| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq2i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| imaeq2i | ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | imaeq2 6027 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: cnvimarndm 6054 dmco 6227 imain 6601 fnimapr 6944 fnimatpd 6945 ssimaex 6946 intpreima 7042 resfunexg 7189 imauni 7220 isoini2 7314 fsuppeq 8154 fsuppeqg 8155 naddasslem1 8658 naddasslem2 8659 uniqs 8747 pwfilem 9267 fiint 9277 fiintOLD 9278 jech9.3 9767 infxpenlem 9966 hsmexlem4 10382 fcdmnn0supp 12499 fcdmnn0fsupp 12500 fcdmnn0suppg 12501 hashkf 14297 ghmeqker 19175 gsumval3lem1 19835 gsumval3lem2 19836 islinds2 21722 lindsind2 21728 mhpmulcl 22036 snclseqg 24003 retopbas 24648 ismbf3d 25555 i1fima 25579 i1fd 25582 itg1addlem5 25601 limciun 25795 plyeq0 26116 bday0s 27740 bday1s 27743 madeval2 27761 old1 27787 madeoldsuc 27796 negs0s 27932 negs1s 27933 negsbdaylem 27962 onscutlt 28165 onsiso 28169 bdayon 28173 n0sbday 28244 bdayn0p1 28258 spthispth 29654 0pth 30054 1pthdlem2 30065 eupth2lemb 30166 htth 30847 fcoinver 32533 ffs2 32651 ffsrn 32652 tocyccntz 33101 elrspunidl 33399 sibfof 34331 eulerpartgbij 34363 eulerpartlemmf 34366 eulerpartlemgh 34369 eulerpart 34373 fiblem 34389 orrvcval4 34456 cvmsss2 35261 opelco3 35762 poimirlem3 37617 poimirlem30 37644 mbfposadd 37661 itg2addnclem2 37666 ftc1anclem5 37691 ftc1anclem6 37692 pwfi2f1o 43085 brtrclfv2 43716 binomcxp 44346 fcoreslem1 47064 isubgr3stgrlem6 47970 |
| Copyright terms: Public domain | W3C validator |