Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  keridl Structured version   Visualization version   GIF version

Theorem keridl 36117
Description: The kernel of a ring homomorphism is an ideal. (Contributed by Jeff Madsen, 3-Jan-2011.)
Hypotheses
Ref Expression
keridl.1 𝐺 = (1st𝑆)
keridl.2 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
keridl ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹 “ {𝑍}) ∈ (Idl‘𝑅))

Proof of Theorem keridl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5978 . . 3 (𝐹 “ {𝑍}) ⊆ dom 𝐹
2 eqid 2738 . . . 4 (1st𝑅) = (1st𝑅)
3 eqid 2738 . . . 4 ran (1st𝑅) = ran (1st𝑅)
4 keridl.1 . . . 4 𝐺 = (1st𝑆)
5 eqid 2738 . . . 4 ran 𝐺 = ran 𝐺
62, 3, 4, 5rngohomf 36051 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹:ran (1st𝑅)⟶ran 𝐺)
71, 6fssdm 6604 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹 “ {𝑍}) ⊆ ran (1st𝑅))
8 eqid 2738 . . . . 5 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
92, 3, 8rngo0cl 36004 . . . 4 (𝑅 ∈ RingOps → (GId‘(1st𝑅)) ∈ ran (1st𝑅))
1093ad2ant1 1131 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (GId‘(1st𝑅)) ∈ ran (1st𝑅))
11 keridl.2 . . . . 5 𝑍 = (GId‘𝐺)
122, 8, 4, 11rngohom0 36057 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹‘(GId‘(1st𝑅))) = 𝑍)
13 fvex 6769 . . . . 5 (𝐹‘(GId‘(1st𝑅))) ∈ V
1413elsn 4573 . . . 4 ((𝐹‘(GId‘(1st𝑅))) ∈ {𝑍} ↔ (𝐹‘(GId‘(1st𝑅))) = 𝑍)
1512, 14sylibr 233 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹‘(GId‘(1st𝑅))) ∈ {𝑍})
16 ffn 6584 . . . 4 (𝐹:ran (1st𝑅)⟶ran 𝐺𝐹 Fn ran (1st𝑅))
17 elpreima 6917 . . . 4 (𝐹 Fn ran (1st𝑅) → ((GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ↔ ((GId‘(1st𝑅)) ∈ ran (1st𝑅) ∧ (𝐹‘(GId‘(1st𝑅))) ∈ {𝑍})))
186, 16, 173syl 18 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ↔ ((GId‘(1st𝑅)) ∈ ran (1st𝑅) ∧ (𝐹‘(GId‘(1st𝑅))) ∈ {𝑍})))
1910, 15, 18mpbir2and 709 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}))
20 an4 652 . . . . . . . 8 (((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ∧ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})) ↔ ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ ((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍})))
212, 3, 4rngohomadd 36054 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)𝐺(𝐹𝑦)))
2221adantr 480 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)𝐺(𝐹𝑦)))
23 oveq12 7264 . . . . . . . . . . . . . 14 (((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍) → ((𝐹𝑥)𝐺(𝐹𝑦)) = (𝑍𝐺𝑍))
2423adantl 481 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → ((𝐹𝑥)𝐺(𝐹𝑦)) = (𝑍𝐺𝑍))
254rngogrpo 35995 . . . . . . . . . . . . . . . 16 (𝑆 ∈ RingOps → 𝐺 ∈ GrpOp)
265, 11grpoidcl 28777 . . . . . . . . . . . . . . . 16 (𝐺 ∈ GrpOp → 𝑍 ∈ ran 𝐺)
275, 11grpolid 28779 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ GrpOp ∧ 𝑍 ∈ ran 𝐺) → (𝑍𝐺𝑍) = 𝑍)
2825, 26, 27syl2anc2 584 . . . . . . . . . . . . . . 15 (𝑆 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍)
29283ad2ant2 1132 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝑍𝐺𝑍) = 𝑍)
3029ad2antrr 722 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → (𝑍𝐺𝑍) = 𝑍)
3122, 24, 303eqtrd 2782 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = 𝑍)
3231ex 412 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍) → (𝐹‘(𝑥(1st𝑅)𝑦)) = 𝑍))
33 fvex 6769 . . . . . . . . . . . . 13 (𝐹𝑥) ∈ V
3433elsn 4573 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ {𝑍} ↔ (𝐹𝑥) = 𝑍)
35 fvex 6769 . . . . . . . . . . . . 13 (𝐹𝑦) ∈ V
3635elsn 4573 . . . . . . . . . . . 12 ((𝐹𝑦) ∈ {𝑍} ↔ (𝐹𝑦) = 𝑍)
3734, 36anbi12i 626 . . . . . . . . . . 11 (((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍}) ↔ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍))
38 fvex 6769 . . . . . . . . . . . 12 (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ V
3938elsn 4573 . . . . . . . . . . 11 ((𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍} ↔ (𝐹‘(𝑥(1st𝑅)𝑦)) = 𝑍)
4032, 37, 393imtr4g 295 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍}) → (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍}))
4140imdistanda 571 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ ((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍})) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
422, 3rngogcl 35997 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
43423expib 1120 . . . . . . . . . . 11 (𝑅 ∈ RingOps → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅)))
44433ad2ant1 1131 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅)))
4544anim1d 610 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍}) → ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
4641, 45syld 47 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ ((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍})) → ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
4720, 46syl5bi 241 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ∧ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})) → ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
48 elpreima 6917 . . . . . . . . 9 (𝐹 Fn ran (1st𝑅) → (𝑥 ∈ (𝐹 “ {𝑍}) ↔ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍})))
496, 16, 483syl 18 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝑥 ∈ (𝐹 “ {𝑍}) ↔ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍})))
50 elpreima 6917 . . . . . . . . 9 (𝐹 Fn ran (1st𝑅) → (𝑦 ∈ (𝐹 “ {𝑍}) ↔ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})))
516, 16, 503syl 18 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝑦 ∈ (𝐹 “ {𝑍}) ↔ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})))
5249, 51anbi12d 630 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ (𝐹 “ {𝑍}) ∧ 𝑦 ∈ (𝐹 “ {𝑍})) ↔ ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ∧ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍}))))
53 elpreima 6917 . . . . . . . 8 (𝐹 Fn ran (1st𝑅) → ((𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
546, 16, 533syl 18 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
5547, 52, 543imtr4d 293 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ (𝐹 “ {𝑍}) ∧ 𝑦 ∈ (𝐹 “ {𝑍})) → (𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍})))
5655impl 455 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) ∧ 𝑦 ∈ (𝐹 “ {𝑍})) → (𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}))
5756ralrimiva 3107 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) → ∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}))
5834anbi2i 622 . . . . . . 7 ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ↔ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍))
59 eqid 2738 . . . . . . . . . . . . . . . 16 (2nd𝑅) = (2nd𝑅)
602, 59, 3rngocl 35986 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
61603expb 1118 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅))) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
62613ad2antl1 1183 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅))) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
6362anass1rs 651 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
6463adantlrr 717 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
65 eqid 2738 . . . . . . . . . . . . . . . 16 (2nd𝑆) = (2nd𝑆)
662, 3, 59, 65rngohommul 36055 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅))) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)))
6766anass1rs 651 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)))
6867adantlrr 717 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)))
69 oveq2 7263 . . . . . . . . . . . . . . 15 ((𝐹𝑥) = 𝑍 → ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑧)(2nd𝑆)𝑍))
7069adantl 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍) → ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑧)(2nd𝑆)𝑍))
7170ad2antlr 723 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑧)(2nd𝑆)𝑍))
722, 3, 4, 5rngohomcl 36052 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹𝑧) ∈ ran 𝐺)
7311, 5, 4, 65rngorz 36008 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ RingOps ∧ (𝐹𝑧) ∈ ran 𝐺) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
74733ad2antl2 1184 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐹𝑧) ∈ ran 𝐺) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
7572, 74syldan 590 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
7675adantlr 711 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
7768, 71, 763eqtrd 2782 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = 𝑍)
78 fvex 6769 . . . . . . . . . . . . 13 (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ V
7978elsn 4573 . . . . . . . . . . . 12 ((𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍} ↔ (𝐹‘(𝑧(2nd𝑅)𝑥)) = 𝑍)
8077, 79sylibr 233 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})
81 elpreima 6917 . . . . . . . . . . . . 13 (𝐹 Fn ran (1st𝑅) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ↔ ((𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})))
826, 16, 813syl 18 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ↔ ((𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})))
8382ad2antrr 722 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ↔ ((𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})))
8464, 80, 83mpbir2and 709 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}))
852, 59, 3rngocl 35986 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
86853expb 1118 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
87863ad2antl1 1183 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
8887anassrs 467 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
8988adantlrr 717 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
902, 3, 59, 65rngohommul 36055 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)))
9190anassrs 467 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)))
9291adantlrr 717 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)))
93 oveq1 7262 . . . . . . . . . . . . . . 15 ((𝐹𝑥) = 𝑍 → ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)) = (𝑍(2nd𝑆)(𝐹𝑧)))
9493adantl 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍) → ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)) = (𝑍(2nd𝑆)(𝐹𝑧)))
9594ad2antlr 723 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)) = (𝑍(2nd𝑆)(𝐹𝑧)))
9611, 5, 4, 65rngolz 36007 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ RingOps ∧ (𝐹𝑧) ∈ ran 𝐺) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
97963ad2antl2 1184 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐹𝑧) ∈ ran 𝐺) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
9872, 97syldan 590 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
9998adantlr 711 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
10092, 95, 993eqtrd 2782 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = 𝑍)
101 fvex 6769 . . . . . . . . . . . . 13 (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ V
102101elsn 4573 . . . . . . . . . . . 12 ((𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍} ↔ (𝐹‘(𝑥(2nd𝑅)𝑧)) = 𝑍)
103100, 102sylibr 233 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})
104 elpreima 6917 . . . . . . . . . . . . 13 (𝐹 Fn ran (1st𝑅) → ((𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})))
1056, 16, 1043syl 18 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})))
106105ad2antrr 722 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})))
10789, 103, 106mpbir2and 709 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))
10884, 107jca 511 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍})))
109108ralrimiva 3107 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍})))
110109ex 412 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
11158, 110syl5bi 241 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
11249, 111sylbid 239 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝑥 ∈ (𝐹 “ {𝑍}) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
113112imp 406 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍})))
11457, 113jca 511 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) → (∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
115114ralrimiva 3107 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ∀𝑥 ∈ (𝐹 “ {𝑍})(∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
1162, 59, 3, 8isidl 36099 . . 3 (𝑅 ∈ RingOps → ((𝐹 “ {𝑍}) ∈ (Idl‘𝑅) ↔ ((𝐹 “ {𝑍}) ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑥 ∈ (𝐹 “ {𝑍})(∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))))
1171163ad2ant1 1131 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝐹 “ {𝑍}) ∈ (Idl‘𝑅) ↔ ((𝐹 “ {𝑍}) ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑥 ∈ (𝐹 “ {𝑍})(∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))))
1187, 19, 115, 117mpbir3and 1340 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹 “ {𝑍}) ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wss 3883  {csn 4558  ccnv 5579  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  GrpOpcgr 28752  GIdcgi 28753  RingOpscrngo 35979   RngHom crnghom 36045  Idlcidl 36092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-grpo 28756  df-gid 28757  df-ginv 28758  df-ablo 28808  df-ghomOLD 35969  df-rngo 35980  df-rngohom 36048  df-idl 36095
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator