![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaeq2i | Structured version Visualization version GIF version |
Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
imaeq2i | ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | imaeq2 6075 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 “ cima 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-cnv 5696 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 |
This theorem is referenced by: cnvimarndm 6102 dmco 6275 imain 6652 fnimapr 6991 fnimatpd 6992 ssimaex 6993 intpreima 7089 resfunexg 7234 imauni 7265 isoini2 7358 fsuppeq 8198 fsuppeqg 8199 naddasslem1 8730 naddasslem2 8731 uniqs 8815 pwfilem 9353 fiint 9363 fiintOLD 9364 jech9.3 9851 infxpenlem 10050 hsmexlem4 10466 fcdmnn0supp 12580 fcdmnn0fsupp 12581 fcdmnn0suppg 12582 hashkf 14367 ghmeqker 19273 gsumval3lem1 19937 gsumval3lem2 19938 islinds2 21850 lindsind2 21856 mhpmulcl 22170 snclseqg 24139 retopbas 24796 ismbf3d 25702 i1fima 25726 i1fd 25729 itg1addlem5 25749 limciun 25943 plyeq0 26264 bday0s 27887 bday1s 27890 madeval2 27906 old1 27928 madeoldsuc 27937 negs0s 28072 negs1s 28073 negsbdaylem 28102 n0sbday 28368 spthispth 29758 0pth 30153 1pthdlem2 30164 eupth2lemb 30265 htth 30946 fcoinver 32623 ffs2 32745 ffsrn 32746 tocyccntz 33146 elrspunidl 33435 sibfof 34321 eulerpartgbij 34353 eulerpartlemmf 34356 eulerpartlemgh 34359 eulerpart 34363 fiblem 34379 orrvcval4 34445 cvmsss2 35258 opelco3 35755 poimirlem3 37609 poimirlem30 37636 mbfposadd 37653 itg2addnclem2 37658 ftc1anclem5 37683 ftc1anclem6 37684 uniqsALTV 38310 pwfi2f1o 43084 brtrclfv2 43716 binomcxp 44352 fcoreslem1 47012 isubgr3stgrlem6 47873 |
Copyright terms: Public domain | W3C validator |