Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  keridl Structured version   Visualization version   GIF version

Theorem keridl 38051
Description: The kernel of a ring homomorphism is an ideal. (Contributed by Jeff Madsen, 3-Jan-2011.)
Hypotheses
Ref Expression
keridl.1 𝐺 = (1st𝑆)
keridl.2 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
keridl ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹 “ {𝑍}) ∈ (Idl‘𝑅))

Proof of Theorem keridl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 6028 . . 3 (𝐹 “ {𝑍}) ⊆ dom 𝐹
2 eqid 2730 . . . 4 (1st𝑅) = (1st𝑅)
3 eqid 2730 . . . 4 ran (1st𝑅) = ran (1st𝑅)
4 keridl.1 . . . 4 𝐺 = (1st𝑆)
5 eqid 2730 . . . 4 ran 𝐺 = ran 𝐺
62, 3, 4, 5rngohomf 37985 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:ran (1st𝑅)⟶ran 𝐺)
71, 6fssdm 6666 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹 “ {𝑍}) ⊆ ran (1st𝑅))
8 eqid 2730 . . . . 5 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
92, 3, 8rngo0cl 37938 . . . 4 (𝑅 ∈ RingOps → (GId‘(1st𝑅)) ∈ ran (1st𝑅))
1093ad2ant1 1133 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (GId‘(1st𝑅)) ∈ ran (1st𝑅))
11 keridl.2 . . . . 5 𝑍 = (GId‘𝐺)
122, 8, 4, 11rngohom0 37991 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘(GId‘(1st𝑅))) = 𝑍)
13 fvex 6830 . . . . 5 (𝐹‘(GId‘(1st𝑅))) ∈ V
1413elsn 4589 . . . 4 ((𝐹‘(GId‘(1st𝑅))) ∈ {𝑍} ↔ (𝐹‘(GId‘(1st𝑅))) = 𝑍)
1512, 14sylibr 234 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘(GId‘(1st𝑅))) ∈ {𝑍})
16 ffn 6647 . . . 4 (𝐹:ran (1st𝑅)⟶ran 𝐺𝐹 Fn ran (1st𝑅))
17 elpreima 6986 . . . 4 (𝐹 Fn ran (1st𝑅) → ((GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ↔ ((GId‘(1st𝑅)) ∈ ran (1st𝑅) ∧ (𝐹‘(GId‘(1st𝑅))) ∈ {𝑍})))
186, 16, 173syl 18 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ↔ ((GId‘(1st𝑅)) ∈ ran (1st𝑅) ∧ (𝐹‘(GId‘(1st𝑅))) ∈ {𝑍})))
1910, 15, 18mpbir2and 713 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}))
20 an4 656 . . . . . . . 8 (((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ∧ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})) ↔ ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ ((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍})))
212, 3, 4rngohomadd 37988 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)𝐺(𝐹𝑦)))
2221adantr 480 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)𝐺(𝐹𝑦)))
23 oveq12 7350 . . . . . . . . . . . . . 14 (((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍) → ((𝐹𝑥)𝐺(𝐹𝑦)) = (𝑍𝐺𝑍))
2423adantl 481 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → ((𝐹𝑥)𝐺(𝐹𝑦)) = (𝑍𝐺𝑍))
254rngogrpo 37929 . . . . . . . . . . . . . . . 16 (𝑆 ∈ RingOps → 𝐺 ∈ GrpOp)
265, 11grpoidcl 30484 . . . . . . . . . . . . . . . 16 (𝐺 ∈ GrpOp → 𝑍 ∈ ran 𝐺)
275, 11grpolid 30486 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ GrpOp ∧ 𝑍 ∈ ran 𝐺) → (𝑍𝐺𝑍) = 𝑍)
2825, 26, 27syl2anc2 585 . . . . . . . . . . . . . . 15 (𝑆 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍)
29283ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝑍𝐺𝑍) = 𝑍)
3029ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → (𝑍𝐺𝑍) = 𝑍)
3122, 24, 303eqtrd 2769 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = 𝑍)
3231ex 412 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍) → (𝐹‘(𝑥(1st𝑅)𝑦)) = 𝑍))
33 fvex 6830 . . . . . . . . . . . . 13 (𝐹𝑥) ∈ V
3433elsn 4589 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ {𝑍} ↔ (𝐹𝑥) = 𝑍)
35 fvex 6830 . . . . . . . . . . . . 13 (𝐹𝑦) ∈ V
3635elsn 4589 . . . . . . . . . . . 12 ((𝐹𝑦) ∈ {𝑍} ↔ (𝐹𝑦) = 𝑍)
3734, 36anbi12i 628 . . . . . . . . . . 11 (((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍}) ↔ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍))
38 fvex 6830 . . . . . . . . . . . 12 (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ V
3938elsn 4589 . . . . . . . . . . 11 ((𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍} ↔ (𝐹‘(𝑥(1st𝑅)𝑦)) = 𝑍)
4032, 37, 393imtr4g 296 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍}) → (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍}))
4140imdistanda 571 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ ((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍})) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
422, 3rngogcl 37931 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
43423expib 1122 . . . . . . . . . . 11 (𝑅 ∈ RingOps → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅)))
44433ad2ant1 1133 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅)))
4544anim1d 611 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍}) → ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
4641, 45syld 47 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ ((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍})) → ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
4720, 46biimtrid 242 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ∧ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})) → ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
48 elpreima 6986 . . . . . . . . 9 (𝐹 Fn ran (1st𝑅) → (𝑥 ∈ (𝐹 “ {𝑍}) ↔ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍})))
496, 16, 483syl 18 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝑥 ∈ (𝐹 “ {𝑍}) ↔ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍})))
50 elpreima 6986 . . . . . . . . 9 (𝐹 Fn ran (1st𝑅) → (𝑦 ∈ (𝐹 “ {𝑍}) ↔ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})))
516, 16, 503syl 18 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝑦 ∈ (𝐹 “ {𝑍}) ↔ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})))
5249, 51anbi12d 632 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ (𝐹 “ {𝑍}) ∧ 𝑦 ∈ (𝐹 “ {𝑍})) ↔ ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ∧ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍}))))
53 elpreima 6986 . . . . . . . 8 (𝐹 Fn ran (1st𝑅) → ((𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
546, 16, 533syl 18 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
5547, 52, 543imtr4d 294 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ (𝐹 “ {𝑍}) ∧ 𝑦 ∈ (𝐹 “ {𝑍})) → (𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍})))
5655impl 455 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) ∧ 𝑦 ∈ (𝐹 “ {𝑍})) → (𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}))
5756ralrimiva 3122 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) → ∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}))
5834anbi2i 623 . . . . . . 7 ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ↔ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍))
59 eqid 2730 . . . . . . . . . . . . . . . 16 (2nd𝑅) = (2nd𝑅)
602, 59, 3rngocl 37920 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
61603expb 1120 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅))) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
62613ad2antl1 1186 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅))) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
6362anass1rs 655 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
6463adantlrr 721 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
65 eqid 2730 . . . . . . . . . . . . . . . 16 (2nd𝑆) = (2nd𝑆)
662, 3, 59, 65rngohommul 37989 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅))) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)))
6766anass1rs 655 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)))
6867adantlrr 721 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)))
69 oveq2 7349 . . . . . . . . . . . . . . 15 ((𝐹𝑥) = 𝑍 → ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑧)(2nd𝑆)𝑍))
7069adantl 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍) → ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑧)(2nd𝑆)𝑍))
7170ad2antlr 727 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑧)(2nd𝑆)𝑍))
722, 3, 4, 5rngohomcl 37986 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹𝑧) ∈ ran 𝐺)
7311, 5, 4, 65rngorz 37942 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ RingOps ∧ (𝐹𝑧) ∈ ran 𝐺) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
74733ad2antl2 1187 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐹𝑧) ∈ ran 𝐺) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
7572, 74syldan 591 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
7675adantlr 715 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
7768, 71, 763eqtrd 2769 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = 𝑍)
78 fvex 6830 . . . . . . . . . . . . 13 (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ V
7978elsn 4589 . . . . . . . . . . . 12 ((𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍} ↔ (𝐹‘(𝑧(2nd𝑅)𝑥)) = 𝑍)
8077, 79sylibr 234 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})
81 elpreima 6986 . . . . . . . . . . . . 13 (𝐹 Fn ran (1st𝑅) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ↔ ((𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})))
826, 16, 813syl 18 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ↔ ((𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})))
8382ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ↔ ((𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})))
8464, 80, 83mpbir2and 713 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}))
852, 59, 3rngocl 37920 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
86853expb 1120 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
87863ad2antl1 1186 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
8887anassrs 467 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
8988adantlrr 721 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
902, 3, 59, 65rngohommul 37989 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)))
9190anassrs 467 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)))
9291adantlrr 721 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)))
93 oveq1 7348 . . . . . . . . . . . . . . 15 ((𝐹𝑥) = 𝑍 → ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)) = (𝑍(2nd𝑆)(𝐹𝑧)))
9493adantl 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍) → ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)) = (𝑍(2nd𝑆)(𝐹𝑧)))
9594ad2antlr 727 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)) = (𝑍(2nd𝑆)(𝐹𝑧)))
9611, 5, 4, 65rngolz 37941 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ RingOps ∧ (𝐹𝑧) ∈ ran 𝐺) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
97963ad2antl2 1187 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐹𝑧) ∈ ran 𝐺) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
9872, 97syldan 591 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
9998adantlr 715 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
10092, 95, 993eqtrd 2769 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = 𝑍)
101 fvex 6830 . . . . . . . . . . . . 13 (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ V
102101elsn 4589 . . . . . . . . . . . 12 ((𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍} ↔ (𝐹‘(𝑥(2nd𝑅)𝑧)) = 𝑍)
103100, 102sylibr 234 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})
104 elpreima 6986 . . . . . . . . . . . . 13 (𝐹 Fn ran (1st𝑅) → ((𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})))
1056, 16, 1043syl 18 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})))
106105ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})))
10789, 103, 106mpbir2and 713 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))
10884, 107jca 511 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍})))
109108ralrimiva 3122 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍})))
110109ex 412 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
11158, 110biimtrid 242 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
11249, 111sylbid 240 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝑥 ∈ (𝐹 “ {𝑍}) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
113112imp 406 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍})))
11457, 113jca 511 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) → (∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
115114ralrimiva 3122 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ∀𝑥 ∈ (𝐹 “ {𝑍})(∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
1162, 59, 3, 8isidl 38033 . . 3 (𝑅 ∈ RingOps → ((𝐹 “ {𝑍}) ∈ (Idl‘𝑅) ↔ ((𝐹 “ {𝑍}) ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑥 ∈ (𝐹 “ {𝑍})(∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))))
1171163ad2ant1 1133 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝐹 “ {𝑍}) ∈ (Idl‘𝑅) ↔ ((𝐹 “ {𝑍}) ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑥 ∈ (𝐹 “ {𝑍})(∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))))
1187, 19, 115, 117mpbir3and 1343 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹 “ {𝑍}) ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wral 3045  wss 3900  {csn 4574  ccnv 5613  ran crn 5615  cima 5617   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  GrpOpcgr 30459  GIdcgi 30460  RingOpscrngo 37913   RingOpsHom crngohom 37979  Idlcidl 38026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-map 8747  df-grpo 30463  df-gid 30464  df-ginv 30465  df-ablo 30515  df-ghomOLD 37903  df-rngo 37914  df-rngohom 37982  df-idl 38029
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator