Step | Hyp | Ref
| Expression |
1 | | iscau3.2 |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | | iscau3.3 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
3 | | iscau3.4 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | 1, 2, 3 | iscau3 24442 |
. . . 4
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)))) |
5 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) |
6 | 5, 1 | eleqtrdi 2849 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
7 | | eluzelz 12592 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) |
8 | | uzid 12597 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) |
9 | 6, 7, 8 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑗)) |
10 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (ℤ≥‘𝑘) =
(ℤ≥‘𝑗)) |
11 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
12 | 11 | oveq1d 7290 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) = ((𝐹‘𝑗)𝐷(𝐹‘𝑚))) |
13 | 12 | breq1d 5084 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥 ↔ ((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < 𝑥)) |
14 | 10, 13 | raleqbidv 3336 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < 𝑥)) |
15 | 14 | rspcv 3557 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < 𝑥)) |
16 | 9, 15 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < 𝑥)) |
17 | 16 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < 𝑥)) |
18 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) |
19 | 18 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑘 → ((𝐹‘𝑗)𝐷(𝐹‘𝑚)) = ((𝐹‘𝑗)𝐷(𝐹‘𝑘))) |
20 | 19 | breq1d 5084 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑘 → (((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < 𝑥 ↔ ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥)) |
21 | 20 | cbvralvw 3383 |
. . . . . . . . . . . 12
⊢
(∀𝑚 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥) |
22 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) → (𝐹‘𝑘) ∈ 𝑋) |
23 | 22 | ralimi 3087 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑋) |
24 | 11 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ 𝑋 ↔ (𝐹‘𝑗) ∈ 𝑋)) |
25 | 24 | rspcv 3557 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑋 → (𝐹‘𝑗) ∈ 𝑋)) |
26 | 9, 23, 25 | syl2im 40 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) → (𝐹‘𝑗) ∈ 𝑋)) |
27 | 26 | imp 407 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → (𝐹‘𝑗) ∈ 𝑋) |
28 | | r19.26 3095 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥) ↔ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥)) |
29 | 2 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → 𝐷 ∈ (∞Met‘𝑋)) |
30 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → (𝐹‘𝑗) ∈ 𝑋) |
31 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → (𝐹‘𝑘) ∈ 𝑋) |
32 | | xmetsym 23500 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ (𝐹‘𝑘) ∈ 𝑋) → ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(𝐹‘𝑗))) |
33 | 29, 30, 31, 32 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(𝐹‘𝑗))) |
34 | 33 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → (((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
35 | 34 | biimpd 228 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → (((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥 → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
36 | 35 | expimpd 454 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) → (((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥) → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
37 | 36 | ralimdv 3109 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
38 | 28, 37 | syl5bir 242 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) → ((∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
39 | 38 | expd 416 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
40 | 39 | impancom 452 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → ((𝐹‘𝑗) ∈ 𝑋 → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
41 | 27, 40 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
42 | 21, 41 | syl5bi 241 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → (∀𝑚 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
43 | 17, 42 | syld 47 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
44 | 43 | imdistanda 572 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
45 | | r19.26 3095 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) ↔ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) |
46 | | r19.26 3095 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
47 | 44, 45, 46 | 3imtr4g 296 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
48 | | df-3an 1088 |
. . . . . . . . 9
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) |
49 | 48 | ralbii 3092 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) |
50 | | df-3an 1088 |
. . . . . . . . 9
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
51 | 50 | ralbii 3092 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
52 | 47, 49, 51 | 3imtr4g 296 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
53 | 52 | reximdva 3203 |
. . . . . 6
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
54 | 53 | ralimdv 3109 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
55 | 54 | anim2d 612 |
. . . 4
⊢ (𝜑 → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) |
56 | 4, 55 | sylbid 239 |
. . 3
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) |
57 | | uzssz 12603 |
. . . . . . . . 9
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
58 | 1, 57 | eqsstri 3955 |
. . . . . . . 8
⊢ 𝑍 ⊆
ℤ |
59 | | ssrexv 3988 |
. . . . . . . 8
⊢ (𝑍 ⊆ ℤ →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
60 | 58, 59 | ax-mp 5 |
. . . . . . 7
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
61 | 60 | ralimi 3087 |
. . . . . 6
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
62 | 61 | anim2i 617 |
. . . . 5
⊢ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
63 | | iscau2 24441 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) |
64 | 62, 63 | syl5ibr 245 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) → 𝐹 ∈ (Cau‘𝐷))) |
65 | 2, 64 | syl 17 |
. . 3
⊢ (𝜑 → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) → 𝐹 ∈ (Cau‘𝐷))) |
66 | 56, 65 | impbid 211 |
. 2
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) |
67 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑗 ∈ 𝑍) |
68 | 1 | uztrn2 12601 |
. . . . . . . . 9
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
69 | 67, 68 | jca 512 |
. . . . . . . 8
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) |
70 | | iscau4.5 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
71 | 70 | adantrl 713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) → (𝐹‘𝑘) = 𝐴) |
72 | 71 | eleq1d 2823 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) → ((𝐹‘𝑘) ∈ 𝑋 ↔ 𝐴 ∈ 𝑋)) |
73 | | iscau4.6 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = 𝐵) |
74 | 73 | adantrr 714 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) → (𝐹‘𝑗) = 𝐵) |
75 | 71, 74 | oveq12d 7293 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) = (𝐴𝐷𝐵)) |
76 | 75 | breq1d 5084 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) → (((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥 ↔ (𝐴𝐷𝐵) < 𝑥)) |
77 | 72, 76 | 3anbi23d 1438 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))) |
78 | 69, 77 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))) |
79 | 78 | anassrs 468 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))) |
80 | 79 | ralbidva 3111 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))) |
81 | 80 | rexbidva 3225 |
. . . 4
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))) |
82 | 81 | ralbidv 3112 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))) |
83 | 82 | anbi2d 629 |
. 2
⊢ (𝜑 → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))) |
84 | 66, 83 | bitrd 278 |
1
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))) |