Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imaeq2i | Structured version Visualization version GIF version |
Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
imaeq2i | ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | imaeq2 5962 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 “ cima 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 |
This theorem is referenced by: cnvimarndm 5987 dmco 6155 imain 6515 fnimapr 6846 ssimaex 6847 intpreima 6941 resfunexg 7085 imauni 7113 isoini2 7203 frnsuppeq 7975 frnsuppeqg 7976 uniqs 8540 pwfilem 8925 fiint 9052 jech9.3 9556 infxpenlem 9753 hsmexlem4 10169 frnnn0supp 12272 frnnn0fsupp 12273 frnnn0suppg 12274 hashkf 14027 ghmeqker 18842 gsumval3lem1 19487 gsumval3lem2 19488 islinds2 21001 lindsind2 21007 mhpmulcl 21320 snclseqg 23248 retopbas 23905 ismbf3d 24799 i1fima 24823 i1fd 24826 itg1addlem5 24846 limciun 25039 plyeq0 25353 spthispth 28073 0pth 28468 1pthdlem2 28479 eupth2lemb 28580 htth 29259 fcoinver 30925 fnimatp 30993 ffs2 31042 ffsrn 31043 tocyccntz 31390 elrspunidl 31585 sibfof 32286 eulerpartgbij 32318 eulerpartlemmf 32321 eulerpartlemgh 32324 eulerpart 32328 fiblem 32344 orrvcval4 32410 cvmsss2 33215 opelco3 33728 bday0s 34001 bday1s 34004 madeval2 34016 madeoldsuc 34046 negs0s 34103 poimirlem3 35759 poimirlem30 35786 mbfposadd 35803 itg2addnclem2 35808 ftc1anclem5 35833 ftc1anclem6 35834 uniqsALTV 36443 pwfi2f1o 40901 brtrclfv2 41288 binomcxp 41928 fcoreslem1 44508 |
Copyright terms: Public domain | W3C validator |