| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq2i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| imaeq2i | ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | imaeq2 6004 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 “ cima 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 |
| This theorem is referenced by: cnvimarndm 6031 dmco 6202 imain 6566 fnimapr 6905 fnimatpd 6906 ssimaex 6907 intpreima 7003 resfunexg 7149 imauni 7180 isoini2 7273 fsuppeq 8105 fsuppeqg 8106 naddasslem1 8609 naddasslem2 8610 uniqs 8698 pwfilem 9202 fiint 9211 jech9.3 9707 infxpenlem 9904 hsmexlem4 10320 fcdmnn0supp 12438 fcdmnn0fsupp 12439 fcdmnn0suppg 12440 hashkf 14239 ghmeqker 19155 gsumval3lem1 19817 gsumval3lem2 19818 islinds2 21750 lindsind2 21756 mhpmulcl 22064 snclseqg 24031 retopbas 24675 ismbf3d 25582 i1fima 25606 i1fd 25609 itg1addlem5 25628 limciun 25822 plyeq0 26143 bday0s 27772 bday1s 27775 madeval2 27794 old1 27820 madeoldsuc 27830 bdayiun 27860 negs0s 27968 negs1s 27969 negsbdaylem 27998 onscutlt 28201 onsiso 28205 bdayon 28209 n0sbday 28280 bdayn0p1 28294 spthispth 29702 0pth 30105 1pthdlem2 30116 eupth2lemb 30217 htth 30898 fcoinver 32584 ffs2 32710 ffsrn 32711 tocyccntz 33113 elrspunidl 33393 sibfof 34353 eulerpartgbij 34385 eulerpartlemmf 34388 eulerpartlemgh 34391 eulerpart 34395 fiblem 34411 orrvcval4 34478 cvmsss2 35318 opelco3 35819 poimirlem3 37671 poimirlem30 37698 mbfposadd 37715 itg2addnclem2 37720 ftc1anclem5 37745 ftc1anclem6 37746 pwfi2f1o 43137 brtrclfv2 43768 binomcxp 44398 fcoreslem1 47102 isubgr3stgrlem6 48010 |
| Copyright terms: Public domain | W3C validator |