ)) ∈ TopBases
149, 13eqeltri 2909 . . . . . . 7 𝐵 ∈ TopBases
15 txbasval 22213 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝐵 ∈ TopBases) → ((topGen‘𝐵) ×t (topGen‘𝐵)) = (𝐵 ×t 𝐵))
1614, 14, 15mp2an 690 . . . . . 6 ((topGen‘𝐵) ×t (topGen‘𝐵)) = (𝐵 ×t 𝐵)
17 mbfimaopn.4 . . . . . . . 8 𝐾 = ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦))
1817txval 22171 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝐵 ∈ TopBases) → (𝐵 ×t 𝐵) = (topGen‘𝐾))
1914, 14, 18mp2an 690 . . . . . 6 (𝐵 ×t 𝐵) = (topGen‘𝐾)
2012, 16, 193eqtri 2848 . . . . 5 ((topGen‘ran (,)) ×t (topGen‘ran (,))) = (topGen‘𝐾)
218, 20eleqtrdi 2923 . . . 4 (𝐴𝐽 → (𝐺𝐴) ∈ (topGen‘𝐾))
2217txbas 22174 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝐵 ∈ TopBases) → 𝐾 ∈ TopBases)
2314, 14, 22mp2an 690 . . . . 5 𝐾 ∈ TopBases
24 eltg3 21569 . . . . 5 (𝐾 ∈ TopBases → ((𝐺𝐴) ∈ (topGen‘𝐾) ↔ ∃𝑡(𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)))
2523, 24ax-mp 5 . . . 4 ((𝐺𝐴) ∈ (topGen‘𝐾) ↔ ∃𝑡(𝑡𝐾 ∧ (𝐺𝐴) = 𝑡))
2621, 25sylib 220 . . 3 (𝐴𝐽 → ∃𝑡(𝑡𝐾 ∧ (𝐺𝐴) = 𝑡))
2726adantl 484 . 2 ((𝐹 ∈ MblFn ∧ 𝐴𝐽) → ∃𝑡(𝑡𝐾 ∧ (𝐺𝐴) = 𝑡))
281cnref1o 12383 . . . . . . . 8 𝐺:(ℝ × ℝ)–1-1-onto→ℂ
29 f1ofo 6621 . . . . . . . 8 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → 𝐺:(ℝ × ℝ)–onto→ℂ)
3028, 29ax-mp 5 . . . . . . 7 𝐺:(ℝ × ℝ)–onto→ℂ
31 elssuni 4867 . . . . . . . . 9 (𝐴𝐽𝐴 𝐽)
323cnfldtopon 23390 . . . . . . . . . 10 𝐽 ∈ (TopOn‘ℂ)
3332toponunii 21523 . . . . . . . . 9 ℂ = 𝐽
3431, 33sseqtrrdi 4017 . . . . . . . 8 (𝐴𝐽𝐴 ⊆ ℂ)
3534ad2antlr 725 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → 𝐴 ⊆ ℂ)
36 foimacnv 6631 . . . . . . 7 ((𝐺:(ℝ × ℝ)–onto→ℂ ∧ 𝐴 ⊆ ℂ) → (𝐺 “ (𝐺𝐴)) = 𝐴)
3730, 35, 36sylancr 589 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐺 “ (𝐺𝐴)) = 𝐴)
38 simprr 771 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐺𝐴) = 𝑡)
3938imaeq2d 5928 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐺 “ (𝐺𝐴)) = (𝐺 𝑡))
40 imauni 7004 . . . . . . 7 (𝐺 𝑡) = 𝑤𝑡 (𝐺𝑤)
4139, 40syl6eq 2872 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐺 “ (𝐺𝐴)) = 𝑤𝑡 (𝐺𝑤))
4237, 41eqtr3d 2858 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → 𝐴 = 𝑤𝑡 (𝐺𝑤))
4342imaeq2d 5928 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐹𝐴) = (𝐹 𝑤𝑡 (𝐺𝑤)))
44 imaiun 7003 . . . 4 (𝐹 𝑤𝑡 (𝐺𝑤)) = 𝑤𝑡 (𝐹 “ (𝐺𝑤))
4543, 44syl6eq 2872 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐹𝐴) = 𝑤𝑡 (𝐹 “ (𝐺𝑤)))
46 ssdomg 8554 . . . . . . 7 (𝐾 ∈ TopBases → (𝑡𝐾𝑡𝐾))
4723, 46ax-mp 5 . . . . . 6 (𝑡𝐾𝑡𝐾)
48 omelon 9108 . . . . . . . . . . 11 ω ∈ On
49 nnenom 13347 . . . . . . . . . . . 12 ℕ ≈ ω
5049ensymi 8558 . . . . . . . . . . 11 ω ≈ ℕ
51 isnumi 9374 . . . . . . . . . . 11 ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card)
5248, 50, 51mp2an 690 . . . . . . . . . 10 ℕ ∈ dom card
53 qnnen 15565 . . . . . . . . . . . . . . . . . . . 20 ℚ ≈ ℕ
54 xpen 8679 . . . . . . . . . . . . . . . . . . . 20 ((ℚ ≈ ℕ ∧ ℚ ≈ ℕ) → (ℚ × ℚ) ≈ (ℕ × ℕ))
5553, 53, 54mp2an 690 . . . . . . . . . . . . . . . . . . 19 (ℚ × ℚ) ≈ (ℕ × ℕ)
56 xpnnen 15563 . . . . . . . . . . . . . . . . . . 19 (ℕ × ℕ) ≈ ℕ
5755, 56entri 8562 . . . . . . . . . . . . . . . . . 18 (ℚ × ℚ) ≈ ℕ
5857, 49entr2i 8563 . . . . . . . . . . . . . . . . 17 ω ≈ (ℚ × ℚ)
59 isnumi 9374 . . . . . . . . . . . . . . . . 17 ((ω ∈ On ∧ ω ≈ (ℚ × ℚ)) → (ℚ × ℚ) ∈ dom card)
6048, 58, 59mp2an 690 . . . . . . . . . . . . . . . 16 (ℚ × ℚ) ∈ dom card
61 ioof 12834 . . . . . . . . . . . . . . . . . 18 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
62 ffun 6516 . . . . . . . . . . . . . . . . . 18 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . 17 Fun (,)
64 qssre 12357 . . . . . . . . . . . . . . . . . . . 20 ℚ ⊆ ℝ
65 ressxr 10684 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℝ*
6664, 65sstri 3975 . . . . . . . . . . . . . . . . . . 19 ℚ ⊆ ℝ*
67 xpss12 5569 . . . . . . . . . . . . . . . . . . 19 ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*))
6866, 66, 67mp2an 690 . . . . . . . . . . . . . . . . . 18 (ℚ × ℚ) ⊆ (ℝ* × ℝ*)
6961fdmi 6523 . . . . . . . . . . . . . . . . . 18 dom (,) = (ℝ* × ℝ*)
7068, 69sseqtrri 4003 . . . . . . . . . . . . . . . . 17 (ℚ × ℚ) ⊆ dom (,)
71 fores 6599 . . . . . . . . . . . . . . . . 17 ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)))
7263, 70, 71mp2an 690 . . . . . . . . . . . . . . . 16 ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ))
73 fodomnum 9482 . . . . . . . . . . . . . . . 16 ((ℚ × ℚ) ∈ dom card → (((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ)))
7460, 72, 73mp2 9 . . . . . . . . . . . . . . 15 ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ)
759, 74eqbrtri 5086 . . . . . . . . . . . . . 14 𝐵 ≼ (ℚ × ℚ)
76 domentr 8567 . . . . . . . . . . . . . 14 ((𝐵 ≼ (ℚ × ℚ) ∧ (ℚ × ℚ) ≈ ℕ) → 𝐵 ≼ ℕ)
7775, 57, 76mp2an 690 . . . . . . . . . . . . 13 𝐵 ≼ ℕ
7814elexi 3513 . . . . . . . . . . . . . 14 𝐵 ∈ V
7978xpdom1 8615 . . . . . . . . . . . . 13 (𝐵 ≼ ℕ → (𝐵 × 𝐵) ≼ (ℕ × 𝐵))
8077, 79ax-mp 5 . . . . . . . . . . . 12 (𝐵 × 𝐵) ≼ (ℕ × 𝐵)
81 nnex 11643 . . . . . . . . . . . . . 14 ℕ ∈ V
8281xpdom2 8611 . . . . . . . . . . . . 13 (𝐵 ≼ ℕ → (ℕ × 𝐵) ≼ (ℕ × ℕ))
8377, 82ax-mp 5 . . . . . . . . . . . 12 (ℕ × 𝐵) ≼ (ℕ × ℕ)
84 domtr 8561 . . . . . . . . . . . 12 (((𝐵 × 𝐵) ≼ (ℕ × 𝐵) ∧ (ℕ × 𝐵) ≼ (ℕ × ℕ)) → (𝐵 × 𝐵) ≼ (ℕ × ℕ))
8580, 83, 84mp2an 690 . . . . . . . . . . 11 (𝐵 × 𝐵) ≼ (ℕ × ℕ)
86 domentr 8567 . . . . . . . . . . 11 (((𝐵 × 𝐵) ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → (𝐵 × 𝐵) ≼ ℕ)
8785, 56, 86mp2an 690 . . . . . . . . . 10 (𝐵 × 𝐵) ≼ ℕ
88 numdom 9463 . . . . . . . . . 10 ((ℕ ∈ dom card ∧ (𝐵 × 𝐵) ≼ ℕ) → (𝐵 × 𝐵) ∈ dom card)
8952, 87, 88mp2an 690 . . . . . . . . 9 (𝐵 × 𝐵) ∈ dom card
90 eqid 2821 . . . . . . . . . . 11 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦))
91 vex 3497 . . . . . . . . . . . 12 𝑥 ∈ V
92 vex 3497 . . . . . . . . . . . 12 𝑦 ∈ V
9391, 92xpex 7475 . . . . . . . . . . 11 (𝑥 × 𝑦) ∈ V
9490, 93fnmpoi 7767 . . . . . . . . . 10 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) Fn (𝐵 × 𝐵)
95 dffn4 6595 . . . . . . . . . 10 ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) Fn (𝐵 × 𝐵) ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)):(𝐵 × 𝐵)–onto→ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)))
9694, 95mpbi 232 . . . . . . . . 9 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)):(𝐵 × 𝐵)–onto→ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦))
97 fodomnum 9482 . . . . . . . . 9 ((𝐵 × 𝐵) ∈ dom card → ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)):(𝐵 × 𝐵)–onto→ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) → ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ (𝐵 × 𝐵)))
9889, 96, 97mp2 9 . . . . . . . 8 ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ (𝐵 × 𝐵)
99 domtr 8561 . . . . . . . 8 ((ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ (𝐵 × 𝐵) ∧ (𝐵 × 𝐵) ≼ ℕ) → ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ ℕ)
10098, 87, 99mp2an 690 . . . . . . 7 ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ ℕ
10117, 100eqbrtri 5086 . . . . . 6 𝐾 ≼ ℕ
102 domtr 8561 . . . . . 6 ((𝑡𝐾𝐾 ≼ ℕ) → 𝑡 ≼ ℕ)
10347, 101, 102sylancl 588 . . . . 5 (𝑡𝐾𝑡 ≼ ℕ)
104103ad2antrl 726 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → 𝑡 ≼ ℕ)
10517eleq2i 2904 . . . . . . . . 9 (𝑤𝐾𝑤 ∈ ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)))
10690, 93elrnmpo 7286 . . . . . . . . 9 (𝑤 ∈ ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ↔ ∃𝑥𝐵𝑦𝐵 𝑤 = (𝑥 × 𝑦))
107105, 106bitri 277 . . . . . . . 8 (𝑤𝐾 ↔ ∃𝑥𝐵𝑦𝐵 𝑤 = (𝑥 × 𝑦))
108 elin 4168 . . . . . . . . . . . . 13 (𝑧 ∈ (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ (𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)))
109 mbff 24225 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
110109adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝐹:dom 𝐹⟶ℂ)
111 fvco3 6759 . . . . . . . . . . . . . . . . . . 19 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → ((ℜ ∘ 𝐹)‘𝑧) = (ℜ‘(𝐹𝑧)))
112110, 111sylan 582 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((ℜ ∘ 𝐹)‘𝑧) = (ℜ‘(𝐹𝑧)))
113112eleq1d 2897 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ↔ (ℜ‘(𝐹𝑧)) ∈ 𝑥))
114 fvco3 6759 . . . . . . . . . . . . . . . . . . 19 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → ((ℑ ∘ 𝐹)‘𝑧) = (ℑ‘(𝐹𝑧)))
115110, 114sylan 582 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((ℑ ∘ 𝐹)‘𝑧) = (ℑ‘(𝐹𝑧)))
116115eleq1d 2897 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦 ↔ (ℑ‘(𝐹𝑧)) ∈ 𝑦))
117113, 116anbi12d 632 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦) ↔ ((ℜ‘(𝐹𝑧)) ∈ 𝑥 ∧ (ℑ‘(𝐹𝑧)) ∈ 𝑦)))
118110ffvelrnda 6850 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
119 fveq2 6669 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = (𝐹𝑧) → (ℜ‘𝑤) = (ℜ‘(𝐹𝑧)))
120 fveq2 6669 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = (𝐹𝑧) → (ℑ‘𝑤) = (ℑ‘(𝐹𝑧)))
121119, 120opeq12d 4810 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = (𝐹𝑧) → ⟨(ℜ‘𝑤), (ℑ‘𝑤)⟩ = ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩)
1221cnrecnv 14523 . . . . . . . . . . . . . . . . . . . . 21 𝐺 = (𝑤 ∈ ℂ ↦ ⟨(ℜ‘𝑤), (ℑ‘𝑤)⟩)
123 opex 5355 . . . . . . . . . . . . . . . . . . . . 21 ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩ ∈ V
124121, 122, 123fvmpt 6767 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑧) ∈ ℂ → (𝐺‘(𝐹𝑧)) = ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩)
125118, 124syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (𝐺‘(𝐹𝑧)) = ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩)
126125eleq1d 2897 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦) ↔ ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩ ∈ (𝑥 × 𝑦)))
127118biantrurd 535 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦) ↔ ((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦))))
128126, 127bitr3d 283 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩ ∈ (𝑥 × 𝑦) ↔ ((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦))))
129 opelxp 5590 . . . . . . . . . . . . . . . . 17 (⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩ ∈ (𝑥 × 𝑦) ↔ ((ℜ‘(𝐹𝑧)) ∈ 𝑥 ∧ (ℑ‘(𝐹𝑧)) ∈ 𝑦))
130 f1ocnv 6626 . . . . . . . . . . . . . . . . . . . 20 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → 𝐺:ℂ–1-1-onto→(ℝ × ℝ))
131 f1ofn 6615 . . . . . . . . . . . . . . . . . . . 20 (𝐺:ℂ–1-1-onto→(ℝ × ℝ) → 𝐺 Fn ℂ)
13228, 130, 131mp2b 10 . . . . . . . . . . . . . . . . . . 19 𝐺 Fn ℂ
133 elpreima 6827 . . . . . . . . . . . . . . . . . . 19 (𝐺 Fn ℂ → ((𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)) ↔ ((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦))))
134132, 133ax-mp 5 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)) ↔ ((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦)))
135 imacnvcnv 6062 . . . . . . . . . . . . . . . . . . 19 (𝐺 “ (𝑥 × 𝑦)) = (𝐺 “ (𝑥 × 𝑦))
136135eleq2i 2904 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)) ↔ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))
137134, 136bitr3i 279 . . . . . . . . . . . . . . . . 17 (((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦)) ↔ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))
138128, 129, 1373bitr3g 315 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (((ℜ‘(𝐹𝑧)) ∈ 𝑥 ∧ (ℑ‘(𝐹𝑧)) ∈ 𝑦) ↔ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦))))
139117, 138bitrd 281 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦) ↔ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦))))
140139pm5.32da 581 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((𝑧 ∈ dom 𝐹 ∧ (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)) ↔ (𝑧 ∈ dom 𝐹 ∧ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))))
141 ref 14470 . . . . . . . . . . . . . . . . . . 19 ℜ:ℂ⟶ℝ
142 fco 6530 . . . . . . . . . . . . . . . . . . 19 ((ℜ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
143141, 109, 142sylancr 589 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ MblFn → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
144 ffn 6513 . . . . . . . . . . . . . . . . . 18 ((ℜ ∘ 𝐹):dom 𝐹⟶ℝ → (ℜ ∘ 𝐹) Fn dom 𝐹)
145 elpreima 6827 . . . . . . . . . . . . . . . . . 18 ((ℜ ∘ 𝐹) Fn dom 𝐹 → (𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ↔ (𝑧 ∈ dom 𝐹 ∧ ((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥)))
146143, 144, 1453syl 18 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ MblFn → (𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ↔ (𝑧 ∈ dom 𝐹 ∧ ((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥)))
147 imf 14471 . . . . . . . . . . . . . . . . . . 19 ℑ:ℂ⟶ℝ
148 fco 6530 . . . . . . . . . . . . . . . . . . 19 ((ℑ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℑ ∘ 𝐹):dom 𝐹⟶ℝ)
149147, 109, 148sylancr 589 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ MblFn → (ℑ ∘ 𝐹):dom 𝐹⟶ℝ)
150 ffn 6513 . . . . . . . . . . . . . . . . . 18 ((ℑ ∘ 𝐹):dom 𝐹⟶ℝ → (ℑ ∘ 𝐹) Fn dom 𝐹)
151 elpreima 6827 . . . . . . . . . . . . . . . . . 18 ((ℑ ∘ 𝐹) Fn dom 𝐹 → (𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦) ↔ (𝑧 ∈ dom 𝐹 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)))
152149, 150, 1513syl 18 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ MblFn → (𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦) ↔ (𝑧 ∈ dom 𝐹 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)))
153146, 152anbi12d 632 . . . . . . . . . . . . . . . 16 (𝐹 ∈ MblFn → ((𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ ((𝑧 ∈ dom 𝐹 ∧ ((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥) ∧ (𝑧 ∈ dom 𝐹 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦))))
154 anandi 674 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ dom 𝐹 ∧ (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)) ↔ ((𝑧 ∈ dom 𝐹 ∧ ((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥) ∧ (𝑧 ∈ dom 𝐹 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)))
155153, 154syl6bbr 291 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → ((𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ (𝑧 ∈ dom 𝐹 ∧ (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦))))
156155adantr 483 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ (𝑧 ∈ dom 𝐹 ∧ (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦))))
157 ffn 6513 . . . . . . . . . . . . . . . 16 (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹)
158 elpreima 6827 . . . . . . . . . . . . . . . 16 (𝐹 Fn dom 𝐹 → (𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ↔ (𝑧 ∈ dom 𝐹 ∧ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))))
159109, 157, 1583syl 18 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → (𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ↔ (𝑧 ∈ dom 𝐹 ∧ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))))
160159adantr 483 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ↔ (𝑧 ∈ dom 𝐹 ∧ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))))
161140, 156, 1603bitr4d 313 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ 𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦)))))
162108, 161syl5bb 285 . . . . . . . . . . . 12 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (𝑧 ∈ (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ 𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦)))))
163162eqrdv 2819 . . . . . . . . . . 11 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) = (𝐹 “ (𝐺 “ (𝑥 × 𝑦))))
164 ismbfcn 24229 . . . . . . . . . . . . . . . . . 18 (𝐹:dom 𝐹⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
165109, 164syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ MblFn → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
166165ibi 269 . . . . . . . . . . . . . . . 16 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))
167166simpld 497 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → (ℜ ∘ 𝐹) ∈ MblFn)
168 ismbf 24228 . . . . . . . . . . . . . . . 16 ((ℜ ∘ 𝐹):dom 𝐹⟶ℝ → ((ℜ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
169143, 168syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
170167, 169mpbid 234 . . . . . . . . . . . . . 14 (𝐹 ∈ MblFn → ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
171170adantr 483 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
172 imassrn 5939 . . . . . . . . . . . . . . 15 ((,) “ (ℚ × ℚ)) ⊆ ran (,)
1739, 172eqsstri 4000 . . . . . . . . . . . . . 14 𝐵 ⊆ ran (,)
174 simprl 769 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
175173, 174sseldi 3964 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ ran (,))
176 rsp 3205 . . . . . . . . . . . . 13 (∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol → (𝑥 ∈ ran (,) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
177171, 175, 176sylc 65 . . . . . . . . . . . 12 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
178166simprd 498 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → (ℑ ∘ 𝐹) ∈ MblFn)
179 ismbf 24228 . . . . . . . . . . . . . . . 16 ((ℑ ∘ 𝐹):dom 𝐹⟶ℝ → ((ℑ ∘ 𝐹) ∈ MblFn ↔ ∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol))
180149, 179syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → ((ℑ ∘ 𝐹) ∈ MblFn ↔ ∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol))
181178, 180mpbid 234 . . . . . . . . . . . . . 14 (𝐹 ∈ MblFn → ∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol)
182181adantr 483 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol)
183 simprr 771 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
184173, 183sseldi 3964 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ ran (,))
185 rsp 3205 . . . . . . . . . . . . 13 (∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol → (𝑦 ∈ ran (,) → ((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol))
186182, 184, 185sylc 65 . . . . . . . . . . . 12 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol)
187 inmbl 24142 . . . . . . . . . . . 12 ((((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol) → (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) ∈ dom vol)
188177, 186, 187syl2anc 586 . . . . . . . . . . 11 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) ∈ dom vol)
189163, 188eqeltrrd 2914 . . . . . . . . . 10 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ∈ dom vol)
190 imaeq2 5924 . . . . . . . . . . . 12 (𝑤 = (𝑥 × 𝑦) → (𝐺𝑤) = (𝐺 “ (𝑥 × 𝑦)))
191190imaeq2d 5928 . . . . . . . . . . 11 (𝑤 = (𝑥 × 𝑦) → (𝐹 “ (𝐺𝑤)) = (𝐹 “ (𝐺 “ (𝑥 × 𝑦))))
192191eleq1d 2897 . . . . . . . . . 10 (𝑤 = (𝑥 × 𝑦) → ((𝐹 “ (𝐺𝑤)) ∈ dom vol ↔ (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ∈ dom vol))
193189, 192syl5ibrcom 249 . . . . . . . . 9 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (𝑤 = (𝑥 × 𝑦) → (𝐹 “ (𝐺𝑤)) ∈ dom vol))
194193rexlimdvva 3294 . . . . . . . 8 (𝐹 ∈ MblFn → (∃𝑥𝐵𝑦𝐵 𝑤 = (𝑥 × 𝑦) → (𝐹 “ (𝐺𝑤)) ∈ dom vol))
195107, 194syl5bi 244 . . . . . . 7 (𝐹 ∈ MblFn → (𝑤𝐾 → (𝐹 “ (𝐺𝑤)) ∈ dom vol))
196195ralrimiv 3181 . . . . . 6 (𝐹 ∈ MblFn → ∀𝑤𝐾 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
197 ssralv 4032 . . . . . 6 (𝑡𝐾 → (∀𝑤𝐾 (𝐹 “ (𝐺𝑤)) ∈ dom vol → ∀𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol))
198196, 197mpan9 509 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝑡𝐾) → ∀𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
199198ad2ant2r 745 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → ∀𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
200 iunmbl2 24157 . . . 4 ((𝑡 ≼ ℕ ∧ ∀𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol) → 𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
201104, 199, 200syl2anc 586 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → 𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
20245, 201eqeltrd 2913 . 2 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐹𝐴) ∈ dom vol)
20327, 202exlimddv 1932 1 ((𝐹 ∈ MblFn ∧ 𝐴𝐽) → (𝐹𝐴) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  wral 3138  wrex 3139  cin 3934  wss 3935  𝒫 cpw 4538  cop 4572   cuni 4837   ciun 4918   class class class wbr 5065   × cxp 5552  ccnv 5553  dom cdm 5554  ran crn 5555  cres 5556  cima 5557  ccom 5558  Oncon0 6190  Fun wfun 6348   Fn wfn 6349  wf 6350  ontowfo 6352  1-1-ontowf1o 6353  cfv 6354  (class class class)co 7155  cmpo 7157  ωcom 7579  cen 8505  cdom 8506  cardccrd 9363  cc 10534  cr 10535  ici 10538   + caddc 10539   · cmul 10541  *cxr 10673  cn 11637  cq 12347  (,)cioo 12737  cre 14455  cim 14456  TopOpenctopn 16694  topGenctg 16710  fldccnfld 20544  TopBasesctb 21552   Cn ccn 21831   ×t ctx 22167  Homeochmeo 22360  volcvol 24063  MblFncmbf 24214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cc 9856  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-disj 5031  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-omul 8106  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-dju 9329  df-card 9367  df-acn 9370  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-rlim 14845  df-sum 15042  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cn 21834  df-cnp 21835  df-tx 22169  df-hmeo 22362  df-xms 22929  df-ms 22930  df-tms 22931  df-cncf 23485  df-ovol 24064  df-vol 24065  df-mbf 24219
This theorem is referenced by:  mbfimaopn  24256
  Copyright terms: Public domain W3C validator