| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq2i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| imaeq2i | ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | imaeq2 6016 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 “ cima 5634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 |
| This theorem is referenced by: cnvimarndm 6043 dmco 6215 imain 6585 fnimapr 6926 fnimatpd 6927 ssimaex 6928 intpreima 7024 resfunexg 7171 imauni 7202 isoini2 7296 fsuppeq 8131 fsuppeqg 8132 naddasslem1 8635 naddasslem2 8636 uniqs 8724 pwfilem 9243 fiint 9253 fiintOLD 9254 jech9.3 9743 infxpenlem 9942 hsmexlem4 10358 fcdmnn0supp 12475 fcdmnn0fsupp 12476 fcdmnn0suppg 12477 hashkf 14273 ghmeqker 19157 gsumval3lem1 19819 gsumval3lem2 19820 islinds2 21755 lindsind2 21761 mhpmulcl 22069 snclseqg 24036 retopbas 24681 ismbf3d 25588 i1fima 25612 i1fd 25615 itg1addlem5 25634 limciun 25828 plyeq0 26149 bday0s 27777 bday1s 27780 madeval2 27798 old1 27824 madeoldsuc 27834 bdayiun 27864 negs0s 27972 negs1s 27973 negsbdaylem 28002 onscutlt 28205 onsiso 28209 bdayon 28213 n0sbday 28284 bdayn0p1 28298 spthispth 29704 0pth 30104 1pthdlem2 30115 eupth2lemb 30216 htth 30897 fcoinver 32583 ffs2 32701 ffsrn 32702 tocyccntz 33116 elrspunidl 33392 sibfof 34324 eulerpartgbij 34356 eulerpartlemmf 34359 eulerpartlemgh 34362 eulerpart 34366 fiblem 34382 orrvcval4 34449 cvmsss2 35254 opelco3 35755 poimirlem3 37610 poimirlem30 37637 mbfposadd 37654 itg2addnclem2 37659 ftc1anclem5 37684 ftc1anclem6 37685 pwfi2f1o 43078 brtrclfv2 43709 binomcxp 44339 fcoreslem1 47057 isubgr3stgrlem6 47963 |
| Copyright terms: Public domain | W3C validator |