MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cau3lem Structured version   Visualization version   GIF version

Theorem cau3lem 15300
Description: Lemma for cau3 15301. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
cau3lem.1 𝑍 ⊆ ℤ
cau3lem.2 (𝜏𝜓)
cau3lem.3 ((𝐹𝑘) = (𝐹𝑗) → (𝜓𝜒))
cau3lem.4 ((𝐹𝑘) = (𝐹𝑚) → (𝜓𝜃))
cau3lem.5 ((𝜑𝜒𝜓) → (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) = (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))))
cau3lem.6 ((𝜑𝜃𝜒) → (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))
cau3lem.7 ((𝜑 ∧ (𝜓𝜃) ∧ (𝜒𝑥 ∈ ℝ)) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
Assertion
Ref Expression
cau3lem (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
Distinct variable groups:   𝑘,𝑚,𝜒   𝑥,𝑘,𝐷,𝑚   𝑘,𝐹,𝑚,𝑥   𝑗,𝑘,𝑚,𝑥,𝜑   𝑘,𝐺,𝑚,𝑥   𝜓,𝑚,𝑥   𝜏,𝑥   𝜃,𝑘   𝑥,𝑍
Allowed substitution hints:   𝜓(𝑗,𝑘)   𝜒(𝑥,𝑗)   𝜃(𝑥,𝑗,𝑚)   𝜏(𝑗,𝑘,𝑚)   𝐷(𝑗)   𝐹(𝑗)   𝐺(𝑗)   𝑍(𝑗,𝑘,𝑚)

Proof of Theorem cau3lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 breq2 5152 . . . . . 6 (𝑥 = 𝑧 → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧))
21anbi2d 629 . . . . 5 (𝑥 = 𝑧 → ((𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ (𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧)))
32rexralbidv 3220 . . . 4 (𝑥 = 𝑧 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧)))
43cbvralvw 3234 . . 3 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧))
5 rphalfcl 13000 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
6 breq2 5152 . . . . . . . . . 10 (𝑧 = (𝑥 / 2) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)))
76anbi2d 629 . . . . . . . . 9 (𝑧 = (𝑥 / 2) → ((𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) ↔ (𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
87rexralbidv 3220 . . . . . . . 8 (𝑧 = (𝑥 / 2) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
98rspcv 3608 . . . . . . 7 ((𝑥 / 2) ∈ ℝ+ → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
105, 9syl 17 . . . . . 6 (𝑥 ∈ ℝ+ → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
1110adantl 482 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
12 cau3lem.2 . . . . . . . . . 10 (𝜏𝜓)
1312ralimi 3083 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)𝜏 → ∀𝑘 ∈ (ℤ𝑗)𝜓)
14 r19.26 3111 . . . . . . . . . . . . 13 (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜓 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)))
15 fveq2 6891 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
16 cau3lem.4 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑘) = (𝐹𝑚) → (𝜓𝜃))
1715, 16syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝜓𝜃))
1815fvoveq1d 7430 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))))
1918breq1d 5158 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ↔ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))
2017, 19anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → ((𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ (𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))))
2120cbvralvw 3234 . . . . . . . . . . . . . . 15 (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))
2221biimpi 215 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))
2322a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))))
2414, 23biimtrrid 242 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → ((∀𝑘 ∈ (ℤ𝑗)𝜓 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))))
2524expdimp 453 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))))
26 cau3lem.1 . . . . . . . . . . . . . . 15 𝑍 ⊆ ℤ
2726sseli 3978 . . . . . . . . . . . . . 14 (𝑗𝑍𝑗 ∈ ℤ)
28 uzid 12836 . . . . . . . . . . . . . 14 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
2927, 28syl 17 . . . . . . . . . . . . 13 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
30 fveq2 6891 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
31 cau3lem.3 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = (𝐹𝑗) → (𝜓𝜒))
3230, 31syl 17 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝜓𝜒))
3332rspcva 3610 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → 𝜒)
3429, 33sylan 580 . . . . . . . . . . . 12 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → 𝜒)
3534adantll 712 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → 𝜒)
3625, 35jctild 526 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))))
37 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝜑)
38 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝜃)
39 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝜒)
40 cau3lem.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝜃𝜒) → (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))
4137, 38, 39, 40syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))
4241breq1d 5158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) ↔ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)))
4342anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2))))
44 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝜓)
45 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝑥 ∈ ℝ+)
4645rpred 13015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝑥 ∈ ℝ)
47 cau3lem.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝜓𝜃) ∧ (𝜒𝑥 ∈ ℝ)) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
4837, 44, 38, 39, 46, 47syl122anc 1379 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
4943, 48sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5049expd 416 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
5150impr 455 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5251an32s 650 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ (𝜒𝜃)) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5352anassrs 468 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ 𝜒) ∧ 𝜃) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5453expimpd 454 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ 𝜒) → ((𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5554ralimdv 3169 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ 𝜒) → (∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5655impr 455 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)
5756an32s 650 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)
5857expr 457 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ 𝜓) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
59 uzss 12844 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑗) → (ℤ𝑘) ⊆ (ℤ𝑗))
60 ssralv 4050 . . . . . . . . . . . . . . . . . . . 20 ((ℤ𝑘) ⊆ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6159, 60syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6258, 61sylan9 508 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ 𝜓) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6362an32s 650 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝜓) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6463expimpd 454 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6564ralimdva 3167 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6665ex 413 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
6766com23 86 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
6867adantr 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
6914, 68biimtrrid 242 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → ((∀𝑘 ∈ (ℤ𝑗)𝜓 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7069expdimp 453 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7136, 70mpdd 43 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
7213, 71sylan2 593 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜏) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
7372imdistanda 572 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → ((∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
74 r19.26 3111 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)))
75 r19.26 3111 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
7673, 74, 753imtr4g 295 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7776reximdva 3168 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7811, 77syld 47 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7978ralrimdva 3154 . . 3 (𝜑 → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
804, 79biimtrid 241 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
81 fveq2 6891 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (ℤ𝑘) = (ℤ𝑗))
8230fvoveq1d 7430 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))
8382breq1d 5158 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 ↔ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
8481, 83raleqbidv 3342 . . . . . . . . . . 11 (𝑘 = 𝑗 → (∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
8584rspcv 3608 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
8685ad2antlr 725 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
87 fveq2 6891 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
8887oveq2d 7424 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → ((𝐹𝑗)𝐷(𝐹𝑚)) = ((𝐹𝑗)𝐷(𝐹𝑘)))
8988fveq2d 6895 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))))
9089breq1d 5158 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥 ↔ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥))
9190cbvralvw 3234 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥)
9233anim2i 617 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓)) → (𝜑𝜒))
9392anassrs 468 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (𝜑𝜒))
94 simpr 485 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → ∀𝑘 ∈ (ℤ𝑗)𝜓)
95 cau3lem.5 . . . . . . . . . . . . . . 15 ((𝜑𝜒𝜓) → (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) = (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))))
9695breq1d 5158 . . . . . . . . . . . . . 14 ((𝜑𝜒𝜓) → ((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
97963expia 1121 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝜓 → ((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
9897ralimdv 3169 . . . . . . . . . . . 12 ((𝜑𝜒) → (∀𝑘 ∈ (ℤ𝑗)𝜓 → ∀𝑘 ∈ (ℤ𝑗)((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
9993, 94, 98sylc 65 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → ∀𝑘 ∈ (ℤ𝑗)((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
100 ralbi 3103 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
10199, 100syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
10291, 101bitrid 282 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
10386, 102sylibd 238 . . . . . . . 8 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
10413, 103sylan2 593 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜏) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
105104imdistanda 572 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝑗)) → ((∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
10629, 105sylan2 593 . . . . 5 ((𝜑𝑗𝑍) → ((∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
107 r19.26 3111 . . . . 5 (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
108106, 75, 1073imtr4g 295 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
109108reximdva 3168 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
110109ralimdv 3169 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
11180, 110impbid 211 1 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  wrex 3070  wss 3948   class class class wbr 5148  cfv 6543  (class class class)co 7408  cr 11108   < clt 11247   / cdiv 11870  2c2 12266  cz 12557  cuz 12821  +crp 12973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-2 12274  df-z 12558  df-uz 12822  df-rp 12974
This theorem is referenced by:  cau3  15301  iscau3  24794
  Copyright terms: Public domain W3C validator