| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq2i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| imaeq2i | ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | imaeq2 6016 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 “ cima 5634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 |
| This theorem is referenced by: cnvimarndm 6043 dmco 6215 imain 6585 fnimapr 6926 fnimatpd 6927 ssimaex 6928 intpreima 7024 resfunexg 7171 imauni 7202 isoini2 7296 fsuppeq 8131 fsuppeqg 8132 naddasslem1 8635 naddasslem2 8636 uniqs 8724 pwfilem 9243 fiint 9253 fiintOLD 9254 jech9.3 9743 infxpenlem 9942 hsmexlem4 10358 fcdmnn0supp 12475 fcdmnn0fsupp 12476 fcdmnn0suppg 12477 hashkf 14273 ghmeqker 19151 gsumval3lem1 19811 gsumval3lem2 19812 islinds2 21698 lindsind2 21704 mhpmulcl 22012 snclseqg 23979 retopbas 24624 ismbf3d 25531 i1fima 25555 i1fd 25558 itg1addlem5 25577 limciun 25771 plyeq0 26092 bday0s 27716 bday1s 27719 madeval2 27737 old1 27763 madeoldsuc 27772 negs0s 27908 negs1s 27909 negsbdaylem 27938 onscutlt 28141 onsiso 28145 bdayon 28149 n0sbday 28220 bdayn0p1 28234 spthispth 29627 0pth 30027 1pthdlem2 30038 eupth2lemb 30139 htth 30820 fcoinver 32506 ffs2 32624 ffsrn 32625 tocyccntz 33074 elrspunidl 33372 sibfof 34304 eulerpartgbij 34336 eulerpartlemmf 34339 eulerpartlemgh 34342 eulerpart 34346 fiblem 34362 orrvcval4 34429 cvmsss2 35234 opelco3 35735 poimirlem3 37590 poimirlem30 37617 mbfposadd 37634 itg2addnclem2 37639 ftc1anclem5 37664 ftc1anclem6 37665 pwfi2f1o 43058 brtrclfv2 43689 binomcxp 44319 fcoreslem1 47037 isubgr3stgrlem6 47943 |
| Copyright terms: Public domain | W3C validator |