![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaeq2i | Structured version Visualization version GIF version |
Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
imaeq2i | ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | imaeq2 6085 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: cnvimarndm 6112 dmco 6285 imain 6663 fnimapr 7005 fnimatpd 7006 ssimaex 7007 intpreima 7103 resfunexg 7252 imauni 7283 isoini2 7375 fsuppeq 8216 fsuppeqg 8217 naddasslem1 8750 naddasslem2 8751 uniqs 8835 pwfilem 9384 fiint 9394 fiintOLD 9395 jech9.3 9883 infxpenlem 10082 hsmexlem4 10498 fcdmnn0supp 12609 fcdmnn0fsupp 12610 fcdmnn0suppg 12611 hashkf 14381 ghmeqker 19283 gsumval3lem1 19947 gsumval3lem2 19948 islinds2 21856 lindsind2 21862 mhpmulcl 22176 snclseqg 24145 retopbas 24802 ismbf3d 25708 i1fima 25732 i1fd 25735 itg1addlem5 25755 limciun 25949 plyeq0 26270 bday0s 27891 bday1s 27894 madeval2 27910 old1 27932 madeoldsuc 27941 negs0s 28076 negs1s 28077 negsbdaylem 28106 n0sbday 28372 spthispth 29762 0pth 30157 1pthdlem2 30168 eupth2lemb 30269 htth 30950 fcoinver 32626 ffs2 32742 ffsrn 32743 tocyccntz 33137 elrspunidl 33421 sibfof 34305 eulerpartgbij 34337 eulerpartlemmf 34340 eulerpartlemgh 34343 eulerpart 34347 fiblem 34363 orrvcval4 34429 cvmsss2 35242 opelco3 35738 poimirlem3 37583 poimirlem30 37610 mbfposadd 37627 itg2addnclem2 37632 ftc1anclem5 37657 ftc1anclem6 37658 uniqsALTV 38285 pwfi2f1o 43053 brtrclfv2 43689 binomcxp 44326 fcoreslem1 46978 |
Copyright terms: Public domain | W3C validator |