Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  keridl Structured version   Visualization version   GIF version

Theorem keridl 37998
Description: The kernel of a ring homomorphism is an ideal. (Contributed by Jeff Madsen, 3-Jan-2011.)
Hypotheses
Ref Expression
keridl.1 𝐺 = (1st𝑆)
keridl.2 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
keridl ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹 “ {𝑍}) ∈ (Idl‘𝑅))

Proof of Theorem keridl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 6080 . . 3 (𝐹 “ {𝑍}) ⊆ dom 𝐹
2 eqid 2734 . . . 4 (1st𝑅) = (1st𝑅)
3 eqid 2734 . . . 4 ran (1st𝑅) = ran (1st𝑅)
4 keridl.1 . . . 4 𝐺 = (1st𝑆)
5 eqid 2734 . . . 4 ran 𝐺 = ran 𝐺
62, 3, 4, 5rngohomf 37932 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:ran (1st𝑅)⟶ran 𝐺)
71, 6fssdm 6735 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹 “ {𝑍}) ⊆ ran (1st𝑅))
8 eqid 2734 . . . . 5 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
92, 3, 8rngo0cl 37885 . . . 4 (𝑅 ∈ RingOps → (GId‘(1st𝑅)) ∈ ran (1st𝑅))
1093ad2ant1 1133 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (GId‘(1st𝑅)) ∈ ran (1st𝑅))
11 keridl.2 . . . . 5 𝑍 = (GId‘𝐺)
122, 8, 4, 11rngohom0 37938 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘(GId‘(1st𝑅))) = 𝑍)
13 fvex 6899 . . . . 5 (𝐹‘(GId‘(1st𝑅))) ∈ V
1413elsn 4621 . . . 4 ((𝐹‘(GId‘(1st𝑅))) ∈ {𝑍} ↔ (𝐹‘(GId‘(1st𝑅))) = 𝑍)
1512, 14sylibr 234 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘(GId‘(1st𝑅))) ∈ {𝑍})
16 ffn 6716 . . . 4 (𝐹:ran (1st𝑅)⟶ran 𝐺𝐹 Fn ran (1st𝑅))
17 elpreima 7058 . . . 4 (𝐹 Fn ran (1st𝑅) → ((GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ↔ ((GId‘(1st𝑅)) ∈ ran (1st𝑅) ∧ (𝐹‘(GId‘(1st𝑅))) ∈ {𝑍})))
186, 16, 173syl 18 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ↔ ((GId‘(1st𝑅)) ∈ ran (1st𝑅) ∧ (𝐹‘(GId‘(1st𝑅))) ∈ {𝑍})))
1910, 15, 18mpbir2and 713 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}))
20 an4 656 . . . . . . . 8 (((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ∧ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})) ↔ ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ ((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍})))
212, 3, 4rngohomadd 37935 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)𝐺(𝐹𝑦)))
2221adantr 480 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)𝐺(𝐹𝑦)))
23 oveq12 7422 . . . . . . . . . . . . . 14 (((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍) → ((𝐹𝑥)𝐺(𝐹𝑦)) = (𝑍𝐺𝑍))
2423adantl 481 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → ((𝐹𝑥)𝐺(𝐹𝑦)) = (𝑍𝐺𝑍))
254rngogrpo 37876 . . . . . . . . . . . . . . . 16 (𝑆 ∈ RingOps → 𝐺 ∈ GrpOp)
265, 11grpoidcl 30461 . . . . . . . . . . . . . . . 16 (𝐺 ∈ GrpOp → 𝑍 ∈ ran 𝐺)
275, 11grpolid 30463 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ GrpOp ∧ 𝑍 ∈ ran 𝐺) → (𝑍𝐺𝑍) = 𝑍)
2825, 26, 27syl2anc2 585 . . . . . . . . . . . . . . 15 (𝑆 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍)
29283ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝑍𝐺𝑍) = 𝑍)
3029ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → (𝑍𝐺𝑍) = 𝑍)
3122, 24, 303eqtrd 2773 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = 𝑍)
3231ex 412 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍) → (𝐹‘(𝑥(1st𝑅)𝑦)) = 𝑍))
33 fvex 6899 . . . . . . . . . . . . 13 (𝐹𝑥) ∈ V
3433elsn 4621 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ {𝑍} ↔ (𝐹𝑥) = 𝑍)
35 fvex 6899 . . . . . . . . . . . . 13 (𝐹𝑦) ∈ V
3635elsn 4621 . . . . . . . . . . . 12 ((𝐹𝑦) ∈ {𝑍} ↔ (𝐹𝑦) = 𝑍)
3734, 36anbi12i 628 . . . . . . . . . . 11 (((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍}) ↔ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍))
38 fvex 6899 . . . . . . . . . . . 12 (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ V
3938elsn 4621 . . . . . . . . . . 11 ((𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍} ↔ (𝐹‘(𝑥(1st𝑅)𝑦)) = 𝑍)
4032, 37, 393imtr4g 296 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍}) → (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍}))
4140imdistanda 571 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ ((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍})) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
422, 3rngogcl 37878 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
43423expib 1122 . . . . . . . . . . 11 (𝑅 ∈ RingOps → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅)))
44433ad2ant1 1133 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅)))
4544anim1d 611 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍}) → ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
4641, 45syld 47 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ ((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍})) → ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
4720, 46biimtrid 242 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ∧ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})) → ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
48 elpreima 7058 . . . . . . . . 9 (𝐹 Fn ran (1st𝑅) → (𝑥 ∈ (𝐹 “ {𝑍}) ↔ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍})))
496, 16, 483syl 18 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝑥 ∈ (𝐹 “ {𝑍}) ↔ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍})))
50 elpreima 7058 . . . . . . . . 9 (𝐹 Fn ran (1st𝑅) → (𝑦 ∈ (𝐹 “ {𝑍}) ↔ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})))
516, 16, 503syl 18 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝑦 ∈ (𝐹 “ {𝑍}) ↔ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})))
5249, 51anbi12d 632 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ (𝐹 “ {𝑍}) ∧ 𝑦 ∈ (𝐹 “ {𝑍})) ↔ ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ∧ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍}))))
53 elpreima 7058 . . . . . . . 8 (𝐹 Fn ran (1st𝑅) → ((𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
546, 16, 533syl 18 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
5547, 52, 543imtr4d 294 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ (𝐹 “ {𝑍}) ∧ 𝑦 ∈ (𝐹 “ {𝑍})) → (𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍})))
5655impl 455 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) ∧ 𝑦 ∈ (𝐹 “ {𝑍})) → (𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}))
5756ralrimiva 3133 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) → ∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}))
5834anbi2i 623 . . . . . . 7 ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ↔ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍))
59 eqid 2734 . . . . . . . . . . . . . . . 16 (2nd𝑅) = (2nd𝑅)
602, 59, 3rngocl 37867 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
61603expb 1120 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅))) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
62613ad2antl1 1185 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅))) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
6362anass1rs 655 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
6463adantlrr 721 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
65 eqid 2734 . . . . . . . . . . . . . . . 16 (2nd𝑆) = (2nd𝑆)
662, 3, 59, 65rngohommul 37936 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅))) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)))
6766anass1rs 655 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)))
6867adantlrr 721 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)))
69 oveq2 7421 . . . . . . . . . . . . . . 15 ((𝐹𝑥) = 𝑍 → ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑧)(2nd𝑆)𝑍))
7069adantl 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍) → ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑧)(2nd𝑆)𝑍))
7170ad2antlr 727 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑧)(2nd𝑆)𝑍))
722, 3, 4, 5rngohomcl 37933 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹𝑧) ∈ ran 𝐺)
7311, 5, 4, 65rngorz 37889 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ RingOps ∧ (𝐹𝑧) ∈ ran 𝐺) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
74733ad2antl2 1186 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐹𝑧) ∈ ran 𝐺) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
7572, 74syldan 591 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
7675adantlr 715 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
7768, 71, 763eqtrd 2773 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = 𝑍)
78 fvex 6899 . . . . . . . . . . . . 13 (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ V
7978elsn 4621 . . . . . . . . . . . 12 ((𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍} ↔ (𝐹‘(𝑧(2nd𝑅)𝑥)) = 𝑍)
8077, 79sylibr 234 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})
81 elpreima 7058 . . . . . . . . . . . . 13 (𝐹 Fn ran (1st𝑅) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ↔ ((𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})))
826, 16, 813syl 18 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ↔ ((𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})))
8382ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ↔ ((𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})))
8464, 80, 83mpbir2and 713 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}))
852, 59, 3rngocl 37867 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
86853expb 1120 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
87863ad2antl1 1185 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
8887anassrs 467 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
8988adantlrr 721 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
902, 3, 59, 65rngohommul 37936 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)))
9190anassrs 467 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)))
9291adantlrr 721 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)))
93 oveq1 7420 . . . . . . . . . . . . . . 15 ((𝐹𝑥) = 𝑍 → ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)) = (𝑍(2nd𝑆)(𝐹𝑧)))
9493adantl 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍) → ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)) = (𝑍(2nd𝑆)(𝐹𝑧)))
9594ad2antlr 727 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)) = (𝑍(2nd𝑆)(𝐹𝑧)))
9611, 5, 4, 65rngolz 37888 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ RingOps ∧ (𝐹𝑧) ∈ ran 𝐺) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
97963ad2antl2 1186 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐹𝑧) ∈ ran 𝐺) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
9872, 97syldan 591 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
9998adantlr 715 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
10092, 95, 993eqtrd 2773 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = 𝑍)
101 fvex 6899 . . . . . . . . . . . . 13 (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ V
102101elsn 4621 . . . . . . . . . . . 12 ((𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍} ↔ (𝐹‘(𝑥(2nd𝑅)𝑧)) = 𝑍)
103100, 102sylibr 234 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})
104 elpreima 7058 . . . . . . . . . . . . 13 (𝐹 Fn ran (1st𝑅) → ((𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})))
1056, 16, 1043syl 18 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})))
106105ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})))
10789, 103, 106mpbir2and 713 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))
10884, 107jca 511 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍})))
109108ralrimiva 3133 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍})))
110109ex 412 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
11158, 110biimtrid 242 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
11249, 111sylbid 240 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝑥 ∈ (𝐹 “ {𝑍}) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
113112imp 406 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍})))
11457, 113jca 511 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) → (∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
115114ralrimiva 3133 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ∀𝑥 ∈ (𝐹 “ {𝑍})(∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
1162, 59, 3, 8isidl 37980 . . 3 (𝑅 ∈ RingOps → ((𝐹 “ {𝑍}) ∈ (Idl‘𝑅) ↔ ((𝐹 “ {𝑍}) ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑥 ∈ (𝐹 “ {𝑍})(∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))))
1171163ad2ant1 1133 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝐹 “ {𝑍}) ∈ (Idl‘𝑅) ↔ ((𝐹 “ {𝑍}) ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑥 ∈ (𝐹 “ {𝑍})(∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))))
1187, 19, 115, 117mpbir3and 1342 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹 “ {𝑍}) ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wss 3931  {csn 4606  ccnv 5664  ran crn 5666  cima 5668   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  1st c1st 7994  2nd c2nd 7995  GrpOpcgr 30436  GIdcgi 30437  RingOpscrngo 37860   RingOpsHom crngohom 37926  Idlcidl 37973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-map 8850  df-grpo 30440  df-gid 30441  df-ginv 30442  df-ablo 30492  df-ghomOLD 37850  df-rngo 37861  df-rngohom 37929  df-idl 37976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator