| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq2i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| imaeq2i | ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | imaeq2 6030 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: cnvimarndm 6057 dmco 6230 imain 6604 fnimapr 6947 fnimatpd 6948 ssimaex 6949 intpreima 7045 resfunexg 7192 imauni 7223 isoini2 7317 fsuppeq 8157 fsuppeqg 8158 naddasslem1 8661 naddasslem2 8662 uniqs 8750 pwfilem 9274 fiint 9284 fiintOLD 9285 jech9.3 9774 infxpenlem 9973 hsmexlem4 10389 fcdmnn0supp 12506 fcdmnn0fsupp 12507 fcdmnn0suppg 12508 hashkf 14304 ghmeqker 19182 gsumval3lem1 19842 gsumval3lem2 19843 islinds2 21729 lindsind2 21735 mhpmulcl 22043 snclseqg 24010 retopbas 24655 ismbf3d 25562 i1fima 25586 i1fd 25589 itg1addlem5 25608 limciun 25802 plyeq0 26123 bday0s 27747 bday1s 27750 madeval2 27768 old1 27794 madeoldsuc 27803 negs0s 27939 negs1s 27940 negsbdaylem 27969 onscutlt 28172 onsiso 28176 bdayon 28180 n0sbday 28251 bdayn0p1 28265 spthispth 29661 0pth 30061 1pthdlem2 30072 eupth2lemb 30173 htth 30854 fcoinver 32540 ffs2 32658 ffsrn 32659 tocyccntz 33108 elrspunidl 33406 sibfof 34338 eulerpartgbij 34370 eulerpartlemmf 34373 eulerpartlemgh 34376 eulerpart 34380 fiblem 34396 orrvcval4 34463 cvmsss2 35268 opelco3 35769 poimirlem3 37624 poimirlem30 37651 mbfposadd 37668 itg2addnclem2 37673 ftc1anclem5 37698 ftc1anclem6 37699 pwfi2f1o 43092 brtrclfv2 43723 binomcxp 44353 fcoreslem1 47068 isubgr3stgrlem6 47974 |
| Copyright terms: Public domain | W3C validator |