Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  keridl Structured version   Visualization version   GIF version

Theorem keridl 38056
Description: The kernel of a ring homomorphism is an ideal. (Contributed by Jeff Madsen, 3-Jan-2011.)
Hypotheses
Ref Expression
keridl.1 𝐺 = (1st𝑆)
keridl.2 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
keridl ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹 “ {𝑍}) ∈ (Idl‘𝑅))

Proof of Theorem keridl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 6069 . . 3 (𝐹 “ {𝑍}) ⊆ dom 𝐹
2 eqid 2735 . . . 4 (1st𝑅) = (1st𝑅)
3 eqid 2735 . . . 4 ran (1st𝑅) = ran (1st𝑅)
4 keridl.1 . . . 4 𝐺 = (1st𝑆)
5 eqid 2735 . . . 4 ran 𝐺 = ran 𝐺
62, 3, 4, 5rngohomf 37990 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:ran (1st𝑅)⟶ran 𝐺)
71, 6fssdm 6725 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹 “ {𝑍}) ⊆ ran (1st𝑅))
8 eqid 2735 . . . . 5 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
92, 3, 8rngo0cl 37943 . . . 4 (𝑅 ∈ RingOps → (GId‘(1st𝑅)) ∈ ran (1st𝑅))
1093ad2ant1 1133 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (GId‘(1st𝑅)) ∈ ran (1st𝑅))
11 keridl.2 . . . . 5 𝑍 = (GId‘𝐺)
122, 8, 4, 11rngohom0 37996 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘(GId‘(1st𝑅))) = 𝑍)
13 fvex 6889 . . . . 5 (𝐹‘(GId‘(1st𝑅))) ∈ V
1413elsn 4616 . . . 4 ((𝐹‘(GId‘(1st𝑅))) ∈ {𝑍} ↔ (𝐹‘(GId‘(1st𝑅))) = 𝑍)
1512, 14sylibr 234 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘(GId‘(1st𝑅))) ∈ {𝑍})
16 ffn 6706 . . . 4 (𝐹:ran (1st𝑅)⟶ran 𝐺𝐹 Fn ran (1st𝑅))
17 elpreima 7048 . . . 4 (𝐹 Fn ran (1st𝑅) → ((GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ↔ ((GId‘(1st𝑅)) ∈ ran (1st𝑅) ∧ (𝐹‘(GId‘(1st𝑅))) ∈ {𝑍})))
186, 16, 173syl 18 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ↔ ((GId‘(1st𝑅)) ∈ ran (1st𝑅) ∧ (𝐹‘(GId‘(1st𝑅))) ∈ {𝑍})))
1910, 15, 18mpbir2and 713 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}))
20 an4 656 . . . . . . . 8 (((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ∧ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})) ↔ ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ ((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍})))
212, 3, 4rngohomadd 37993 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)𝐺(𝐹𝑦)))
2221adantr 480 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)𝐺(𝐹𝑦)))
23 oveq12 7414 . . . . . . . . . . . . . 14 (((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍) → ((𝐹𝑥)𝐺(𝐹𝑦)) = (𝑍𝐺𝑍))
2423adantl 481 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → ((𝐹𝑥)𝐺(𝐹𝑦)) = (𝑍𝐺𝑍))
254rngogrpo 37934 . . . . . . . . . . . . . . . 16 (𝑆 ∈ RingOps → 𝐺 ∈ GrpOp)
265, 11grpoidcl 30495 . . . . . . . . . . . . . . . 16 (𝐺 ∈ GrpOp → 𝑍 ∈ ran 𝐺)
275, 11grpolid 30497 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ GrpOp ∧ 𝑍 ∈ ran 𝐺) → (𝑍𝐺𝑍) = 𝑍)
2825, 26, 27syl2anc2 585 . . . . . . . . . . . . . . 15 (𝑆 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍)
29283ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝑍𝐺𝑍) = 𝑍)
3029ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → (𝑍𝐺𝑍) = 𝑍)
3122, 24, 303eqtrd 2774 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = 𝑍)
3231ex 412 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍) → (𝐹‘(𝑥(1st𝑅)𝑦)) = 𝑍))
33 fvex 6889 . . . . . . . . . . . . 13 (𝐹𝑥) ∈ V
3433elsn 4616 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ {𝑍} ↔ (𝐹𝑥) = 𝑍)
35 fvex 6889 . . . . . . . . . . . . 13 (𝐹𝑦) ∈ V
3635elsn 4616 . . . . . . . . . . . 12 ((𝐹𝑦) ∈ {𝑍} ↔ (𝐹𝑦) = 𝑍)
3734, 36anbi12i 628 . . . . . . . . . . 11 (((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍}) ↔ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍))
38 fvex 6889 . . . . . . . . . . . 12 (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ V
3938elsn 4616 . . . . . . . . . . 11 ((𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍} ↔ (𝐹‘(𝑥(1st𝑅)𝑦)) = 𝑍)
4032, 37, 393imtr4g 296 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍}) → (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍}))
4140imdistanda 571 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ ((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍})) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
422, 3rngogcl 37936 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
43423expib 1122 . . . . . . . . . . 11 (𝑅 ∈ RingOps → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅)))
44433ad2ant1 1133 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅)))
4544anim1d 611 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍}) → ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
4641, 45syld 47 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ ((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍})) → ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
4720, 46biimtrid 242 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ∧ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})) → ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
48 elpreima 7048 . . . . . . . . 9 (𝐹 Fn ran (1st𝑅) → (𝑥 ∈ (𝐹 “ {𝑍}) ↔ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍})))
496, 16, 483syl 18 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝑥 ∈ (𝐹 “ {𝑍}) ↔ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍})))
50 elpreima 7048 . . . . . . . . 9 (𝐹 Fn ran (1st𝑅) → (𝑦 ∈ (𝐹 “ {𝑍}) ↔ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})))
516, 16, 503syl 18 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝑦 ∈ (𝐹 “ {𝑍}) ↔ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})))
5249, 51anbi12d 632 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ (𝐹 “ {𝑍}) ∧ 𝑦 ∈ (𝐹 “ {𝑍})) ↔ ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ∧ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍}))))
53 elpreima 7048 . . . . . . . 8 (𝐹 Fn ran (1st𝑅) → ((𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
546, 16, 533syl 18 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
5547, 52, 543imtr4d 294 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ (𝐹 “ {𝑍}) ∧ 𝑦 ∈ (𝐹 “ {𝑍})) → (𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍})))
5655impl 455 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) ∧ 𝑦 ∈ (𝐹 “ {𝑍})) → (𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}))
5756ralrimiva 3132 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) → ∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}))
5834anbi2i 623 . . . . . . 7 ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ↔ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍))
59 eqid 2735 . . . . . . . . . . . . . . . 16 (2nd𝑅) = (2nd𝑅)
602, 59, 3rngocl 37925 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
61603expb 1120 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅))) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
62613ad2antl1 1186 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅))) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
6362anass1rs 655 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
6463adantlrr 721 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
65 eqid 2735 . . . . . . . . . . . . . . . 16 (2nd𝑆) = (2nd𝑆)
662, 3, 59, 65rngohommul 37994 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅))) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)))
6766anass1rs 655 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)))
6867adantlrr 721 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)))
69 oveq2 7413 . . . . . . . . . . . . . . 15 ((𝐹𝑥) = 𝑍 → ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑧)(2nd𝑆)𝑍))
7069adantl 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍) → ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑧)(2nd𝑆)𝑍))
7170ad2antlr 727 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑧)(2nd𝑆)𝑍))
722, 3, 4, 5rngohomcl 37991 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹𝑧) ∈ ran 𝐺)
7311, 5, 4, 65rngorz 37947 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ RingOps ∧ (𝐹𝑧) ∈ ran 𝐺) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
74733ad2antl2 1187 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐹𝑧) ∈ ran 𝐺) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
7572, 74syldan 591 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
7675adantlr 715 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
7768, 71, 763eqtrd 2774 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = 𝑍)
78 fvex 6889 . . . . . . . . . . . . 13 (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ V
7978elsn 4616 . . . . . . . . . . . 12 ((𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍} ↔ (𝐹‘(𝑧(2nd𝑅)𝑥)) = 𝑍)
8077, 79sylibr 234 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})
81 elpreima 7048 . . . . . . . . . . . . 13 (𝐹 Fn ran (1st𝑅) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ↔ ((𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})))
826, 16, 813syl 18 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ↔ ((𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})))
8382ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ↔ ((𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})))
8464, 80, 83mpbir2and 713 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}))
852, 59, 3rngocl 37925 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
86853expb 1120 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
87863ad2antl1 1186 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
8887anassrs 467 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
8988adantlrr 721 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
902, 3, 59, 65rngohommul 37994 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)))
9190anassrs 467 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)))
9291adantlrr 721 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)))
93 oveq1 7412 . . . . . . . . . . . . . . 15 ((𝐹𝑥) = 𝑍 → ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)) = (𝑍(2nd𝑆)(𝐹𝑧)))
9493adantl 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍) → ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)) = (𝑍(2nd𝑆)(𝐹𝑧)))
9594ad2antlr 727 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)) = (𝑍(2nd𝑆)(𝐹𝑧)))
9611, 5, 4, 65rngolz 37946 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ RingOps ∧ (𝐹𝑧) ∈ ran 𝐺) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
97963ad2antl2 1187 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐹𝑧) ∈ ran 𝐺) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
9872, 97syldan 591 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
9998adantlr 715 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
10092, 95, 993eqtrd 2774 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = 𝑍)
101 fvex 6889 . . . . . . . . . . . . 13 (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ V
102101elsn 4616 . . . . . . . . . . . 12 ((𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍} ↔ (𝐹‘(𝑥(2nd𝑅)𝑧)) = 𝑍)
103100, 102sylibr 234 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})
104 elpreima 7048 . . . . . . . . . . . . 13 (𝐹 Fn ran (1st𝑅) → ((𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})))
1056, 16, 1043syl 18 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})))
106105ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})))
10789, 103, 106mpbir2and 713 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))
10884, 107jca 511 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍})))
109108ralrimiva 3132 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍})))
110109ex 412 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
11158, 110biimtrid 242 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
11249, 111sylbid 240 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝑥 ∈ (𝐹 “ {𝑍}) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
113112imp 406 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍})))
11457, 113jca 511 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) → (∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
115114ralrimiva 3132 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ∀𝑥 ∈ (𝐹 “ {𝑍})(∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
1162, 59, 3, 8isidl 38038 . . 3 (𝑅 ∈ RingOps → ((𝐹 “ {𝑍}) ∈ (Idl‘𝑅) ↔ ((𝐹 “ {𝑍}) ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑥 ∈ (𝐹 “ {𝑍})(∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))))
1171163ad2ant1 1133 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝐹 “ {𝑍}) ∈ (Idl‘𝑅) ↔ ((𝐹 “ {𝑍}) ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑥 ∈ (𝐹 “ {𝑍})(∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))))
1187, 19, 115, 117mpbir3and 1343 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹 “ {𝑍}) ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wss 3926  {csn 4601  ccnv 5653  ran crn 5655  cima 5657   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  GrpOpcgr 30470  GIdcgi 30471  RingOpscrngo 37918   RingOpsHom crngohom 37984  Idlcidl 38031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-map 8842  df-grpo 30474  df-gid 30475  df-ginv 30476  df-ablo 30526  df-ghomOLD 37908  df-rngo 37919  df-rngohom 37987  df-idl 38034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator