| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq2i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| imaeq2i | ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | imaeq2 6043 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 “ cima 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: cnvimarndm 6070 dmco 6243 imain 6620 fnimapr 6961 fnimatpd 6962 ssimaex 6963 intpreima 7059 resfunexg 7206 imauni 7237 isoini2 7331 fsuppeq 8172 fsuppeqg 8173 naddasslem1 8704 naddasslem2 8705 uniqs 8789 pwfilem 9326 fiint 9336 fiintOLD 9337 jech9.3 9826 infxpenlem 10025 hsmexlem4 10441 fcdmnn0supp 12556 fcdmnn0fsupp 12557 fcdmnn0suppg 12558 hashkf 14348 ghmeqker 19224 gsumval3lem1 19884 gsumval3lem2 19885 islinds2 21771 lindsind2 21777 mhpmulcl 22085 snclseqg 24052 retopbas 24697 ismbf3d 25605 i1fima 25629 i1fd 25632 itg1addlem5 25651 limciun 25845 plyeq0 26166 bday0s 27790 bday1s 27793 madeval2 27809 old1 27831 madeoldsuc 27840 negs0s 27975 negs1s 27976 negsbdaylem 28005 n0sbday 28271 spthispth 29652 0pth 30052 1pthdlem2 30063 eupth2lemb 30164 htth 30845 fcoinver 32531 ffs2 32651 ffsrn 32652 tocyccntz 33101 elrspunidl 33389 sibfof 34318 eulerpartgbij 34350 eulerpartlemmf 34353 eulerpartlemgh 34356 eulerpart 34360 fiblem 34376 orrvcval4 34443 cvmsss2 35242 opelco3 35738 poimirlem3 37593 poimirlem30 37620 mbfposadd 37637 itg2addnclem2 37642 ftc1anclem5 37667 ftc1anclem6 37668 uniqsALTV 38293 pwfi2f1o 43067 brtrclfv2 43698 binomcxp 44329 fcoreslem1 47040 isubgr3stgrlem6 47931 |
| Copyright terms: Public domain | W3C validator |