Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imaeq2i | Structured version Visualization version GIF version |
Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
imaeq2i | ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | imaeq2 5897 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 “ cima 5527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-rab 3079 df-v 3411 df-un 3863 df-in 3865 df-ss 3875 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-xp 5530 df-cnv 5532 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 |
This theorem is referenced by: cnvimarndm 5922 dmco 6084 imain 6420 fnimapr 6736 ssimaex 6737 intpreima 6829 resfunexg 6969 imauni 6997 isoini2 7086 frnsuppeq 7849 frnsuppeqg 7850 imacosuppOLD 7885 uniqs 8367 pwfilem 8745 fiint 8828 jech9.3 9276 infxpenlem 9473 hsmexlem4 9889 frnnn0supp 11990 frnnn0fsupp 11991 frnnn0suppg 11992 hashkf 13742 ghmeqker 18452 gsumval3lem1 19093 gsumval3lem2 19094 islinds2 20578 lindsind2 20584 mhpmulcl 20892 snclseqg 22816 retopbas 23462 ismbf3d 24354 i1fima 24378 i1fd 24381 itg1addlem5 24400 limciun 24593 plyeq0 24907 spthispth 27614 0pth 28009 1pthdlem2 28020 eupth2lemb 28121 htth 28800 fcoinver 30468 fnimatp 30538 ffs2 30587 ffsrn 30588 tocyccntz 30937 elrspunidl 31127 sibfof 31826 eulerpartgbij 31858 eulerpartlemmf 31861 eulerpartlemgh 31864 eulerpart 31868 fiblem 31884 orrvcval4 31950 cvmsss2 32752 opelco3 33265 bday0s 33582 bday1s 33585 madeval2 33597 madeoldsuc 33624 negs0s 33672 poimirlem3 35340 poimirlem30 35367 mbfposadd 35384 itg2addnclem2 35389 ftc1anclem5 35414 ftc1anclem6 35415 uniqsALTV 36026 pwfi2f1o 40413 brtrclfv2 40801 binomcxp 41434 |
Copyright terms: Public domain | W3C validator |