Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cau3lem Structured version   Visualization version   GIF version

Theorem cau3lem 14775
 Description: Lemma for cau3 14776. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
cau3lem.1 𝑍 ⊆ ℤ
cau3lem.2 (𝜏𝜓)
cau3lem.3 ((𝐹𝑘) = (𝐹𝑗) → (𝜓𝜒))
cau3lem.4 ((𝐹𝑘) = (𝐹𝑚) → (𝜓𝜃))
cau3lem.5 ((𝜑𝜒𝜓) → (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) = (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))))
cau3lem.6 ((𝜑𝜃𝜒) → (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))
cau3lem.7 ((𝜑 ∧ (𝜓𝜃) ∧ (𝜒𝑥 ∈ ℝ)) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
Assertion
Ref Expression
cau3lem (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
Distinct variable groups:   𝑘,𝑚,𝜒   𝑥,𝑘,𝐷,𝑚   𝑘,𝐹,𝑚,𝑥   𝑗,𝑘,𝑚,𝑥,𝜑   𝑘,𝐺,𝑚,𝑥   𝜓,𝑚,𝑥   𝜏,𝑥   𝜃,𝑘   𝑥,𝑍
Allowed substitution hints:   𝜓(𝑗,𝑘)   𝜒(𝑥,𝑗)   𝜃(𝑥,𝑗,𝑚)   𝜏(𝑗,𝑘,𝑚)   𝐷(𝑗)   𝐹(𝑗)   𝐺(𝑗)   𝑍(𝑗,𝑘,𝑚)

Proof of Theorem cau3lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 breq2 5040 . . . . . 6 (𝑥 = 𝑧 → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧))
21anbi2d 631 . . . . 5 (𝑥 = 𝑧 → ((𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ (𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧)))
32rexralbidv 3225 . . . 4 (𝑥 = 𝑧 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧)))
43cbvralvw 3361 . . 3 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧))
5 rphalfcl 12470 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
6 breq2 5040 . . . . . . . . . 10 (𝑧 = (𝑥 / 2) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)))
76anbi2d 631 . . . . . . . . 9 (𝑧 = (𝑥 / 2) → ((𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) ↔ (𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
87rexralbidv 3225 . . . . . . . 8 (𝑧 = (𝑥 / 2) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
98rspcv 3538 . . . . . . 7 ((𝑥 / 2) ∈ ℝ+ → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
105, 9syl 17 . . . . . 6 (𝑥 ∈ ℝ+ → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
1110adantl 485 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
12 cau3lem.2 . . . . . . . . . 10 (𝜏𝜓)
1312ralimi 3092 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)𝜏 → ∀𝑘 ∈ (ℤ𝑗)𝜓)
14 r19.26 3101 . . . . . . . . . . . . 13 (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜓 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)))
15 fveq2 6663 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
16 cau3lem.4 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑘) = (𝐹𝑚) → (𝜓𝜃))
1715, 16syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝜓𝜃))
1815fvoveq1d 7178 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))))
1918breq1d 5046 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ↔ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))
2017, 19anbi12d 633 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → ((𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ (𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))))
2120cbvralvw 3361 . . . . . . . . . . . . . . 15 (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))
2221biimpi 219 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))
2322a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))))
2414, 23syl5bir 246 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → ((∀𝑘 ∈ (ℤ𝑗)𝜓 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))))
2524expdimp 456 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))))
26 cau3lem.1 . . . . . . . . . . . . . . 15 𝑍 ⊆ ℤ
2726sseli 3890 . . . . . . . . . . . . . 14 (𝑗𝑍𝑗 ∈ ℤ)
28 uzid 12310 . . . . . . . . . . . . . 14 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
2927, 28syl 17 . . . . . . . . . . . . 13 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
30 fveq2 6663 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
31 cau3lem.3 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = (𝐹𝑗) → (𝜓𝜒))
3230, 31syl 17 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝜓𝜒))
3332rspcva 3541 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → 𝜒)
3429, 33sylan 583 . . . . . . . . . . . 12 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → 𝜒)
3534adantll 713 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → 𝜒)
3625, 35jctild 529 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))))
37 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝜑)
38 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝜃)
39 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝜒)
40 cau3lem.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝜃𝜒) → (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))
4137, 38, 39, 40syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))
4241breq1d 5046 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) ↔ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)))
4342anbi2d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2))))
44 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝜓)
45 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝑥 ∈ ℝ+)
4645rpred 12485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝑥 ∈ ℝ)
47 cau3lem.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝜓𝜃) ∧ (𝜒𝑥 ∈ ℝ)) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
4837, 44, 38, 39, 46, 47syl122anc 1376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
4943, 48sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5049expd 419 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
5150impr 458 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5251an32s 651 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ (𝜒𝜃)) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5352anassrs 471 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ 𝜒) ∧ 𝜃) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5453expimpd 457 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ 𝜒) → ((𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5554ralimdv 3109 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ 𝜒) → (∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5655impr 458 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)
5756an32s 651 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)
5857expr 460 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ 𝜓) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
59 uzss 12318 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑗) → (ℤ𝑘) ⊆ (ℤ𝑗))
60 ssralv 3960 . . . . . . . . . . . . . . . . . . . 20 ((ℤ𝑘) ⊆ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6159, 60syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6258, 61sylan9 511 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ 𝜓) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6362an32s 651 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝜓) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6463expimpd 457 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6564ralimdva 3108 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6665ex 416 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
6766com23 86 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
6867adantr 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
6914, 68syl5bir 246 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → ((∀𝑘 ∈ (ℤ𝑗)𝜓 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7069expdimp 456 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7136, 70mpdd 43 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
7213, 71sylan2 595 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜏) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
7372imdistanda 575 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → ((∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
74 r19.26 3101 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)))
75 r19.26 3101 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
7673, 74, 753imtr4g 299 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7776reximdva 3198 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7811, 77syld 47 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7978ralrimdva 3118 . . 3 (𝜑 → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
804, 79syl5bi 245 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
81 fveq2 6663 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (ℤ𝑘) = (ℤ𝑗))
8230fvoveq1d 7178 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))
8382breq1d 5046 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 ↔ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
8481, 83raleqbidv 3319 . . . . . . . . . . 11 (𝑘 = 𝑗 → (∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
8584rspcv 3538 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
8685ad2antlr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
87 fveq2 6663 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
8887oveq2d 7172 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → ((𝐹𝑗)𝐷(𝐹𝑚)) = ((𝐹𝑗)𝐷(𝐹𝑘)))
8988fveq2d 6667 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))))
9089breq1d 5046 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥 ↔ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥))
9190cbvralvw 3361 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥)
9233anim2i 619 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓)) → (𝜑𝜒))
9392anassrs 471 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (𝜑𝜒))
94 simpr 488 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → ∀𝑘 ∈ (ℤ𝑗)𝜓)
95 cau3lem.5 . . . . . . . . . . . . . . 15 ((𝜑𝜒𝜓) → (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) = (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))))
9695breq1d 5046 . . . . . . . . . . . . . 14 ((𝜑𝜒𝜓) → ((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
97963expia 1118 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝜓 → ((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
9897ralimdv 3109 . . . . . . . . . . . 12 ((𝜑𝜒) → (∀𝑘 ∈ (ℤ𝑗)𝜓 → ∀𝑘 ∈ (ℤ𝑗)((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
9993, 94, 98sylc 65 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → ∀𝑘 ∈ (ℤ𝑗)((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
100 ralbi 3099 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
10199, 100syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
10291, 101syl5bb 286 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
10386, 102sylibd 242 . . . . . . . 8 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
10413, 103sylan2 595 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜏) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
105104imdistanda 575 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝑗)) → ((∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
10629, 105sylan2 595 . . . . 5 ((𝜑𝑗𝑍) → ((∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
107 r19.26 3101 . . . . 5 (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
108106, 75, 1073imtr4g 299 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
109108reximdva 3198 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
110109ralimdv 3109 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
11180, 110impbid 215 1 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3070  ∃wrex 3071   ⊆ wss 3860   class class class wbr 5036  ‘cfv 6340  (class class class)co 7156  ℝcr 10587   < clt 10726   / cdiv 11348  2c2 11742  ℤcz 12033  ℤ≥cuz 12295  ℝ+crp 12443 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-2 11750  df-z 12034  df-uz 12296  df-rp 12444 This theorem is referenced by:  cau3  14776  iscau3  23991
 Copyright terms: Public domain W3C validator