| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq2i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| imaeq2i | ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | imaeq2 6007 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 “ cima 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: cnvimarndm 6034 dmco 6203 imain 6567 fnimapr 6906 fnimatpd 6907 ssimaex 6908 intpreima 7004 resfunexg 7151 imauni 7182 isoini2 7276 fsuppeq 8108 fsuppeqg 8109 naddasslem1 8612 naddasslem2 8613 uniqs 8701 pwfilem 9207 fiint 9216 fiintOLD 9217 jech9.3 9710 infxpenlem 9907 hsmexlem4 10323 fcdmnn0supp 12441 fcdmnn0fsupp 12442 fcdmnn0suppg 12443 hashkf 14239 ghmeqker 19122 gsumval3lem1 19784 gsumval3lem2 19785 islinds2 21720 lindsind2 21726 mhpmulcl 22034 snclseqg 24001 retopbas 24646 ismbf3d 25553 i1fima 25577 i1fd 25580 itg1addlem5 25599 limciun 25793 plyeq0 26114 bday0s 27742 bday1s 27745 madeval2 27763 old1 27789 madeoldsuc 27799 bdayiun 27829 negs0s 27937 negs1s 27938 negsbdaylem 27967 onscutlt 28170 onsiso 28174 bdayon 28178 n0sbday 28249 bdayn0p1 28263 spthispth 29669 0pth 30069 1pthdlem2 30080 eupth2lemb 30181 htth 30862 fcoinver 32548 ffs2 32671 ffsrn 32672 tocyccntz 33086 elrspunidl 33365 sibfof 34308 eulerpartgbij 34340 eulerpartlemmf 34343 eulerpartlemgh 34346 eulerpart 34350 fiblem 34366 orrvcval4 34433 cvmsss2 35247 opelco3 35748 poimirlem3 37603 poimirlem30 37630 mbfposadd 37647 itg2addnclem2 37652 ftc1anclem5 37677 ftc1anclem6 37678 pwfi2f1o 43069 brtrclfv2 43700 binomcxp 44330 fcoreslem1 47047 isubgr3stgrlem6 47955 |
| Copyright terms: Public domain | W3C validator |