Step | Hyp | Ref
| Expression |
1 | | breq2 5040 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥 ↔ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧)) |
2 | 1 | anbi2d 631 |
. . . . 5
⊢ (𝑥 = 𝑧 → ((𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ (𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧))) |
3 | 2 | rexralbidv 3225 |
. . . 4
⊢ (𝑥 = 𝑧 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧))) |
4 | 3 | cbvralvw 3361 |
. . 3
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧)) |
5 | | rphalfcl 12470 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (𝑥 / 2) ∈
ℝ+) |
6 | | breq2 5040 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑥 / 2) → ((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧 ↔ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) |
7 | 6 | anbi2d 631 |
. . . . . . . . 9
⊢ (𝑧 = (𝑥 / 2) → ((𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧) ↔ (𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) |
8 | 7 | rexralbidv 3225 |
. . . . . . . 8
⊢ (𝑧 = (𝑥 / 2) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) |
9 | 8 | rspcv 3538 |
. . . . . . 7
⊢ ((𝑥 / 2) ∈ ℝ+
→ (∀𝑧 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) |
10 | 5, 9 | syl 17 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (∀𝑧 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) |
11 | 10 | adantl 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∀𝑧 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) |
12 | | cau3lem.2 |
. . . . . . . . . 10
⊢ (𝜏 → 𝜓) |
13 | 12 | ralimi 3092 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)𝜏 → ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) |
14 | | r19.26 3101 |
. . . . . . . . . . . . 13
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) ↔ (∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) |
15 | | fveq2 6663 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) |
16 | | cau3lem.4 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑘) = (𝐹‘𝑚) → (𝜓 ↔ 𝜃)) |
17 | 15, 16 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑚 → (𝜓 ↔ 𝜃)) |
18 | 15 | fvoveq1d 7178 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑚 → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) = (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗)))) |
19 | 18 | breq1d 5046 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑚 → ((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ↔ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) |
20 | 17, 19 | anbi12d 633 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑚 → ((𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) ↔ (𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) |
21 | 20 | cbvralvw 3361 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) ↔ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) |
22 | 21 | biimpi 219 |
. . . . . . . . . . . . . 14
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) |
23 | 22 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) |
24 | 14, 23 | syl5bir 246 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → ((∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) |
25 | 24 | expdimp 456 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) |
26 | | cau3lem.1 |
. . . . . . . . . . . . . . 15
⊢ 𝑍 ⊆
ℤ |
27 | 26 | sseli 3890 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
28 | | uzid 12310 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (ℤ≥‘𝑗)) |
30 | | fveq2 6663 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
31 | | cau3lem.3 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑘) = (𝐹‘𝑗) → (𝜓 ↔ 𝜒)) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (𝜓 ↔ 𝜒)) |
33 | 32 | rspcva 3541 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈
(ℤ≥‘𝑗) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → 𝜒) |
34 | 29, 33 | sylan 583 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → 𝜒) |
35 | 34 | adantll 713 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → 𝜒) |
36 | 25, 35 | jctild 529 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → (𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2))))) |
37 | | simplll 774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → 𝜑) |
38 | | simplrr 777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → 𝜃) |
39 | | simplrl 776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → 𝜒) |
40 | | cau3lem.6 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝜃 ∧ 𝜒) → (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) = (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚)))) |
41 | 37, 38, 39, 40 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) = (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚)))) |
42 | 41 | breq1d 5046 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → ((𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ↔ (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < (𝑥 / 2))) |
43 | 42 | anbi2d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → (((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) ↔ ((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < (𝑥 / 2)))) |
44 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → 𝜓) |
45 | | simpllr 775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → 𝑥 ∈ ℝ+) |
46 | 45 | rpred 12485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → 𝑥 ∈ ℝ) |
47 | | cau3lem.7 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃) ∧ (𝜒 ∧ 𝑥 ∈ ℝ)) → (((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
48 | 37, 44, 38, 39, 46, 47 | syl122anc 1376 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → (((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
49 | 43, 48 | sylbid 243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → (((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
50 | 49 | expd 419 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → ((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → ((𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
51 | 50 | impr 458 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ (𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) → ((𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
52 | 51 | an32s 651 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) ∧ (𝜒 ∧ 𝜃)) → ((𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
53 | 52 | anassrs 471 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ (𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) ∧ 𝜒) ∧ 𝜃) → ((𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
54 | 53 | expimpd 457 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) ∧ 𝜒) → ((𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
55 | 54 | ralimdv 3109 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) ∧ 𝜒) → (∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
56 | 55 | impr 458 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) |
57 | 56 | an32s 651 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) ∧ (𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) |
58 | 57 | expr 460 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) ∧ 𝜓) → ((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
59 | | uzss 12318 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈
(ℤ≥‘𝑗) → (ℤ≥‘𝑘) ⊆
(ℤ≥‘𝑗)) |
60 | | ssralv 3960 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((ℤ≥‘𝑘) ⊆ (ℤ≥‘𝑗) → (∀𝑚 ∈
(ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
61 | 59, 60 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈
(ℤ≥‘𝑗) → (∀𝑚 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
62 | 58, 61 | sylan9 511 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ (𝜒 ∧ ∀𝑚 ∈
(ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) ∧ 𝜓) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
63 | 62 | an32s 651 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ (𝜒 ∧ ∀𝑚 ∈
(ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝜓) → ((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
64 | 63 | expimpd 457 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
65 | 64 | ralimdva 3108 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
66 | 65 | ex 416 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
67 | 66 | com23 86 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
68 | 67 | adantr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
69 | 14, 68 | syl5bir 246 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → ((∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
70 | 69 | expdimp 456 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
71 | 36, 70 | mpdd 43 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
72 | 13, 71 | sylan2 595 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜏) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
73 | 72 | imdistanda 575 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → ((∀𝑘 ∈ (ℤ≥‘𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
74 | | r19.26 3101 |
. . . . . . 7
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) ↔ (∀𝑘 ∈ (ℤ≥‘𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) |
75 | | r19.26 3101 |
. . . . . . 7
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) ↔ (∀𝑘 ∈ (ℤ≥‘𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
76 | 73, 74, 75 | 3imtr4g 299 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
77 | 76 | reximdva 3198 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
78 | 11, 77 | syld 47 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∀𝑧 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
79 | 78 | ralrimdva 3118 |
. . 3
⊢ (𝜑 → (∀𝑧 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
80 | 4, 79 | syl5bi 245 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
81 | | fveq2 6663 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (ℤ≥‘𝑘) =
(ℤ≥‘𝑗)) |
82 | 30 | fvoveq1d 7178 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) = (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚)))) |
83 | 82 | breq1d 5046 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥 ↔ (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < 𝑥)) |
84 | 81, 83 | raleqbidv 3319 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < 𝑥)) |
85 | 84 | rspcv 3538 |
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < 𝑥)) |
86 | 85 | ad2antlr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < 𝑥)) |
87 | | fveq2 6663 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) |
88 | 87 | oveq2d 7172 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑘 → ((𝐹‘𝑗)𝐷(𝐹‘𝑚)) = ((𝐹‘𝑗)𝐷(𝐹‘𝑘))) |
89 | 88 | fveq2d 6667 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑘 → (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) = (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘)))) |
90 | 89 | breq1d 5046 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑘 → ((𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < 𝑥 ↔ (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) < 𝑥)) |
91 | 90 | cbvralvw 3361 |
. . . . . . . . . 10
⊢
(∀𝑚 ∈
(ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) < 𝑥) |
92 | 33 | anim2i 619 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ (ℤ≥‘𝑗) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓)) → (𝜑 ∧ 𝜒)) |
93 | 92 | anassrs 471 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓) → (𝜑 ∧ 𝜒)) |
94 | | simpr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓) → ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) |
95 | | cau3lem.5 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) = (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗)))) |
96 | 95 | breq1d 5046 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → ((𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) < 𝑥 ↔ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥)) |
97 | 96 | 3expia 1118 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜒) → (𝜓 → ((𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) < 𝑥 ↔ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥))) |
98 | 97 | ralimdv 3109 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜒) → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) < 𝑥 ↔ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥))) |
99 | 93, 94, 98 | sylc 65 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓) → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) < 𝑥 ↔ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥)) |
100 | | ralbi 3099 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) < 𝑥 ↔ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥)) |
101 | 99, 100 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥)) |
102 | 91, 101 | syl5bb 286 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓) → (∀𝑚 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥)) |
103 | 86, 102 | sylibd 242 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥)) |
104 | 13, 103 | sylan2 595 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜏) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥)) |
105 | 104 | imdistanda 575 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑗)) → ((∀𝑘 ∈
(ℤ≥‘𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥))) |
106 | 29, 105 | sylan2 595 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((∀𝑘 ∈ (ℤ≥‘𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥))) |
107 | | r19.26 3101 |
. . . . 5
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ (∀𝑘 ∈ (ℤ≥‘𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥)) |
108 | 106, 75, 107 | 3imtr4g 299 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥))) |
109 | 108 | reximdva 3198 |
. . 3
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥))) |
110 | 109 | ralimdv 3109 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥))) |
111 | 80, 110 | impbid 215 |
1
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |