MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfimaopnlem Structured version   Visualization version   GIF version

Theorem mbfimaopnlem 23630
Description: Lemma for mbfimaopn 23631. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
mbfimaopn.1 𝐽 = (TopOpen‘ℂfld)
mbfimaopn.2 𝐺 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
mbfimaopn.3 𝐵 = ((,) “ (ℚ × ℚ))
mbfimaopn.4 𝐾 = ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
mbfimaopnlem ((𝐹 ∈ MblFn ∧ 𝐴𝐽) → (𝐹𝐴) ∈ dom vol)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐽,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem mbfimaopnlem
Dummy variables 𝑡 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfimaopn.2 . . . . . . . 8 𝐺 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
2 eqid 2802 . . . . . . . 8 (topGen‘ran (,)) = (topGen‘ran (,))
3 mbfimaopn.1 . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
41, 2, 3cnrehmeo 22959 . . . . . . 7 𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽)
5 hmeocn 21771 . . . . . . 7 (𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽) → 𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽))
64, 5ax-mp 5 . . . . . 6 𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽)
7 cnima 21277 . . . . . 6 ((𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ 𝐴𝐽) → (𝐺𝐴) ∈ ((topGen‘ran (,)) ×t (topGen‘ran (,))))
86, 7mpan 673 . . . . 5 (𝐴𝐽 → (𝐺𝐴) ∈ ((topGen‘ran (,)) ×t (topGen‘ran (,))))
9 mbfimaopn.3 . . . . . . . . 9 𝐵 = ((,) “ (ℚ × ℚ))
109fveq2i 6405 . . . . . . . 8 (topGen‘𝐵) = (topGen‘((,) “ (ℚ × ℚ)))
1110tgqioo 22810 . . . . . . 7 (topGen‘ran (,)) = (topGen‘𝐵)
1211, 11oveq12i 6880 . . . . . 6 ((topGen‘ran (,)) ×t (topGen‘ran (,))) = ((topGen‘𝐵) ×t (topGen‘𝐵))
13 qtopbas 22770 . . . . . . . 8 ((,) “ (ℚ × ℚ)) ∈ TopBases
149, 13eqeltri 2877 . . . . . . 7 𝐵 ∈ TopBases
15 txbasval 21617 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝐵 ∈ TopBases) → ((topGen‘𝐵) ×t (topGen‘𝐵)) = (𝐵 ×t 𝐵))
1614, 14, 15mp2an 675 . . . . . 6 ((topGen‘𝐵) ×t (topGen‘𝐵)) = (𝐵 ×t 𝐵)
17 mbfimaopn.4 . . . . . . . 8 𝐾 = ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦))
1817txval 21575 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝐵 ∈ TopBases) → (𝐵 ×t 𝐵) = (topGen‘𝐾))
1914, 14, 18mp2an 675 . . . . . 6 (𝐵 ×t 𝐵) = (topGen‘𝐾)
2012, 16, 193eqtri 2828 . . . . 5 ((topGen‘ran (,)) ×t (topGen‘ran (,))) = (topGen‘𝐾)
218, 20syl6eleq 2891 . . . 4 (𝐴𝐽 → (𝐺𝐴) ∈ (topGen‘𝐾))
2217txbas 21578 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝐵 ∈ TopBases) → 𝐾 ∈ TopBases)
2314, 14, 22mp2an 675 . . . . 5 𝐾 ∈ TopBases
24 eltg3 20974 . . . . 5 (𝐾 ∈ TopBases → ((𝐺𝐴) ∈ (topGen‘𝐾) ↔ ∃𝑡(𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)))
2523, 24ax-mp 5 . . . 4 ((𝐺𝐴) ∈ (topGen‘𝐾) ↔ ∃𝑡(𝑡𝐾 ∧ (𝐺𝐴) = 𝑡))
2621, 25sylib 209 . . 3 (𝐴𝐽 → ∃𝑡(𝑡𝐾 ∧ (𝐺𝐴) = 𝑡))
2726adantl 469 . 2 ((𝐹 ∈ MblFn ∧ 𝐴𝐽) → ∃𝑡(𝑡𝐾 ∧ (𝐺𝐴) = 𝑡))
281cnref1o 12035 . . . . . . . 8 𝐺:(ℝ × ℝ)–1-1-onto→ℂ
29 f1ofo 6354 . . . . . . . 8 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → 𝐺:(ℝ × ℝ)–onto→ℂ)
3028, 29ax-mp 5 . . . . . . 7 𝐺:(ℝ × ℝ)–onto→ℂ
31 elssuni 4654 . . . . . . . . 9 (𝐴𝐽𝐴 𝐽)
323cnfldtopon 22793 . . . . . . . . . 10 𝐽 ∈ (TopOn‘ℂ)
3332toponunii 20928 . . . . . . . . 9 ℂ = 𝐽
3431, 33syl6sseqr 3843 . . . . . . . 8 (𝐴𝐽𝐴 ⊆ ℂ)
3534ad2antlr 709 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → 𝐴 ⊆ ℂ)
36 foimacnv 6364 . . . . . . 7 ((𝐺:(ℝ × ℝ)–onto→ℂ ∧ 𝐴 ⊆ ℂ) → (𝐺 “ (𝐺𝐴)) = 𝐴)
3730, 35, 36sylancr 577 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐺 “ (𝐺𝐴)) = 𝐴)
38 simprr 780 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐺𝐴) = 𝑡)
3938imaeq2d 5670 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐺 “ (𝐺𝐴)) = (𝐺 𝑡))
40 imauni 6722 . . . . . . 7 (𝐺 𝑡) = 𝑤𝑡 (𝐺𝑤)
4139, 40syl6eq 2852 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐺 “ (𝐺𝐴)) = 𝑤𝑡 (𝐺𝑤))
4237, 41eqtr3d 2838 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → 𝐴 = 𝑤𝑡 (𝐺𝑤))
4342imaeq2d 5670 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐹𝐴) = (𝐹 𝑤𝑡 (𝐺𝑤)))
44 imaiun 6721 . . . 4 (𝐹 𝑤𝑡 (𝐺𝑤)) = 𝑤𝑡 (𝐹 “ (𝐺𝑤))
4543, 44syl6eq 2852 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐹𝐴) = 𝑤𝑡 (𝐹 “ (𝐺𝑤)))
46 ssdomg 8232 . . . . . . 7 (𝐾 ∈ TopBases → (𝑡𝐾𝑡𝐾))
4723, 46ax-mp 5 . . . . . 6 (𝑡𝐾𝑡𝐾)
48 omelon 8784 . . . . . . . . . . 11 ω ∈ On
49 nnenom 12997 . . . . . . . . . . . 12 ℕ ≈ ω
5049ensymi 8236 . . . . . . . . . . 11 ω ≈ ℕ
51 isnumi 9049 . . . . . . . . . . 11 ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card)
5248, 50, 51mp2an 675 . . . . . . . . . 10 ℕ ∈ dom card
53 qnnen 15156 . . . . . . . . . . . . . . . . . . . 20 ℚ ≈ ℕ
54 xpen 8356 . . . . . . . . . . . . . . . . . . . 20 ((ℚ ≈ ℕ ∧ ℚ ≈ ℕ) → (ℚ × ℚ) ≈ (ℕ × ℕ))
5553, 53, 54mp2an 675 . . . . . . . . . . . . . . . . . . 19 (ℚ × ℚ) ≈ (ℕ × ℕ)
56 xpnnen 15153 . . . . . . . . . . . . . . . . . . 19 (ℕ × ℕ) ≈ ℕ
5755, 56entri 8240 . . . . . . . . . . . . . . . . . 18 (ℚ × ℚ) ≈ ℕ
5857, 49entr2i 8241 . . . . . . . . . . . . . . . . 17 ω ≈ (ℚ × ℚ)
59 isnumi 9049 . . . . . . . . . . . . . . . . 17 ((ω ∈ On ∧ ω ≈ (ℚ × ℚ)) → (ℚ × ℚ) ∈ dom card)
6048, 58, 59mp2an 675 . . . . . . . . . . . . . . . 16 (ℚ × ℚ) ∈ dom card
61 ioof 12484 . . . . . . . . . . . . . . . . . 18 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
62 ffun 6253 . . . . . . . . . . . . . . . . . 18 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . 17 Fun (,)
64 qssre 12011 . . . . . . . . . . . . . . . . . . . 20 ℚ ⊆ ℝ
65 ressxr 10362 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℝ*
6664, 65sstri 3801 . . . . . . . . . . . . . . . . . . 19 ℚ ⊆ ℝ*
67 xpss12 5320 . . . . . . . . . . . . . . . . . . 19 ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*))
6866, 66, 67mp2an 675 . . . . . . . . . . . . . . . . . 18 (ℚ × ℚ) ⊆ (ℝ* × ℝ*)
6961fdmi 6260 . . . . . . . . . . . . . . . . . 18 dom (,) = (ℝ* × ℝ*)
7068, 69sseqtr4i 3829 . . . . . . . . . . . . . . . . 17 (ℚ × ℚ) ⊆ dom (,)
71 fores 6334 . . . . . . . . . . . . . . . . 17 ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)))
7263, 70, 71mp2an 675 . . . . . . . . . . . . . . . 16 ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ))
73 fodomnum 9157 . . . . . . . . . . . . . . . 16 ((ℚ × ℚ) ∈ dom card → (((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ)))
7460, 72, 73mp2 9 . . . . . . . . . . . . . . 15 ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ)
759, 74eqbrtri 4858 . . . . . . . . . . . . . 14 𝐵 ≼ (ℚ × ℚ)
76 domentr 8245 . . . . . . . . . . . . . 14 ((𝐵 ≼ (ℚ × ℚ) ∧ (ℚ × ℚ) ≈ ℕ) → 𝐵 ≼ ℕ)
7775, 57, 76mp2an 675 . . . . . . . . . . . . 13 𝐵 ≼ ℕ
7814elexi 3403 . . . . . . . . . . . . . 14 𝐵 ∈ V
7978xpdom1 8292 . . . . . . . . . . . . 13 (𝐵 ≼ ℕ → (𝐵 × 𝐵) ≼ (ℕ × 𝐵))
8077, 79ax-mp 5 . . . . . . . . . . . 12 (𝐵 × 𝐵) ≼ (ℕ × 𝐵)
81 nnex 11305 . . . . . . . . . . . . . 14 ℕ ∈ V
8281xpdom2 8288 . . . . . . . . . . . . 13 (𝐵 ≼ ℕ → (ℕ × 𝐵) ≼ (ℕ × ℕ))
8377, 82ax-mp 5 . . . . . . . . . . . 12 (ℕ × 𝐵) ≼ (ℕ × ℕ)
84 domtr 8239 . . . . . . . . . . . 12 (((𝐵 × 𝐵) ≼ (ℕ × 𝐵) ∧ (ℕ × 𝐵) ≼ (ℕ × ℕ)) → (𝐵 × 𝐵) ≼ (ℕ × ℕ))
8580, 83, 84mp2an 675 . . . . . . . . . . 11 (𝐵 × 𝐵) ≼ (ℕ × ℕ)
86 domentr 8245 . . . . . . . . . . 11 (((𝐵 × 𝐵) ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → (𝐵 × 𝐵) ≼ ℕ)
8785, 56, 86mp2an 675 . . . . . . . . . 10 (𝐵 × 𝐵) ≼ ℕ
88 numdom 9138 . . . . . . . . . 10 ((ℕ ∈ dom card ∧ (𝐵 × 𝐵) ≼ ℕ) → (𝐵 × 𝐵) ∈ dom card)
8952, 87, 88mp2an 675 . . . . . . . . 9 (𝐵 × 𝐵) ∈ dom card
90 eqid 2802 . . . . . . . . . . 11 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦))
91 vex 3390 . . . . . . . . . . . 12 𝑥 ∈ V
92 vex 3390 . . . . . . . . . . . 12 𝑦 ∈ V
9391, 92xpex 7186 . . . . . . . . . . 11 (𝑥 × 𝑦) ∈ V
9490, 93fnmpt2i 7466 . . . . . . . . . 10 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) Fn (𝐵 × 𝐵)
95 dffn4 6331 . . . . . . . . . 10 ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) Fn (𝐵 × 𝐵) ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)):(𝐵 × 𝐵)–onto→ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)))
9694, 95mpbi 221 . . . . . . . . 9 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)):(𝐵 × 𝐵)–onto→ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦))
97 fodomnum 9157 . . . . . . . . 9 ((𝐵 × 𝐵) ∈ dom card → ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)):(𝐵 × 𝐵)–onto→ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) → ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ (𝐵 × 𝐵)))
9889, 96, 97mp2 9 . . . . . . . 8 ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ (𝐵 × 𝐵)
99 domtr 8239 . . . . . . . 8 ((ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ (𝐵 × 𝐵) ∧ (𝐵 × 𝐵) ≼ ℕ) → ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ ℕ)
10098, 87, 99mp2an 675 . . . . . . 7 ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ ℕ
10117, 100eqbrtri 4858 . . . . . 6 𝐾 ≼ ℕ
102 domtr 8239 . . . . . 6 ((𝑡𝐾𝐾 ≼ ℕ) → 𝑡 ≼ ℕ)
10347, 101, 102sylancl 576 . . . . 5 (𝑡𝐾𝑡 ≼ ℕ)
104103ad2antrl 710 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → 𝑡 ≼ ℕ)
10517eleq2i 2873 . . . . . . . . 9 (𝑤𝐾𝑤 ∈ ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)))
10690, 93elrnmpt2 6997 . . . . . . . . 9 (𝑤 ∈ ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ↔ ∃𝑥𝐵𝑦𝐵 𝑤 = (𝑥 × 𝑦))
107105, 106bitri 266 . . . . . . . 8 (𝑤𝐾 ↔ ∃𝑥𝐵𝑦𝐵 𝑤 = (𝑥 × 𝑦))
108 elin 3989 . . . . . . . . . . . . 13 (𝑧 ∈ (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ (𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)))
109 mbff 23600 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
110109adantr 468 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝐹:dom 𝐹⟶ℂ)
111 fvco3 6490 . . . . . . . . . . . . . . . . . . 19 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → ((ℜ ∘ 𝐹)‘𝑧) = (ℜ‘(𝐹𝑧)))
112110, 111sylan 571 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((ℜ ∘ 𝐹)‘𝑧) = (ℜ‘(𝐹𝑧)))
113112eleq1d 2866 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ↔ (ℜ‘(𝐹𝑧)) ∈ 𝑥))
114 fvco3 6490 . . . . . . . . . . . . . . . . . . 19 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → ((ℑ ∘ 𝐹)‘𝑧) = (ℑ‘(𝐹𝑧)))
115110, 114sylan 571 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((ℑ ∘ 𝐹)‘𝑧) = (ℑ‘(𝐹𝑧)))
116115eleq1d 2866 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦 ↔ (ℑ‘(𝐹𝑧)) ∈ 𝑦))
117113, 116anbi12d 618 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦) ↔ ((ℜ‘(𝐹𝑧)) ∈ 𝑥 ∧ (ℑ‘(𝐹𝑧)) ∈ 𝑦)))
118110ffvelrnda 6575 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
119 fveq2 6402 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = (𝐹𝑧) → (ℜ‘𝑤) = (ℜ‘(𝐹𝑧)))
120 fveq2 6402 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = (𝐹𝑧) → (ℑ‘𝑤) = (ℑ‘(𝐹𝑧)))
121119, 120opeq12d 4596 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = (𝐹𝑧) → ⟨(ℜ‘𝑤), (ℑ‘𝑤)⟩ = ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩)
1221cnrecnv 14122 . . . . . . . . . . . . . . . . . . . . 21 𝐺 = (𝑤 ∈ ℂ ↦ ⟨(ℜ‘𝑤), (ℑ‘𝑤)⟩)
123 opex 5116 . . . . . . . . . . . . . . . . . . . . 21 ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩ ∈ V
124121, 122, 123fvmpt 6497 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑧) ∈ ℂ → (𝐺‘(𝐹𝑧)) = ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩)
125118, 124syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (𝐺‘(𝐹𝑧)) = ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩)
126125eleq1d 2866 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦) ↔ ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩ ∈ (𝑥 × 𝑦)))
127118biantrurd 524 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦) ↔ ((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦))))
128126, 127bitr3d 272 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩ ∈ (𝑥 × 𝑦) ↔ ((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦))))
129 opelxp 5340 . . . . . . . . . . . . . . . . 17 (⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩ ∈ (𝑥 × 𝑦) ↔ ((ℜ‘(𝐹𝑧)) ∈ 𝑥 ∧ (ℑ‘(𝐹𝑧)) ∈ 𝑦))
130 f1ocnv 6359 . . . . . . . . . . . . . . . . . . . 20 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → 𝐺:ℂ–1-1-onto→(ℝ × ℝ))
131 f1ofn 6348 . . . . . . . . . . . . . . . . . . . 20 (𝐺:ℂ–1-1-onto→(ℝ × ℝ) → 𝐺 Fn ℂ)
13228, 130, 131mp2b 10 . . . . . . . . . . . . . . . . . . 19 𝐺 Fn ℂ
133 elpreima 6553 . . . . . . . . . . . . . . . . . . 19 (𝐺 Fn ℂ → ((𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)) ↔ ((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦))))
134132, 133ax-mp 5 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)) ↔ ((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦)))
135 imacnvcnv 5804 . . . . . . . . . . . . . . . . . . 19 (𝐺 “ (𝑥 × 𝑦)) = (𝐺 “ (𝑥 × 𝑦))
136135eleq2i 2873 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)) ↔ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))
137134, 136bitr3i 268 . . . . . . . . . . . . . . . . 17 (((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦)) ↔ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))
138128, 129, 1373bitr3g 304 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (((ℜ‘(𝐹𝑧)) ∈ 𝑥 ∧ (ℑ‘(𝐹𝑧)) ∈ 𝑦) ↔ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦))))
139117, 138bitrd 270 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦) ↔ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦))))
140139pm5.32da 570 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((𝑧 ∈ dom 𝐹 ∧ (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)) ↔ (𝑧 ∈ dom 𝐹 ∧ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))))
141 ref 14069 . . . . . . . . . . . . . . . . . . 19 ℜ:ℂ⟶ℝ
142 fco 6267 . . . . . . . . . . . . . . . . . . 19 ((ℜ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
143141, 109, 142sylancr 577 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ MblFn → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
144 ffn 6250 . . . . . . . . . . . . . . . . . 18 ((ℜ ∘ 𝐹):dom 𝐹⟶ℝ → (ℜ ∘ 𝐹) Fn dom 𝐹)
145 elpreima 6553 . . . . . . . . . . . . . . . . . 18 ((ℜ ∘ 𝐹) Fn dom 𝐹 → (𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ↔ (𝑧 ∈ dom 𝐹 ∧ ((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥)))
146143, 144, 1453syl 18 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ MblFn → (𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ↔ (𝑧 ∈ dom 𝐹 ∧ ((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥)))
147 imf 14070 . . . . . . . . . . . . . . . . . . 19 ℑ:ℂ⟶ℝ
148 fco 6267 . . . . . . . . . . . . . . . . . . 19 ((ℑ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℑ ∘ 𝐹):dom 𝐹⟶ℝ)
149147, 109, 148sylancr 577 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ MblFn → (ℑ ∘ 𝐹):dom 𝐹⟶ℝ)
150 ffn 6250 . . . . . . . . . . . . . . . . . 18 ((ℑ ∘ 𝐹):dom 𝐹⟶ℝ → (ℑ ∘ 𝐹) Fn dom 𝐹)
151 elpreima 6553 . . . . . . . . . . . . . . . . . 18 ((ℑ ∘ 𝐹) Fn dom 𝐹 → (𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦) ↔ (𝑧 ∈ dom 𝐹 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)))
152149, 150, 1513syl 18 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ MblFn → (𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦) ↔ (𝑧 ∈ dom 𝐹 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)))
153146, 152anbi12d 618 . . . . . . . . . . . . . . . 16 (𝐹 ∈ MblFn → ((𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ ((𝑧 ∈ dom 𝐹 ∧ ((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥) ∧ (𝑧 ∈ dom 𝐹 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦))))
154 anandi 658 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ dom 𝐹 ∧ (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)) ↔ ((𝑧 ∈ dom 𝐹 ∧ ((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥) ∧ (𝑧 ∈ dom 𝐹 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)))
155153, 154syl6bbr 280 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → ((𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ (𝑧 ∈ dom 𝐹 ∧ (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦))))
156155adantr 468 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ (𝑧 ∈ dom 𝐹 ∧ (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦))))
157 ffn 6250 . . . . . . . . . . . . . . . 16 (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹)
158 elpreima 6553 . . . . . . . . . . . . . . . 16 (𝐹 Fn dom 𝐹 → (𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ↔ (𝑧 ∈ dom 𝐹 ∧ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))))
159109, 157, 1583syl 18 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → (𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ↔ (𝑧 ∈ dom 𝐹 ∧ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))))
160159adantr 468 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ↔ (𝑧 ∈ dom 𝐹 ∧ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))))
161140, 156, 1603bitr4d 302 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ 𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦)))))
162108, 161syl5bb 274 . . . . . . . . . . . 12 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (𝑧 ∈ (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ 𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦)))))
163162eqrdv 2800 . . . . . . . . . . 11 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) = (𝐹 “ (𝐺 “ (𝑥 × 𝑦))))
164 ismbfcn 23604 . . . . . . . . . . . . . . . . . 18 (𝐹:dom 𝐹⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
165109, 164syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ MblFn → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
166165ibi 258 . . . . . . . . . . . . . . . 16 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))
167166simpld 484 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → (ℜ ∘ 𝐹) ∈ MblFn)
168 ismbf 23603 . . . . . . . . . . . . . . . 16 ((ℜ ∘ 𝐹):dom 𝐹⟶ℝ → ((ℜ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
169143, 168syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
170167, 169mpbid 223 . . . . . . . . . . . . . 14 (𝐹 ∈ MblFn → ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
171170adantr 468 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
172 imassrn 5681 . . . . . . . . . . . . . . 15 ((,) “ (ℚ × ℚ)) ⊆ ran (,)
1739, 172eqsstri 3826 . . . . . . . . . . . . . 14 𝐵 ⊆ ran (,)
174 simprl 778 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
175173, 174sseldi 3790 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ ran (,))
176 rsp 3113 . . . . . . . . . . . . 13 (∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol → (𝑥 ∈ ran (,) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
177171, 175, 176sylc 65 . . . . . . . . . . . 12 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
178166simprd 485 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → (ℑ ∘ 𝐹) ∈ MblFn)
179 ismbf 23603 . . . . . . . . . . . . . . . 16 ((ℑ ∘ 𝐹):dom 𝐹⟶ℝ → ((ℑ ∘ 𝐹) ∈ MblFn ↔ ∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol))
180149, 179syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → ((ℑ ∘ 𝐹) ∈ MblFn ↔ ∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol))
181178, 180mpbid 223 . . . . . . . . . . . . . 14 (𝐹 ∈ MblFn → ∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol)
182181adantr 468 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol)
183 simprr 780 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
184173, 183sseldi 3790 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ ran (,))
185 rsp 3113 . . . . . . . . . . . . 13 (∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol → (𝑦 ∈ ran (,) → ((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol))
186182, 184, 185sylc 65 . . . . . . . . . . . 12 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol)
187 inmbl 23517 . . . . . . . . . . . 12 ((((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol) → (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) ∈ dom vol)
188177, 186, 187syl2anc 575 . . . . . . . . . . 11 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) ∈ dom vol)
189163, 188eqeltrrd 2882 . . . . . . . . . 10 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ∈ dom vol)
190 imaeq2 5666 . . . . . . . . . . . 12 (𝑤 = (𝑥 × 𝑦) → (𝐺𝑤) = (𝐺 “ (𝑥 × 𝑦)))
191190imaeq2d 5670 . . . . . . . . . . 11 (𝑤 = (𝑥 × 𝑦) → (𝐹 “ (𝐺𝑤)) = (𝐹 “ (𝐺 “ (𝑥 × 𝑦))))
192191eleq1d 2866 . . . . . . . . . 10 (𝑤 = (𝑥 × 𝑦) → ((𝐹 “ (𝐺𝑤)) ∈ dom vol ↔ (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ∈ dom vol))
193189, 192syl5ibrcom 238 . . . . . . . . 9 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (𝑤 = (𝑥 × 𝑦) → (𝐹 “ (𝐺𝑤)) ∈ dom vol))
194193rexlimdvva 3222 . . . . . . . 8 (𝐹 ∈ MblFn → (∃𝑥𝐵𝑦𝐵 𝑤 = (𝑥 × 𝑦) → (𝐹 “ (𝐺𝑤)) ∈ dom vol))
195107, 194syl5bi 233 . . . . . . 7 (𝐹 ∈ MblFn → (𝑤𝐾 → (𝐹 “ (𝐺𝑤)) ∈ dom vol))
196195ralrimiv 3149 . . . . . 6 (𝐹 ∈ MblFn → ∀𝑤𝐾 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
197 ssralv 3857 . . . . . 6 (𝑡𝐾 → (∀𝑤𝐾 (𝐹 “ (𝐺𝑤)) ∈ dom vol → ∀𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol))
198196, 197mpan9 498 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝑡𝐾) → ∀𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
199198ad2ant2r 744 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → ∀𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
200 iunmbl2 23532 . . . 4 ((𝑡 ≼ ℕ ∧ ∀𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol) → 𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
201104, 199, 200syl2anc 575 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → 𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
20245, 201eqeltrd 2881 . 2 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐹𝐴) ∈ dom vol)
20327, 202exlimddv 2025 1 ((𝐹 ∈ MblFn ∧ 𝐴𝐽) → (𝐹𝐴) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wex 1859  wcel 2155  wral 3092  wrex 3093  cin 3762  wss 3763  𝒫 cpw 4345  cop 4370   cuni 4623   ciun 4705   class class class wbr 4837   × cxp 5303  ccnv 5304  dom cdm 5305  ran crn 5306  cres 5307  cima 5308  ccom 5309  Oncon0 5930  Fun wfun 6089   Fn wfn 6090  wf 6091  ontowfo 6093  1-1-ontowf1o 6094  cfv 6095  (class class class)co 6868  cmpt2 6870  ωcom 7289  cen 8183  cdom 8184  cardccrd 9038  cc 10213  cr 10214  ici 10217   + caddc 10218   · cmul 10220  *cxr 10352  cn 11299  cq 12001  (,)cioo 12387  cre 14054  cim 14055  TopOpenctopn 16281  topGenctg 16297  fldccnfld 19948  TopBasesctb 20957   Cn ccn 21236   ×t ctx 21571  Homeochmeo 21764  volcvol 23438  MblFncmbf 23589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-rep 4957  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173  ax-inf2 8779  ax-cc 9536  ax-cnex 10271  ax-resscn 10272  ax-1cn 10273  ax-icn 10274  ax-addcl 10275  ax-addrcl 10276  ax-mulcl 10277  ax-mulrcl 10278  ax-mulcom 10279  ax-addass 10280  ax-mulass 10281  ax-distr 10282  ax-i2m1 10283  ax-1ne0 10284  ax-1rid 10285  ax-rnegex 10286  ax-rrecex 10287  ax-cnre 10288  ax-pre-lttri 10289  ax-pre-lttrn 10290  ax-pre-ltadd 10291  ax-pre-mulgt0 10292  ax-pre-sup 10293  ax-addf 10294  ax-mulf 10295
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-nel 3078  df-ral 3097  df-rex 3098  df-reu 3099  df-rmo 3100  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-int 4663  df-iun 4707  df-iin 4708  df-disj 4806  df-br 4838  df-opab 4900  df-mpt 4917  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-se 5265  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-pred 5887  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-isom 6104  df-riota 6829  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-of 7121  df-om 7290  df-1st 7392  df-2nd 7393  df-supp 7524  df-wrecs 7636  df-recs 7698  df-rdg 7736  df-1o 7790  df-2o 7791  df-oadd 7794  df-omul 7795  df-er 7973  df-map 8088  df-pm 8089  df-ixp 8140  df-en 8187  df-dom 8188  df-sdom 8189  df-fin 8190  df-fsupp 8509  df-fi 8550  df-sup 8581  df-inf 8582  df-oi 8648  df-card 9042  df-acn 9045  df-cda 9269  df-pnf 10355  df-mnf 10356  df-xr 10357  df-ltxr 10358  df-le 10359  df-sub 10547  df-neg 10548  df-div 10964  df-nn 11300  df-2 11358  df-3 11359  df-4 11360  df-5 11361  df-6 11362  df-7 11363  df-8 11364  df-9 11365  df-n0 11554  df-z 11638  df-dec 11754  df-uz 11899  df-q 12002  df-rp 12041  df-xneg 12156  df-xadd 12157  df-xmul 12158  df-ioo 12391  df-ico 12393  df-icc 12394  df-fz 12544  df-fzo 12684  df-fl 12811  df-seq 13019  df-exp 13078  df-hash 13332  df-cj 14056  df-re 14057  df-im 14058  df-sqrt 14192  df-abs 14193  df-clim 14436  df-rlim 14437  df-sum 14634  df-struct 16064  df-ndx 16065  df-slot 16066  df-base 16068  df-sets 16069  df-ress 16070  df-plusg 16160  df-mulr 16161  df-starv 16162  df-sca 16163  df-vsca 16164  df-ip 16165  df-tset 16166  df-ple 16167  df-ds 16169  df-unif 16170  df-hom 16171  df-cco 16172  df-rest 16282  df-topn 16283  df-0g 16301  df-gsum 16302  df-topgen 16303  df-pt 16304  df-prds 16307  df-xrs 16361  df-qtop 16366  df-imas 16367  df-xps 16369  df-mre 16445  df-mrc 16446  df-acs 16448  df-mgm 17441  df-sgrp 17483  df-mnd 17494  df-submnd 17535  df-mulg 17740  df-cntz 17945  df-cmn 18390  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-cnfld 19949  df-top 20906  df-topon 20923  df-topsp 20945  df-bases 20958  df-cn 21239  df-cnp 21240  df-tx 21573  df-hmeo 21766  df-xms 22332  df-ms 22333  df-tms 22334  df-cncf 22888  df-ovol 23439  df-vol 23440  df-mbf 23594
This theorem is referenced by:  mbfimaopn  23631
  Copyright terms: Public domain W3C validator