MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfimaopnlem Structured version   Visualization version   GIF version

Theorem mbfimaopnlem 24185
Description: Lemma for mbfimaopn 24186. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
mbfimaopn.1 𝐽 = (TopOpen‘ℂfld)
mbfimaopn.2 𝐺 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
mbfimaopn.3 𝐵 = ((,) “ (ℚ × ℚ))
mbfimaopn.4 𝐾 = ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
mbfimaopnlem ((𝐹 ∈ MblFn ∧ 𝐴𝐽) → (𝐹𝐴) ∈ dom vol)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐽,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem mbfimaopnlem
Dummy variables 𝑡 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfimaopn.2 . . . . . . . 8 𝐺 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
2 eqid 2821 . . . . . . . 8 (topGen‘ran (,)) = (topGen‘ran (,))
3 mbfimaopn.1 . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
41, 2, 3cnrehmeo 23486 . . . . . . 7 𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽)
5 hmeocn 22298 . . . . . . 7 (𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽) → 𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽))
64, 5ax-mp 5 . . . . . 6 𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽)
7 cnima 21803 . . . . . 6 ((𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ 𝐴𝐽) → (𝐺𝐴) ∈ ((topGen‘ran (,)) ×t (topGen‘ran (,))))
86, 7mpan 686 . . . . 5 (𝐴𝐽 → (𝐺𝐴) ∈ ((topGen‘ran (,)) ×t (topGen‘ran (,))))
9 mbfimaopn.3 . . . . . . . . 9 𝐵 = ((,) “ (ℚ × ℚ))
109fveq2i 6667 . . . . . . . 8 (topGen‘𝐵) = (topGen‘((,) “ (ℚ × ℚ)))
1110tgqioo 23337 . . . . . . 7 (topGen‘ran (,)) = (topGen‘𝐵)
1211, 11oveq12i 7157 . . . . . 6 ((topGen‘ran (,)) ×t (topGen‘ran (,))) = ((topGen‘𝐵) ×t (topGen‘𝐵))
13 qtopbas 23297 . . . . . . . 8 ((,) “ (ℚ × ℚ)) ∈ TopBases
149, 13eqeltri 2909 . . . . . . 7 𝐵 ∈ TopBases
15 txbasval 22144 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝐵 ∈ TopBases) → ((topGen‘𝐵) ×t (topGen‘𝐵)) = (𝐵 ×t 𝐵))
1614, 14, 15mp2an 688 . . . . . 6 ((topGen‘𝐵) ×t (topGen‘𝐵)) = (𝐵 ×t 𝐵)
17 mbfimaopn.4 . . . . . . . 8 𝐾 = ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦))
1817txval 22102 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝐵 ∈ TopBases) → (𝐵 ×t 𝐵) = (topGen‘𝐾))
1914, 14, 18mp2an 688 . . . . . 6 (𝐵 ×t 𝐵) = (topGen‘𝐾)
2012, 16, 193eqtri 2848 . . . . 5 ((topGen‘ran (,)) ×t (topGen‘ran (,))) = (topGen‘𝐾)
218, 20eleqtrdi 2923 . . . 4 (𝐴𝐽 → (𝐺𝐴) ∈ (topGen‘𝐾))
2217txbas 22105 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝐵 ∈ TopBases) → 𝐾 ∈ TopBases)
2314, 14, 22mp2an 688 . . . . 5 𝐾 ∈ TopBases
24 eltg3 21500 . . . . 5 (𝐾 ∈ TopBases → ((𝐺𝐴) ∈ (topGen‘𝐾) ↔ ∃𝑡(𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)))
2523, 24ax-mp 5 . . . 4 ((𝐺𝐴) ∈ (topGen‘𝐾) ↔ ∃𝑡(𝑡𝐾 ∧ (𝐺𝐴) = 𝑡))
2621, 25sylib 219 . . 3 (𝐴𝐽 → ∃𝑡(𝑡𝐾 ∧ (𝐺𝐴) = 𝑡))
2726adantl 482 . 2 ((𝐹 ∈ MblFn ∧ 𝐴𝐽) → ∃𝑡(𝑡𝐾 ∧ (𝐺𝐴) = 𝑡))
281cnref1o 12374 . . . . . . . 8 𝐺:(ℝ × ℝ)–1-1-onto→ℂ
29 f1ofo 6616 . . . . . . . 8 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → 𝐺:(ℝ × ℝ)–onto→ℂ)
3028, 29ax-mp 5 . . . . . . 7 𝐺:(ℝ × ℝ)–onto→ℂ
31 elssuni 4861 . . . . . . . . 9 (𝐴𝐽𝐴 𝐽)
323cnfldtopon 23320 . . . . . . . . . 10 𝐽 ∈ (TopOn‘ℂ)
3332toponunii 21454 . . . . . . . . 9 ℂ = 𝐽
3431, 33sseqtrrdi 4017 . . . . . . . 8 (𝐴𝐽𝐴 ⊆ ℂ)
3534ad2antlr 723 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → 𝐴 ⊆ ℂ)
36 foimacnv 6626 . . . . . . 7 ((𝐺:(ℝ × ℝ)–onto→ℂ ∧ 𝐴 ⊆ ℂ) → (𝐺 “ (𝐺𝐴)) = 𝐴)
3730, 35, 36sylancr 587 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐺 “ (𝐺𝐴)) = 𝐴)
38 simprr 769 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐺𝐴) = 𝑡)
3938imaeq2d 5923 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐺 “ (𝐺𝐴)) = (𝐺 𝑡))
40 imauni 6996 . . . . . . 7 (𝐺 𝑡) = 𝑤𝑡 (𝐺𝑤)
4139, 40syl6eq 2872 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐺 “ (𝐺𝐴)) = 𝑤𝑡 (𝐺𝑤))
4237, 41eqtr3d 2858 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → 𝐴 = 𝑤𝑡 (𝐺𝑤))
4342imaeq2d 5923 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐹𝐴) = (𝐹 𝑤𝑡 (𝐺𝑤)))
44 imaiun 6995 . . . 4 (𝐹 𝑤𝑡 (𝐺𝑤)) = 𝑤𝑡 (𝐹 “ (𝐺𝑤))
4543, 44syl6eq 2872 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐹𝐴) = 𝑤𝑡 (𝐹 “ (𝐺𝑤)))
46 ssdomg 8544 . . . . . . 7 (𝐾 ∈ TopBases → (𝑡𝐾𝑡𝐾))
4723, 46ax-mp 5 . . . . . 6 (𝑡𝐾𝑡𝐾)
48 omelon 9098 . . . . . . . . . . 11 ω ∈ On
49 nnenom 13338 . . . . . . . . . . . 12 ℕ ≈ ω
5049ensymi 8548 . . . . . . . . . . 11 ω ≈ ℕ
51 isnumi 9364 . . . . . . . . . . 11 ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card)
5248, 50, 51mp2an 688 . . . . . . . . . 10 ℕ ∈ dom card
53 qnnen 15556 . . . . . . . . . . . . . . . . . . . 20 ℚ ≈ ℕ
54 xpen 8669 . . . . . . . . . . . . . . . . . . . 20 ((ℚ ≈ ℕ ∧ ℚ ≈ ℕ) → (ℚ × ℚ) ≈ (ℕ × ℕ))
5553, 53, 54mp2an 688 . . . . . . . . . . . . . . . . . . 19 (ℚ × ℚ) ≈ (ℕ × ℕ)
56 xpnnen 15554 . . . . . . . . . . . . . . . . . . 19 (ℕ × ℕ) ≈ ℕ
5755, 56entri 8552 . . . . . . . . . . . . . . . . . 18 (ℚ × ℚ) ≈ ℕ
5857, 49entr2i 8553 . . . . . . . . . . . . . . . . 17 ω ≈ (ℚ × ℚ)
59 isnumi 9364 . . . . . . . . . . . . . . . . 17 ((ω ∈ On ∧ ω ≈ (ℚ × ℚ)) → (ℚ × ℚ) ∈ dom card)
6048, 58, 59mp2an 688 . . . . . . . . . . . . . . . 16 (ℚ × ℚ) ∈ dom card
61 ioof 12825 . . . . . . . . . . . . . . . . . 18 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
62 ffun 6511 . . . . . . . . . . . . . . . . . 18 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . 17 Fun (,)
64 qssre 12348 . . . . . . . . . . . . . . . . . . . 20 ℚ ⊆ ℝ
65 ressxr 10674 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℝ*
6664, 65sstri 3975 . . . . . . . . . . . . . . . . . . 19 ℚ ⊆ ℝ*
67 xpss12 5564 . . . . . . . . . . . . . . . . . . 19 ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*))
6866, 66, 67mp2an 688 . . . . . . . . . . . . . . . . . 18 (ℚ × ℚ) ⊆ (ℝ* × ℝ*)
6961fdmi 6518 . . . . . . . . . . . . . . . . . 18 dom (,) = (ℝ* × ℝ*)
7068, 69sseqtrri 4003 . . . . . . . . . . . . . . . . 17 (ℚ × ℚ) ⊆ dom (,)
71 fores 6594 . . . . . . . . . . . . . . . . 17 ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)))
7263, 70, 71mp2an 688 . . . . . . . . . . . . . . . 16 ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ))
73 fodomnum 9472 . . . . . . . . . . . . . . . 16 ((ℚ × ℚ) ∈ dom card → (((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ)))
7460, 72, 73mp2 9 . . . . . . . . . . . . . . 15 ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ)
759, 74eqbrtri 5079 . . . . . . . . . . . . . 14 𝐵 ≼ (ℚ × ℚ)
76 domentr 8557 . . . . . . . . . . . . . 14 ((𝐵 ≼ (ℚ × ℚ) ∧ (ℚ × ℚ) ≈ ℕ) → 𝐵 ≼ ℕ)
7775, 57, 76mp2an 688 . . . . . . . . . . . . 13 𝐵 ≼ ℕ
7814elexi 3514 . . . . . . . . . . . . . 14 𝐵 ∈ V
7978xpdom1 8605 . . . . . . . . . . . . 13 (𝐵 ≼ ℕ → (𝐵 × 𝐵) ≼ (ℕ × 𝐵))
8077, 79ax-mp 5 . . . . . . . . . . . 12 (𝐵 × 𝐵) ≼ (ℕ × 𝐵)
81 nnex 11633 . . . . . . . . . . . . . 14 ℕ ∈ V
8281xpdom2 8601 . . . . . . . . . . . . 13 (𝐵 ≼ ℕ → (ℕ × 𝐵) ≼ (ℕ × ℕ))
8377, 82ax-mp 5 . . . . . . . . . . . 12 (ℕ × 𝐵) ≼ (ℕ × ℕ)
84 domtr 8551 . . . . . . . . . . . 12 (((𝐵 × 𝐵) ≼ (ℕ × 𝐵) ∧ (ℕ × 𝐵) ≼ (ℕ × ℕ)) → (𝐵 × 𝐵) ≼ (ℕ × ℕ))
8580, 83, 84mp2an 688 . . . . . . . . . . 11 (𝐵 × 𝐵) ≼ (ℕ × ℕ)
86 domentr 8557 . . . . . . . . . . 11 (((𝐵 × 𝐵) ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → (𝐵 × 𝐵) ≼ ℕ)
8785, 56, 86mp2an 688 . . . . . . . . . 10 (𝐵 × 𝐵) ≼ ℕ
88 numdom 9453 . . . . . . . . . 10 ((ℕ ∈ dom card ∧ (𝐵 × 𝐵) ≼ ℕ) → (𝐵 × 𝐵) ∈ dom card)
8952, 87, 88mp2an 688 . . . . . . . . 9 (𝐵 × 𝐵) ∈ dom card
90 eqid 2821 . . . . . . . . . . 11 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦))
91 vex 3498 . . . . . . . . . . . 12 𝑥 ∈ V
92 vex 3498 . . . . . . . . . . . 12 𝑦 ∈ V
9391, 92xpex 7464 . . . . . . . . . . 11 (𝑥 × 𝑦) ∈ V
9490, 93fnmpoi 7759 . . . . . . . . . 10 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) Fn (𝐵 × 𝐵)
95 dffn4 6590 . . . . . . . . . 10 ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) Fn (𝐵 × 𝐵) ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)):(𝐵 × 𝐵)–onto→ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)))
9694, 95mpbi 231 . . . . . . . . 9 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)):(𝐵 × 𝐵)–onto→ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦))
97 fodomnum 9472 . . . . . . . . 9 ((𝐵 × 𝐵) ∈ dom card → ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)):(𝐵 × 𝐵)–onto→ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) → ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ (𝐵 × 𝐵)))
9889, 96, 97mp2 9 . . . . . . . 8 ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ (𝐵 × 𝐵)
99 domtr 8551 . . . . . . . 8 ((ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ (𝐵 × 𝐵) ∧ (𝐵 × 𝐵) ≼ ℕ) → ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ ℕ)
10098, 87, 99mp2an 688 . . . . . . 7 ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ ℕ
10117, 100eqbrtri 5079 . . . . . 6 𝐾 ≼ ℕ
102 domtr 8551 . . . . . 6 ((𝑡𝐾𝐾 ≼ ℕ) → 𝑡 ≼ ℕ)
10347, 101, 102sylancl 586 . . . . 5 (𝑡𝐾𝑡 ≼ ℕ)
104103ad2antrl 724 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → 𝑡 ≼ ℕ)
10517eleq2i 2904 . . . . . . . . 9 (𝑤𝐾𝑤 ∈ ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)))
10690, 93elrnmpo 7276 . . . . . . . . 9 (𝑤 ∈ ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ↔ ∃𝑥𝐵𝑦𝐵 𝑤 = (𝑥 × 𝑦))
107105, 106bitri 276 . . . . . . . 8 (𝑤𝐾 ↔ ∃𝑥𝐵𝑦𝐵 𝑤 = (𝑥 × 𝑦))
108 elin 4168 . . . . . . . . . . . . 13 (𝑧 ∈ (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ (𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)))
109 mbff 24155 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
110109adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝐹:dom 𝐹⟶ℂ)
111 fvco3 6754 . . . . . . . . . . . . . . . . . . 19 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → ((ℜ ∘ 𝐹)‘𝑧) = (ℜ‘(𝐹𝑧)))
112110, 111sylan 580 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((ℜ ∘ 𝐹)‘𝑧) = (ℜ‘(𝐹𝑧)))
113112eleq1d 2897 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ↔ (ℜ‘(𝐹𝑧)) ∈ 𝑥))
114 fvco3 6754 . . . . . . . . . . . . . . . . . . 19 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → ((ℑ ∘ 𝐹)‘𝑧) = (ℑ‘(𝐹𝑧)))
115110, 114sylan 580 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((ℑ ∘ 𝐹)‘𝑧) = (ℑ‘(𝐹𝑧)))
116115eleq1d 2897 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦 ↔ (ℑ‘(𝐹𝑧)) ∈ 𝑦))
117113, 116anbi12d 630 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦) ↔ ((ℜ‘(𝐹𝑧)) ∈ 𝑥 ∧ (ℑ‘(𝐹𝑧)) ∈ 𝑦)))
118110ffvelrnda 6844 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
119 fveq2 6664 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = (𝐹𝑧) → (ℜ‘𝑤) = (ℜ‘(𝐹𝑧)))
120 fveq2 6664 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = (𝐹𝑧) → (ℑ‘𝑤) = (ℑ‘(𝐹𝑧)))
121119, 120opeq12d 4805 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = (𝐹𝑧) → ⟨(ℜ‘𝑤), (ℑ‘𝑤)⟩ = ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩)
1221cnrecnv 14514 . . . . . . . . . . . . . . . . . . . . 21 𝐺 = (𝑤 ∈ ℂ ↦ ⟨(ℜ‘𝑤), (ℑ‘𝑤)⟩)
123 opex 5348 . . . . . . . . . . . . . . . . . . . . 21 ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩ ∈ V
124121, 122, 123fvmpt 6762 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑧) ∈ ℂ → (𝐺‘(𝐹𝑧)) = ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩)
125118, 124syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (𝐺‘(𝐹𝑧)) = ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩)
126125eleq1d 2897 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦) ↔ ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩ ∈ (𝑥 × 𝑦)))
127118biantrurd 533 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦) ↔ ((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦))))
128126, 127bitr3d 282 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩ ∈ (𝑥 × 𝑦) ↔ ((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦))))
129 opelxp 5585 . . . . . . . . . . . . . . . . 17 (⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩ ∈ (𝑥 × 𝑦) ↔ ((ℜ‘(𝐹𝑧)) ∈ 𝑥 ∧ (ℑ‘(𝐹𝑧)) ∈ 𝑦))
130 f1ocnv 6621 . . . . . . . . . . . . . . . . . . . 20 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → 𝐺:ℂ–1-1-onto→(ℝ × ℝ))
131 f1ofn 6610 . . . . . . . . . . . . . . . . . . . 20 (𝐺:ℂ–1-1-onto→(ℝ × ℝ) → 𝐺 Fn ℂ)
13228, 130, 131mp2b 10 . . . . . . . . . . . . . . . . . . 19 𝐺 Fn ℂ
133 elpreima 6821 . . . . . . . . . . . . . . . . . . 19 (𝐺 Fn ℂ → ((𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)) ↔ ((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦))))
134132, 133ax-mp 5 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)) ↔ ((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦)))
135 imacnvcnv 6057 . . . . . . . . . . . . . . . . . . 19 (𝐺 “ (𝑥 × 𝑦)) = (𝐺 “ (𝑥 × 𝑦))
136135eleq2i 2904 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)) ↔ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))
137134, 136bitr3i 278 . . . . . . . . . . . . . . . . 17 (((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦)) ↔ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))
138128, 129, 1373bitr3g 314 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (((ℜ‘(𝐹𝑧)) ∈ 𝑥 ∧ (ℑ‘(𝐹𝑧)) ∈ 𝑦) ↔ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦))))
139117, 138bitrd 280 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦) ↔ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦))))
140139pm5.32da 579 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((𝑧 ∈ dom 𝐹 ∧ (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)) ↔ (𝑧 ∈ dom 𝐹 ∧ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))))
141 ref 14461 . . . . . . . . . . . . . . . . . . 19 ℜ:ℂ⟶ℝ
142 fco 6525 . . . . . . . . . . . . . . . . . . 19 ((ℜ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
143141, 109, 142sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ MblFn → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
144 ffn 6508 . . . . . . . . . . . . . . . . . 18 ((ℜ ∘ 𝐹):dom 𝐹⟶ℝ → (ℜ ∘ 𝐹) Fn dom 𝐹)
145 elpreima 6821 . . . . . . . . . . . . . . . . . 18 ((ℜ ∘ 𝐹) Fn dom 𝐹 → (𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ↔ (𝑧 ∈ dom 𝐹 ∧ ((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥)))
146143, 144, 1453syl 18 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ MblFn → (𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ↔ (𝑧 ∈ dom 𝐹 ∧ ((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥)))
147 imf 14462 . . . . . . . . . . . . . . . . . . 19 ℑ:ℂ⟶ℝ
148 fco 6525 . . . . . . . . . . . . . . . . . . 19 ((ℑ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℑ ∘ 𝐹):dom 𝐹⟶ℝ)
149147, 109, 148sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ MblFn → (ℑ ∘ 𝐹):dom 𝐹⟶ℝ)
150 ffn 6508 . . . . . . . . . . . . . . . . . 18 ((ℑ ∘ 𝐹):dom 𝐹⟶ℝ → (ℑ ∘ 𝐹) Fn dom 𝐹)
151 elpreima 6821 . . . . . . . . . . . . . . . . . 18 ((ℑ ∘ 𝐹) Fn dom 𝐹 → (𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦) ↔ (𝑧 ∈ dom 𝐹 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)))
152149, 150, 1513syl 18 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ MblFn → (𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦) ↔ (𝑧 ∈ dom 𝐹 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)))
153146, 152anbi12d 630 . . . . . . . . . . . . . . . 16 (𝐹 ∈ MblFn → ((𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ ((𝑧 ∈ dom 𝐹 ∧ ((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥) ∧ (𝑧 ∈ dom 𝐹 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦))))
154 anandi 672 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ dom 𝐹 ∧ (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)) ↔ ((𝑧 ∈ dom 𝐹 ∧ ((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥) ∧ (𝑧 ∈ dom 𝐹 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)))
155153, 154syl6bbr 290 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → ((𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ (𝑧 ∈ dom 𝐹 ∧ (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦))))
156155adantr 481 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ (𝑧 ∈ dom 𝐹 ∧ (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦))))
157 ffn 6508 . . . . . . . . . . . . . . . 16 (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹)
158 elpreima 6821 . . . . . . . . . . . . . . . 16 (𝐹 Fn dom 𝐹 → (𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ↔ (𝑧 ∈ dom 𝐹 ∧ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))))
159109, 157, 1583syl 18 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → (𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ↔ (𝑧 ∈ dom 𝐹 ∧ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))))
160159adantr 481 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ↔ (𝑧 ∈ dom 𝐹 ∧ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))))
161140, 156, 1603bitr4d 312 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ 𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦)))))
162108, 161syl5bb 284 . . . . . . . . . . . 12 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (𝑧 ∈ (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ 𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦)))))
163162eqrdv 2819 . . . . . . . . . . 11 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) = (𝐹 “ (𝐺 “ (𝑥 × 𝑦))))
164 ismbfcn 24159 . . . . . . . . . . . . . . . . . 18 (𝐹:dom 𝐹⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
165109, 164syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ MblFn → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
166165ibi 268 . . . . . . . . . . . . . . . 16 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))
167166simpld 495 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → (ℜ ∘ 𝐹) ∈ MblFn)
168 ismbf 24158 . . . . . . . . . . . . . . . 16 ((ℜ ∘ 𝐹):dom 𝐹⟶ℝ → ((ℜ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
169143, 168syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
170167, 169mpbid 233 . . . . . . . . . . . . . 14 (𝐹 ∈ MblFn → ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
171170adantr 481 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
172 imassrn 5934 . . . . . . . . . . . . . . 15 ((,) “ (ℚ × ℚ)) ⊆ ran (,)
1739, 172eqsstri 4000 . . . . . . . . . . . . . 14 𝐵 ⊆ ran (,)
174 simprl 767 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
175173, 174sseldi 3964 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ ran (,))
176 rsp 3205 . . . . . . . . . . . . 13 (∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol → (𝑥 ∈ ran (,) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
177171, 175, 176sylc 65 . . . . . . . . . . . 12 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
178166simprd 496 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → (ℑ ∘ 𝐹) ∈ MblFn)
179 ismbf 24158 . . . . . . . . . . . . . . . 16 ((ℑ ∘ 𝐹):dom 𝐹⟶ℝ → ((ℑ ∘ 𝐹) ∈ MblFn ↔ ∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol))
180149, 179syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → ((ℑ ∘ 𝐹) ∈ MblFn ↔ ∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol))
181178, 180mpbid 233 . . . . . . . . . . . . . 14 (𝐹 ∈ MblFn → ∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol)
182181adantr 481 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol)
183 simprr 769 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
184173, 183sseldi 3964 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ ran (,))
185 rsp 3205 . . . . . . . . . . . . 13 (∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol → (𝑦 ∈ ran (,) → ((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol))
186182, 184, 185sylc 65 . . . . . . . . . . . 12 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol)
187 inmbl 24072 . . . . . . . . . . . 12 ((((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol) → (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) ∈ dom vol)
188177, 186, 187syl2anc 584 . . . . . . . . . . 11 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) ∈ dom vol)
189163, 188eqeltrrd 2914 . . . . . . . . . 10 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ∈ dom vol)
190 imaeq2 5919 . . . . . . . . . . . 12 (𝑤 = (𝑥 × 𝑦) → (𝐺𝑤) = (𝐺 “ (𝑥 × 𝑦)))
191190imaeq2d 5923 . . . . . . . . . . 11 (𝑤 = (𝑥 × 𝑦) → (𝐹 “ (𝐺𝑤)) = (𝐹 “ (𝐺 “ (𝑥 × 𝑦))))
192191eleq1d 2897 . . . . . . . . . 10 (𝑤 = (𝑥 × 𝑦) → ((𝐹 “ (𝐺𝑤)) ∈ dom vol ↔ (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ∈ dom vol))
193189, 192syl5ibrcom 248 . . . . . . . . 9 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (𝑤 = (𝑥 × 𝑦) → (𝐹 “ (𝐺𝑤)) ∈ dom vol))
194193rexlimdvva 3294 . . . . . . . 8 (𝐹 ∈ MblFn → (∃𝑥𝐵𝑦𝐵 𝑤 = (𝑥 × 𝑦) → (𝐹 “ (𝐺𝑤)) ∈ dom vol))
195107, 194syl5bi 243 . . . . . . 7 (𝐹 ∈ MblFn → (𝑤𝐾 → (𝐹 “ (𝐺𝑤)) ∈ dom vol))
196195ralrimiv 3181 . . . . . 6 (𝐹 ∈ MblFn → ∀𝑤𝐾 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
197 ssralv 4032 . . . . . 6 (𝑡𝐾 → (∀𝑤𝐾 (𝐹 “ (𝐺𝑤)) ∈ dom vol → ∀𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol))
198196, 197mpan9 507 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝑡𝐾) → ∀𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
199198ad2ant2r 743 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → ∀𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
200 iunmbl2 24087 . . . 4 ((𝑡 ≼ ℕ ∧ ∀𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol) → 𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
201104, 199, 200syl2anc 584 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → 𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
20245, 201eqeltrd 2913 . 2 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐹𝐴) ∈ dom vol)
20327, 202exlimddv 1927 1 ((𝐹 ∈ MblFn ∧ 𝐴𝐽) → (𝐹𝐴) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wex 1771  wcel 2105  wral 3138  wrex 3139  cin 3934  wss 3935  𝒫 cpw 4537  cop 4565   cuni 4832   ciun 4912   class class class wbr 5058   × cxp 5547  ccnv 5548  dom cdm 5549  ran crn 5550  cres 5551  cima 5552  ccom 5553  Oncon0 6185  Fun wfun 6343   Fn wfn 6344  wf 6345  ontowfo 6347  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7145  cmpo 7147  ωcom 7568  cen 8495  cdom 8496  cardccrd 9353  cc 10524  cr 10525  ici 10528   + caddc 10529   · cmul 10531  *cxr 10663  cn 11627  cq 12337  (,)cioo 12728  cre 14446  cim 14447  TopOpenctopn 16685  topGenctg 16701  fldccnfld 20475  TopBasesctb 21483   Cn ccn 21762   ×t ctx 22098  Homeochmeo 22291  volcvol 23993  MblFncmbf 24144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-inf2 9093  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-omul 8098  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-dju 9319  df-card 9357  df-acn 9360  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-clim 14835  df-rlim 14836  df-sum 15033  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17891  df-mnd 17902  df-submnd 17947  df-mulg 18165  df-cntz 18387  df-cmn 18839  df-psmet 20467  df-xmet 20468  df-met 20469  df-bl 20470  df-mopn 20471  df-cnfld 20476  df-top 21432  df-topon 21449  df-topsp 21471  df-bases 21484  df-cn 21765  df-cnp 21766  df-tx 22100  df-hmeo 22293  df-xms 22859  df-ms 22860  df-tms 22861  df-cncf 23415  df-ovol 23994  df-vol 23995  df-mbf 24149
This theorem is referenced by:  mbfimaopn  24186
  Copyright terms: Public domain W3C validator