MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau4 Structured version   Visualization version   GIF version

Theorem iscau4 24523
Description: Express the property "𝐹 is a Cauchy sequence of metric 𝐷 " using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
iscau3.2 𝑍 = (ℤ𝑀)
iscau3.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
iscau3.4 (𝜑𝑀 ∈ ℤ)
iscau4.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
iscau4.6 ((𝜑𝑗𝑍) → (𝐹𝑗) = 𝐵)
Assertion
Ref Expression
iscau4 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐷   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑋,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘)   𝐵(𝑥,𝑗,𝑘)   𝑀(𝑥,𝑘)

Proof of Theorem iscau4
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 iscau3.2 . . . . 5 𝑍 = (ℤ𝑀)
2 iscau3.3 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
3 iscau3.4 . . . . 5 (𝜑𝑀 ∈ ℤ)
41, 2, 3iscau3 24522 . . . 4 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
5 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍) → 𝑗𝑍)
65, 1eleqtrdi 2847 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
7 eluzelz 12671 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
8 uzid 12676 . . . . . . . . . . . . . 14 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
96, 7, 83syl 18 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑗))
10 fveq2 6811 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (ℤ𝑘) = (ℤ𝑗))
11 fveq2 6811 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1211oveq1d 7331 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐹𝑘)𝐷(𝐹𝑚)) = ((𝐹𝑗)𝐷(𝐹𝑚)))
1312breq1d 5096 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ((𝐹𝑗)𝐷(𝐹𝑚)) < 𝑥))
1410, 13raleqbidv 3315 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑚)) < 𝑥))
1514rspcv 3565 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑚)) < 𝑥))
169, 15syl 17 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑚)) < 𝑥))
1716adantr 481 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑚)) < 𝑥))
18 fveq2 6811 . . . . . . . . . . . . . . 15 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
1918oveq2d 7332 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → ((𝐹𝑗)𝐷(𝐹𝑚)) = ((𝐹𝑗)𝐷(𝐹𝑘)))
2019breq1d 5096 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (((𝐹𝑗)𝐷(𝐹𝑚)) < 𝑥 ↔ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥))
2120cbvralvw 3221 . . . . . . . . . . . 12 (∀𝑚 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥)
22 simpr 485 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) → (𝐹𝑘) ∈ 𝑋)
2322ralimi 3082 . . . . . . . . . . . . . . 15 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑋)
2411eleq1d 2821 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹𝑗) ∈ 𝑋))
2524rspcv 3565 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑋 → (𝐹𝑗) ∈ 𝑋))
269, 23, 25syl2im 40 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) → (𝐹𝑗) ∈ 𝑋))
2726imp 407 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → (𝐹𝑗) ∈ 𝑋)
28 r19.26 3110 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥) ↔ (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥))
292ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → 𝐷 ∈ (∞Met‘𝑋))
30 simplr 766 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → (𝐹𝑗) ∈ 𝑋)
31 simprr 770 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → (𝐹𝑘) ∈ 𝑋)
32 xmetsym 23580 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
3329, 30, 31, 32syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
3433breq1d 5096 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → (((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
3534biimpd 228 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → (((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥 → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
3635expimpd 454 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) → (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥) → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
3736ralimdv 3162 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) → (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
3828, 37syl5bir 242 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) → ((∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
3938expd 416 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
4039impancom 452 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → ((𝐹𝑗) ∈ 𝑋 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
4127, 40mpd 15 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
4221, 41biimtrid 241 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → (∀𝑚 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑚)) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
4317, 42syld 47 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
4443imdistanda 572 . . . . . . . . 9 ((𝜑𝑗𝑍) → ((∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
45 r19.26 3110 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
46 r19.26 3110 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
4744, 45, 463imtr4g 295 . . . . . . . 8 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
48 df-3an 1088 . . . . . . . . 9 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4948ralbii 3092 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
50 df-3an 1088 . . . . . . . . 9 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
5150ralbii 3092 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
5247, 49, 513imtr4g 295 . . . . . . 7 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5352reximdva 3161 . . . . . 6 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5453ralimdv 3162 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5554anim2d 612 . . . 4 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)) → (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
564, 55sylbid 239 . . 3 (𝜑 → (𝐹 ∈ (Cau‘𝐷) → (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
57 uzssz 12682 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
581, 57eqsstri 3964 . . . . . . . 8 𝑍 ⊆ ℤ
59 ssrexv 3997 . . . . . . . 8 (𝑍 ⊆ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
6058, 59ax-mp 5 . . . . . . 7 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6160ralimi 3082 . . . . . 6 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6261anim2i 617 . . . . 5 ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)) → (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
63 iscau2 24521 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
6462, 63syl5ibr 245 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)) → 𝐹 ∈ (Cau‘𝐷)))
652, 64syl 17 . . 3 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)) → 𝐹 ∈ (Cau‘𝐷)))
6656, 65impbid 211 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
67 simpl 483 . . . . . . . . 9 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑗𝑍)
681uztrn2 12680 . . . . . . . . 9 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
6967, 68jca 512 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝑗𝑍𝑘𝑍))
70 iscau4.5 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
7170adantrl 713 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → (𝐹𝑘) = 𝐴)
7271eleq1d 2821 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → ((𝐹𝑘) ∈ 𝑋𝐴𝑋))
73 iscau4.6 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (𝐹𝑗) = 𝐵)
7473adantrr 714 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → (𝐹𝑗) = 𝐵)
7571, 74oveq12d 7334 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → ((𝐹𝑘)𝐷(𝐹𝑗)) = (𝐴𝐷𝐵))
7675breq1d 5096 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → (((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥 ↔ (𝐴𝐷𝐵) < 𝑥))
7772, 763anbi23d 1438 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
7869, 77sylan2 593 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
7978anassrs 468 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
8079ralbidva 3168 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
8180rexbidva 3169 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
8281ralbidv 3170 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
8382anbi2d 629 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))))
8466, 83bitrd 278 1 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  wrex 3070  wss 3896   class class class wbr 5086  dom cdm 5607  cfv 6465  (class class class)co 7316  pm cpm 8665  cc 10948   < clt 11088  cz 12398  cuz 12661  +crp 12809  ∞Metcxmet 20662  Cauccau 24497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-po 5520  df-so 5521  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-1st 7877  df-2nd 7878  df-er 8547  df-map 8666  df-pm 8667  df-en 8783  df-dom 8784  df-sdom 8785  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-2 12115  df-z 12399  df-uz 12662  df-rp 12810  df-xneg 12927  df-xadd 12928  df-psmet 20669  df-xmet 20670  df-bl 20672  df-cau 24500
This theorem is referenced by:  iscauf  24524  cmetcaulem  24532  caures  35995  caushft  35996
  Copyright terms: Public domain W3C validator