Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  keridl Structured version   Visualization version   GIF version

Theorem keridl 36494
Description: The kernel of a ring homomorphism is an ideal. (Contributed by Jeff Madsen, 3-Jan-2011.)
Hypotheses
Ref Expression
keridl.1 𝐺 = (1st β€˜π‘†)
keridl.2 𝑍 = (GIdβ€˜πΊ)
Assertion
Ref Expression
keridl ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (◑𝐹 β€œ {𝑍}) ∈ (Idlβ€˜π‘…))

Proof of Theorem keridl
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 6034 . . 3 (◑𝐹 β€œ {𝑍}) βŠ† dom 𝐹
2 eqid 2737 . . . 4 (1st β€˜π‘…) = (1st β€˜π‘…)
3 eqid 2737 . . . 4 ran (1st β€˜π‘…) = ran (1st β€˜π‘…)
4 keridl.1 . . . 4 𝐺 = (1st β€˜π‘†)
5 eqid 2737 . . . 4 ran 𝐺 = ran 𝐺
62, 3, 4, 5rngohomf 36428 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ 𝐹:ran (1st β€˜π‘…)⟢ran 𝐺)
71, 6fssdm 6689 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (◑𝐹 β€œ {𝑍}) βŠ† ran (1st β€˜π‘…))
8 eqid 2737 . . . . 5 (GIdβ€˜(1st β€˜π‘…)) = (GIdβ€˜(1st β€˜π‘…))
92, 3, 8rngo0cl 36381 . . . 4 (𝑅 ∈ RingOps β†’ (GIdβ€˜(1st β€˜π‘…)) ∈ ran (1st β€˜π‘…))
1093ad2ant1 1134 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (GIdβ€˜(1st β€˜π‘…)) ∈ ran (1st β€˜π‘…))
11 keridl.2 . . . . 5 𝑍 = (GIdβ€˜πΊ)
122, 8, 4, 11rngohom0 36434 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (πΉβ€˜(GIdβ€˜(1st β€˜π‘…))) = 𝑍)
13 fvex 6856 . . . . 5 (πΉβ€˜(GIdβ€˜(1st β€˜π‘…))) ∈ V
1413elsn 4602 . . . 4 ((πΉβ€˜(GIdβ€˜(1st β€˜π‘…))) ∈ {𝑍} ↔ (πΉβ€˜(GIdβ€˜(1st β€˜π‘…))) = 𝑍)
1512, 14sylibr 233 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (πΉβ€˜(GIdβ€˜(1st β€˜π‘…))) ∈ {𝑍})
16 ffn 6669 . . . 4 (𝐹:ran (1st β€˜π‘…)⟢ran 𝐺 β†’ 𝐹 Fn ran (1st β€˜π‘…))
17 elpreima 7009 . . . 4 (𝐹 Fn ran (1st β€˜π‘…) β†’ ((GIdβ€˜(1st β€˜π‘…)) ∈ (◑𝐹 β€œ {𝑍}) ↔ ((GIdβ€˜(1st β€˜π‘…)) ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜(GIdβ€˜(1st β€˜π‘…))) ∈ {𝑍})))
186, 16, 173syl 18 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ ((GIdβ€˜(1st β€˜π‘…)) ∈ (◑𝐹 β€œ {𝑍}) ↔ ((GIdβ€˜(1st β€˜π‘…)) ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜(GIdβ€˜(1st β€˜π‘…))) ∈ {𝑍})))
1910, 15, 18mpbir2and 712 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (GIdβ€˜(1st β€˜π‘…)) ∈ (◑𝐹 β€œ {𝑍}))
20 an4 655 . . . . . . . 8 (((π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) ∈ {𝑍}) ∧ (𝑦 ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘¦) ∈ {𝑍})) ↔ ((π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑦 ∈ ran (1st β€˜π‘…)) ∧ ((πΉβ€˜π‘₯) ∈ {𝑍} ∧ (πΉβ€˜π‘¦) ∈ {𝑍})))
212, 3, 4rngohomadd 36431 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑦 ∈ ran (1st β€˜π‘…))) β†’ (πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) = ((πΉβ€˜π‘₯)𝐺(πΉβ€˜π‘¦)))
2221adantr 482 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑦 ∈ ran (1st β€˜π‘…))) ∧ ((πΉβ€˜π‘₯) = 𝑍 ∧ (πΉβ€˜π‘¦) = 𝑍)) β†’ (πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) = ((πΉβ€˜π‘₯)𝐺(πΉβ€˜π‘¦)))
23 oveq12 7367 . . . . . . . . . . . . . 14 (((πΉβ€˜π‘₯) = 𝑍 ∧ (πΉβ€˜π‘¦) = 𝑍) β†’ ((πΉβ€˜π‘₯)𝐺(πΉβ€˜π‘¦)) = (𝑍𝐺𝑍))
2423adantl 483 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑦 ∈ ran (1st β€˜π‘…))) ∧ ((πΉβ€˜π‘₯) = 𝑍 ∧ (πΉβ€˜π‘¦) = 𝑍)) β†’ ((πΉβ€˜π‘₯)𝐺(πΉβ€˜π‘¦)) = (𝑍𝐺𝑍))
254rngogrpo 36372 . . . . . . . . . . . . . . . 16 (𝑆 ∈ RingOps β†’ 𝐺 ∈ GrpOp)
265, 11grpoidcl 29459 . . . . . . . . . . . . . . . 16 (𝐺 ∈ GrpOp β†’ 𝑍 ∈ ran 𝐺)
275, 11grpolid 29461 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ GrpOp ∧ 𝑍 ∈ ran 𝐺) β†’ (𝑍𝐺𝑍) = 𝑍)
2825, 26, 27syl2anc2 586 . . . . . . . . . . . . . . 15 (𝑆 ∈ RingOps β†’ (𝑍𝐺𝑍) = 𝑍)
29283ad2ant2 1135 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (𝑍𝐺𝑍) = 𝑍)
3029ad2antrr 725 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑦 ∈ ran (1st β€˜π‘…))) ∧ ((πΉβ€˜π‘₯) = 𝑍 ∧ (πΉβ€˜π‘¦) = 𝑍)) β†’ (𝑍𝐺𝑍) = 𝑍)
3122, 24, 303eqtrd 2781 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑦 ∈ ran (1st β€˜π‘…))) ∧ ((πΉβ€˜π‘₯) = 𝑍 ∧ (πΉβ€˜π‘¦) = 𝑍)) β†’ (πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) = 𝑍)
3231ex 414 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑦 ∈ ran (1st β€˜π‘…))) β†’ (((πΉβ€˜π‘₯) = 𝑍 ∧ (πΉβ€˜π‘¦) = 𝑍) β†’ (πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) = 𝑍))
33 fvex 6856 . . . . . . . . . . . . 13 (πΉβ€˜π‘₯) ∈ V
3433elsn 4602 . . . . . . . . . . . 12 ((πΉβ€˜π‘₯) ∈ {𝑍} ↔ (πΉβ€˜π‘₯) = 𝑍)
35 fvex 6856 . . . . . . . . . . . . 13 (πΉβ€˜π‘¦) ∈ V
3635elsn 4602 . . . . . . . . . . . 12 ((πΉβ€˜π‘¦) ∈ {𝑍} ↔ (πΉβ€˜π‘¦) = 𝑍)
3734, 36anbi12i 628 . . . . . . . . . . 11 (((πΉβ€˜π‘₯) ∈ {𝑍} ∧ (πΉβ€˜π‘¦) ∈ {𝑍}) ↔ ((πΉβ€˜π‘₯) = 𝑍 ∧ (πΉβ€˜π‘¦) = 𝑍))
38 fvex 6856 . . . . . . . . . . . 12 (πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) ∈ V
3938elsn 4602 . . . . . . . . . . 11 ((πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) ∈ {𝑍} ↔ (πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) = 𝑍)
4032, 37, 393imtr4g 296 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑦 ∈ ran (1st β€˜π‘…))) β†’ (((πΉβ€˜π‘₯) ∈ {𝑍} ∧ (πΉβ€˜π‘¦) ∈ {𝑍}) β†’ (πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) ∈ {𝑍}))
4140imdistanda 573 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (((π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑦 ∈ ran (1st β€˜π‘…)) ∧ ((πΉβ€˜π‘₯) ∈ {𝑍} ∧ (πΉβ€˜π‘¦) ∈ {𝑍})) β†’ ((π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑦 ∈ ran (1st β€˜π‘…)) ∧ (πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) ∈ {𝑍})))
422, 3rngogcl 36374 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑦 ∈ ran (1st β€˜π‘…)) β†’ (π‘₯(1st β€˜π‘…)𝑦) ∈ ran (1st β€˜π‘…))
43423expib 1123 . . . . . . . . . . 11 (𝑅 ∈ RingOps β†’ ((π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑦 ∈ ran (1st β€˜π‘…)) β†’ (π‘₯(1st β€˜π‘…)𝑦) ∈ ran (1st β€˜π‘…)))
44433ad2ant1 1134 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ ((π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑦 ∈ ran (1st β€˜π‘…)) β†’ (π‘₯(1st β€˜π‘…)𝑦) ∈ ran (1st β€˜π‘…)))
4544anim1d 612 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (((π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑦 ∈ ran (1st β€˜π‘…)) ∧ (πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) ∈ {𝑍}) β†’ ((π‘₯(1st β€˜π‘…)𝑦) ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) ∈ {𝑍})))
4641, 45syld 47 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (((π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑦 ∈ ran (1st β€˜π‘…)) ∧ ((πΉβ€˜π‘₯) ∈ {𝑍} ∧ (πΉβ€˜π‘¦) ∈ {𝑍})) β†’ ((π‘₯(1st β€˜π‘…)𝑦) ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) ∈ {𝑍})))
4720, 46biimtrid 241 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (((π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) ∈ {𝑍}) ∧ (𝑦 ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘¦) ∈ {𝑍})) β†’ ((π‘₯(1st β€˜π‘…)𝑦) ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) ∈ {𝑍})))
48 elpreima 7009 . . . . . . . . 9 (𝐹 Fn ran (1st β€˜π‘…) β†’ (π‘₯ ∈ (◑𝐹 β€œ {𝑍}) ↔ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) ∈ {𝑍})))
496, 16, 483syl 18 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (π‘₯ ∈ (◑𝐹 β€œ {𝑍}) ↔ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) ∈ {𝑍})))
50 elpreima 7009 . . . . . . . . 9 (𝐹 Fn ran (1st β€˜π‘…) β†’ (𝑦 ∈ (◑𝐹 β€œ {𝑍}) ↔ (𝑦 ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘¦) ∈ {𝑍})))
516, 16, 503syl 18 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (𝑦 ∈ (◑𝐹 β€œ {𝑍}) ↔ (𝑦 ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘¦) ∈ {𝑍})))
5249, 51anbi12d 632 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ ((π‘₯ ∈ (◑𝐹 β€œ {𝑍}) ∧ 𝑦 ∈ (◑𝐹 β€œ {𝑍})) ↔ ((π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) ∈ {𝑍}) ∧ (𝑦 ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘¦) ∈ {𝑍}))))
53 elpreima 7009 . . . . . . . 8 (𝐹 Fn ran (1st β€˜π‘…) β†’ ((π‘₯(1st β€˜π‘…)𝑦) ∈ (◑𝐹 β€œ {𝑍}) ↔ ((π‘₯(1st β€˜π‘…)𝑦) ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) ∈ {𝑍})))
546, 16, 533syl 18 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ ((π‘₯(1st β€˜π‘…)𝑦) ∈ (◑𝐹 β€œ {𝑍}) ↔ ((π‘₯(1st β€˜π‘…)𝑦) ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) ∈ {𝑍})))
5547, 52, 543imtr4d 294 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ ((π‘₯ ∈ (◑𝐹 β€œ {𝑍}) ∧ 𝑦 ∈ (◑𝐹 β€œ {𝑍})) β†’ (π‘₯(1st β€˜π‘…)𝑦) ∈ (◑𝐹 β€œ {𝑍})))
5655impl 457 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ π‘₯ ∈ (◑𝐹 β€œ {𝑍})) ∧ 𝑦 ∈ (◑𝐹 β€œ {𝑍})) β†’ (π‘₯(1st β€˜π‘…)𝑦) ∈ (◑𝐹 β€œ {𝑍}))
5756ralrimiva 3144 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ π‘₯ ∈ (◑𝐹 β€œ {𝑍})) β†’ βˆ€π‘¦ ∈ (◑𝐹 β€œ {𝑍})(π‘₯(1st β€˜π‘…)𝑦) ∈ (◑𝐹 β€œ {𝑍}))
5834anbi2i 624 . . . . . . 7 ((π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) ∈ {𝑍}) ↔ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍))
59 eqid 2737 . . . . . . . . . . . . . . . 16 (2nd β€˜π‘…) = (2nd β€˜π‘…)
602, 59, 3rngocl 36363 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran (1st β€˜π‘…) ∧ π‘₯ ∈ ran (1st β€˜π‘…)) β†’ (𝑧(2nd β€˜π‘…)π‘₯) ∈ ran (1st β€˜π‘…))
61603expb 1121 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (𝑧 ∈ ran (1st β€˜π‘…) ∧ π‘₯ ∈ ran (1st β€˜π‘…))) β†’ (𝑧(2nd β€˜π‘…)π‘₯) ∈ ran (1st β€˜π‘…))
62613ad2antl1 1186 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑧 ∈ ran (1st β€˜π‘…) ∧ π‘₯ ∈ ran (1st β€˜π‘…))) β†’ (𝑧(2nd β€˜π‘…)π‘₯) ∈ ran (1st β€˜π‘…))
6362anass1rs 654 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ π‘₯ ∈ ran (1st β€˜π‘…)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ (𝑧(2nd β€˜π‘…)π‘₯) ∈ ran (1st β€˜π‘…))
6463adantlrr 720 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ (𝑧(2nd β€˜π‘…)π‘₯) ∈ ran (1st β€˜π‘…))
65 eqid 2737 . . . . . . . . . . . . . . . 16 (2nd β€˜π‘†) = (2nd β€˜π‘†)
662, 3, 59, 65rngohommul 36432 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑧 ∈ ran (1st β€˜π‘…) ∧ π‘₯ ∈ ran (1st β€˜π‘…))) β†’ (πΉβ€˜(𝑧(2nd β€˜π‘…)π‘₯)) = ((πΉβ€˜π‘§)(2nd β€˜π‘†)(πΉβ€˜π‘₯)))
6766anass1rs 654 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ π‘₯ ∈ ran (1st β€˜π‘…)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ (πΉβ€˜(𝑧(2nd β€˜π‘…)π‘₯)) = ((πΉβ€˜π‘§)(2nd β€˜π‘†)(πΉβ€˜π‘₯)))
6867adantlrr 720 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ (πΉβ€˜(𝑧(2nd β€˜π‘…)π‘₯)) = ((πΉβ€˜π‘§)(2nd β€˜π‘†)(πΉβ€˜π‘₯)))
69 oveq2 7366 . . . . . . . . . . . . . . 15 ((πΉβ€˜π‘₯) = 𝑍 β†’ ((πΉβ€˜π‘§)(2nd β€˜π‘†)(πΉβ€˜π‘₯)) = ((πΉβ€˜π‘§)(2nd β€˜π‘†)𝑍))
7069adantl 483 . . . . . . . . . . . . . 14 ((π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍) β†’ ((πΉβ€˜π‘§)(2nd β€˜π‘†)(πΉβ€˜π‘₯)) = ((πΉβ€˜π‘§)(2nd β€˜π‘†)𝑍))
7170ad2antlr 726 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ ((πΉβ€˜π‘§)(2nd β€˜π‘†)(πΉβ€˜π‘₯)) = ((πΉβ€˜π‘§)(2nd β€˜π‘†)𝑍))
722, 3, 4, 5rngohomcl 36429 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ (πΉβ€˜π‘§) ∈ ran 𝐺)
7311, 5, 4, 65rngorz 36385 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ RingOps ∧ (πΉβ€˜π‘§) ∈ ran 𝐺) β†’ ((πΉβ€˜π‘§)(2nd β€˜π‘†)𝑍) = 𝑍)
74733ad2antl2 1187 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (πΉβ€˜π‘§) ∈ ran 𝐺) β†’ ((πΉβ€˜π‘§)(2nd β€˜π‘†)𝑍) = 𝑍)
7572, 74syldan 592 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ ((πΉβ€˜π‘§)(2nd β€˜π‘†)𝑍) = 𝑍)
7675adantlr 714 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ ((πΉβ€˜π‘§)(2nd β€˜π‘†)𝑍) = 𝑍)
7768, 71, 763eqtrd 2781 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ (πΉβ€˜(𝑧(2nd β€˜π‘…)π‘₯)) = 𝑍)
78 fvex 6856 . . . . . . . . . . . . 13 (πΉβ€˜(𝑧(2nd β€˜π‘…)π‘₯)) ∈ V
7978elsn 4602 . . . . . . . . . . . 12 ((πΉβ€˜(𝑧(2nd β€˜π‘…)π‘₯)) ∈ {𝑍} ↔ (πΉβ€˜(𝑧(2nd β€˜π‘…)π‘₯)) = 𝑍)
8077, 79sylibr 233 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ (πΉβ€˜(𝑧(2nd β€˜π‘…)π‘₯)) ∈ {𝑍})
81 elpreima 7009 . . . . . . . . . . . . 13 (𝐹 Fn ran (1st β€˜π‘…) β†’ ((𝑧(2nd β€˜π‘…)π‘₯) ∈ (◑𝐹 β€œ {𝑍}) ↔ ((𝑧(2nd β€˜π‘…)π‘₯) ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜(𝑧(2nd β€˜π‘…)π‘₯)) ∈ {𝑍})))
826, 16, 813syl 18 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ ((𝑧(2nd β€˜π‘…)π‘₯) ∈ (◑𝐹 β€œ {𝑍}) ↔ ((𝑧(2nd β€˜π‘…)π‘₯) ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜(𝑧(2nd β€˜π‘…)π‘₯)) ∈ {𝑍})))
8382ad2antrr 725 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ ((𝑧(2nd β€˜π‘…)π‘₯) ∈ (◑𝐹 β€œ {𝑍}) ↔ ((𝑧(2nd β€˜π‘…)π‘₯) ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜(𝑧(2nd β€˜π‘…)π‘₯)) ∈ {𝑍})))
8464, 80, 83mpbir2and 712 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ (𝑧(2nd β€˜π‘…)π‘₯) ∈ (◑𝐹 β€œ {𝑍}))
852, 59, 3rngocl 36363 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ (π‘₯(2nd β€˜π‘…)𝑧) ∈ ran (1st β€˜π‘…))
86853expb 1121 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑧 ∈ ran (1st β€˜π‘…))) β†’ (π‘₯(2nd β€˜π‘…)𝑧) ∈ ran (1st β€˜π‘…))
87863ad2antl1 1186 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑧 ∈ ran (1st β€˜π‘…))) β†’ (π‘₯(2nd β€˜π‘…)𝑧) ∈ ran (1st β€˜π‘…))
8887anassrs 469 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ π‘₯ ∈ ran (1st β€˜π‘…)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ (π‘₯(2nd β€˜π‘…)𝑧) ∈ ran (1st β€˜π‘…))
8988adantlrr 720 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ (π‘₯(2nd β€˜π‘…)𝑧) ∈ ran (1st β€˜π‘…))
902, 3, 59, 65rngohommul 36432 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ 𝑧 ∈ ran (1st β€˜π‘…))) β†’ (πΉβ€˜(π‘₯(2nd β€˜π‘…)𝑧)) = ((πΉβ€˜π‘₯)(2nd β€˜π‘†)(πΉβ€˜π‘§)))
9190anassrs 469 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ π‘₯ ∈ ran (1st β€˜π‘…)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ (πΉβ€˜(π‘₯(2nd β€˜π‘…)𝑧)) = ((πΉβ€˜π‘₯)(2nd β€˜π‘†)(πΉβ€˜π‘§)))
9291adantlrr 720 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ (πΉβ€˜(π‘₯(2nd β€˜π‘…)𝑧)) = ((πΉβ€˜π‘₯)(2nd β€˜π‘†)(πΉβ€˜π‘§)))
93 oveq1 7365 . . . . . . . . . . . . . . 15 ((πΉβ€˜π‘₯) = 𝑍 β†’ ((πΉβ€˜π‘₯)(2nd β€˜π‘†)(πΉβ€˜π‘§)) = (𝑍(2nd β€˜π‘†)(πΉβ€˜π‘§)))
9493adantl 483 . . . . . . . . . . . . . 14 ((π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍) β†’ ((πΉβ€˜π‘₯)(2nd β€˜π‘†)(πΉβ€˜π‘§)) = (𝑍(2nd β€˜π‘†)(πΉβ€˜π‘§)))
9594ad2antlr 726 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ ((πΉβ€˜π‘₯)(2nd β€˜π‘†)(πΉβ€˜π‘§)) = (𝑍(2nd β€˜π‘†)(πΉβ€˜π‘§)))
9611, 5, 4, 65rngolz 36384 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ RingOps ∧ (πΉβ€˜π‘§) ∈ ran 𝐺) β†’ (𝑍(2nd β€˜π‘†)(πΉβ€˜π‘§)) = 𝑍)
97963ad2antl2 1187 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (πΉβ€˜π‘§) ∈ ran 𝐺) β†’ (𝑍(2nd β€˜π‘†)(πΉβ€˜π‘§)) = 𝑍)
9872, 97syldan 592 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ (𝑍(2nd β€˜π‘†)(πΉβ€˜π‘§)) = 𝑍)
9998adantlr 714 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ (𝑍(2nd β€˜π‘†)(πΉβ€˜π‘§)) = 𝑍)
10092, 95, 993eqtrd 2781 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ (πΉβ€˜(π‘₯(2nd β€˜π‘…)𝑧)) = 𝑍)
101 fvex 6856 . . . . . . . . . . . . 13 (πΉβ€˜(π‘₯(2nd β€˜π‘…)𝑧)) ∈ V
102101elsn 4602 . . . . . . . . . . . 12 ((πΉβ€˜(π‘₯(2nd β€˜π‘…)𝑧)) ∈ {𝑍} ↔ (πΉβ€˜(π‘₯(2nd β€˜π‘…)𝑧)) = 𝑍)
103100, 102sylibr 233 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ (πΉβ€˜(π‘₯(2nd β€˜π‘…)𝑧)) ∈ {𝑍})
104 elpreima 7009 . . . . . . . . . . . . 13 (𝐹 Fn ran (1st β€˜π‘…) β†’ ((π‘₯(2nd β€˜π‘…)𝑧) ∈ (◑𝐹 β€œ {𝑍}) ↔ ((π‘₯(2nd β€˜π‘…)𝑧) ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜(π‘₯(2nd β€˜π‘…)𝑧)) ∈ {𝑍})))
1056, 16, 1043syl 18 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ ((π‘₯(2nd β€˜π‘…)𝑧) ∈ (◑𝐹 β€œ {𝑍}) ↔ ((π‘₯(2nd β€˜π‘…)𝑧) ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜(π‘₯(2nd β€˜π‘…)𝑧)) ∈ {𝑍})))
106105ad2antrr 725 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ ((π‘₯(2nd β€˜π‘…)𝑧) ∈ (◑𝐹 β€œ {𝑍}) ↔ ((π‘₯(2nd β€˜π‘…)𝑧) ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜(π‘₯(2nd β€˜π‘…)𝑧)) ∈ {𝑍})))
10789, 103, 106mpbir2and 712 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ (π‘₯(2nd β€˜π‘…)𝑧) ∈ (◑𝐹 β€œ {𝑍}))
10884, 107jca 513 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍)) ∧ 𝑧 ∈ ran (1st β€˜π‘…)) β†’ ((𝑧(2nd β€˜π‘…)π‘₯) ∈ (◑𝐹 β€œ {𝑍}) ∧ (π‘₯(2nd β€˜π‘…)𝑧) ∈ (◑𝐹 β€œ {𝑍})))
109108ralrimiva 3144 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍)) β†’ βˆ€π‘§ ∈ ran (1st β€˜π‘…)((𝑧(2nd β€˜π‘…)π‘₯) ∈ (◑𝐹 β€œ {𝑍}) ∧ (π‘₯(2nd β€˜π‘…)𝑧) ∈ (◑𝐹 β€œ {𝑍})))
110109ex 414 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ ((π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) = 𝑍) β†’ βˆ€π‘§ ∈ ran (1st β€˜π‘…)((𝑧(2nd β€˜π‘…)π‘₯) ∈ (◑𝐹 β€œ {𝑍}) ∧ (π‘₯(2nd β€˜π‘…)𝑧) ∈ (◑𝐹 β€œ {𝑍}))))
11158, 110biimtrid 241 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ ((π‘₯ ∈ ran (1st β€˜π‘…) ∧ (πΉβ€˜π‘₯) ∈ {𝑍}) β†’ βˆ€π‘§ ∈ ran (1st β€˜π‘…)((𝑧(2nd β€˜π‘…)π‘₯) ∈ (◑𝐹 β€œ {𝑍}) ∧ (π‘₯(2nd β€˜π‘…)𝑧) ∈ (◑𝐹 β€œ {𝑍}))))
11249, 111sylbid 239 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (π‘₯ ∈ (◑𝐹 β€œ {𝑍}) β†’ βˆ€π‘§ ∈ ran (1st β€˜π‘…)((𝑧(2nd β€˜π‘…)π‘₯) ∈ (◑𝐹 β€œ {𝑍}) ∧ (π‘₯(2nd β€˜π‘…)𝑧) ∈ (◑𝐹 β€œ {𝑍}))))
113112imp 408 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ π‘₯ ∈ (◑𝐹 β€œ {𝑍})) β†’ βˆ€π‘§ ∈ ran (1st β€˜π‘…)((𝑧(2nd β€˜π‘…)π‘₯) ∈ (◑𝐹 β€œ {𝑍}) ∧ (π‘₯(2nd β€˜π‘…)𝑧) ∈ (◑𝐹 β€œ {𝑍})))
11457, 113jca 513 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ π‘₯ ∈ (◑𝐹 β€œ {𝑍})) β†’ (βˆ€π‘¦ ∈ (◑𝐹 β€œ {𝑍})(π‘₯(1st β€˜π‘…)𝑦) ∈ (◑𝐹 β€œ {𝑍}) ∧ βˆ€π‘§ ∈ ran (1st β€˜π‘…)((𝑧(2nd β€˜π‘…)π‘₯) ∈ (◑𝐹 β€œ {𝑍}) ∧ (π‘₯(2nd β€˜π‘…)𝑧) ∈ (◑𝐹 β€œ {𝑍}))))
115114ralrimiva 3144 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ βˆ€π‘₯ ∈ (◑𝐹 β€œ {𝑍})(βˆ€π‘¦ ∈ (◑𝐹 β€œ {𝑍})(π‘₯(1st β€˜π‘…)𝑦) ∈ (◑𝐹 β€œ {𝑍}) ∧ βˆ€π‘§ ∈ ran (1st β€˜π‘…)((𝑧(2nd β€˜π‘…)π‘₯) ∈ (◑𝐹 β€œ {𝑍}) ∧ (π‘₯(2nd β€˜π‘…)𝑧) ∈ (◑𝐹 β€œ {𝑍}))))
1162, 59, 3, 8isidl 36476 . . 3 (𝑅 ∈ RingOps β†’ ((◑𝐹 β€œ {𝑍}) ∈ (Idlβ€˜π‘…) ↔ ((◑𝐹 β€œ {𝑍}) βŠ† ran (1st β€˜π‘…) ∧ (GIdβ€˜(1st β€˜π‘…)) ∈ (◑𝐹 β€œ {𝑍}) ∧ βˆ€π‘₯ ∈ (◑𝐹 β€œ {𝑍})(βˆ€π‘¦ ∈ (◑𝐹 β€œ {𝑍})(π‘₯(1st β€˜π‘…)𝑦) ∈ (◑𝐹 β€œ {𝑍}) ∧ βˆ€π‘§ ∈ ran (1st β€˜π‘…)((𝑧(2nd β€˜π‘…)π‘₯) ∈ (◑𝐹 β€œ {𝑍}) ∧ (π‘₯(2nd β€˜π‘…)𝑧) ∈ (◑𝐹 β€œ {𝑍}))))))
1171163ad2ant1 1134 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ ((◑𝐹 β€œ {𝑍}) ∈ (Idlβ€˜π‘…) ↔ ((◑𝐹 β€œ {𝑍}) βŠ† ran (1st β€˜π‘…) ∧ (GIdβ€˜(1st β€˜π‘…)) ∈ (◑𝐹 β€œ {𝑍}) ∧ βˆ€π‘₯ ∈ (◑𝐹 β€œ {𝑍})(βˆ€π‘¦ ∈ (◑𝐹 β€œ {𝑍})(π‘₯(1st β€˜π‘…)𝑦) ∈ (◑𝐹 β€œ {𝑍}) ∧ βˆ€π‘§ ∈ ran (1st β€˜π‘…)((𝑧(2nd β€˜π‘…)π‘₯) ∈ (◑𝐹 β€œ {𝑍}) ∧ (π‘₯(2nd β€˜π‘…)𝑧) ∈ (◑𝐹 β€œ {𝑍}))))))
1187, 19, 115, 117mpbir3and 1343 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (◑𝐹 β€œ {𝑍}) ∈ (Idlβ€˜π‘…))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3065   βŠ† wss 3911  {csn 4587  β—‘ccnv 5633  ran crn 5635   β€œ cima 5637   Fn wfn 6492  βŸΆwf 6493  β€˜cfv 6497  (class class class)co 7358  1st c1st 7920  2nd c2nd 7921  GrpOpcgr 29434  GIdcgi 29435  RingOpscrngo 36356   RngHom crnghom 36422  Idlcidl 36469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-map 8768  df-grpo 29438  df-gid 29439  df-ginv 29440  df-ablo 29490  df-ghomOLD 36346  df-rngo 36357  df-rngohom 36425  df-idl 36472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator