Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imaeq2i | Structured version Visualization version GIF version |
Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
imaeq2i | ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | imaeq2 5975 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 “ cima 5603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-cnv 5608 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 |
This theorem is referenced by: cnvimarndm 6000 dmco 6172 imain 6548 fnimapr 6884 ssimaex 6885 intpreima 6979 resfunexg 7123 imauni 7151 isoini2 7242 fsuppeq 8022 fsuppeqg 8023 uniqs 8597 pwfilem 8998 fiint 9135 jech9.3 9616 infxpenlem 9815 hsmexlem4 10231 fcdmnn0supp 12335 fcdmnn0fsupp 12336 fcdmnn0suppg 12337 hashkf 14092 ghmeqker 18906 gsumval3lem1 19551 gsumval3lem2 19552 islinds2 21065 lindsind2 21071 mhpmulcl 21384 snclseqg 23312 retopbas 23969 ismbf3d 24863 i1fima 24887 i1fd 24890 itg1addlem5 24910 limciun 25103 plyeq0 25417 spthispth 28139 0pth 28534 1pthdlem2 28545 eupth2lemb 28646 htth 29325 fcoinver 30991 fnimatp 31059 ffs2 31108 ffsrn 31109 tocyccntz 31456 elrspunidl 31651 sibfof 32352 eulerpartgbij 32384 eulerpartlemmf 32387 eulerpartlemgh 32390 eulerpart 32394 fiblem 32410 orrvcval4 32476 cvmsss2 33281 opelco3 33794 bday0s 34067 bday1s 34070 madeval2 34082 madeoldsuc 34112 negs0s 34169 poimirlem3 35824 poimirlem30 35851 mbfposadd 35868 itg2addnclem2 35873 ftc1anclem5 35898 ftc1anclem6 35899 uniqsALTV 36506 pwfi2f1o 40959 brtrclfv2 41373 binomcxp 42013 fcoreslem1 44615 |
Copyright terms: Public domain | W3C validator |