| Step | Hyp | Ref
| Expression |
| 1 | | iscau3.2 |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 2 | | iscau3.3 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 3 | | iscau3.4 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 4 | 1, 2, 3 | iscau3 25312 |
. . . 4
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)))) |
| 5 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) |
| 6 | 5, 1 | eleqtrdi 2851 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
| 7 | | eluzelz 12888 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) |
| 8 | | uzid 12893 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) |
| 9 | 6, 7, 8 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑗)) |
| 10 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (ℤ≥‘𝑘) =
(ℤ≥‘𝑗)) |
| 11 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
| 12 | 11 | oveq1d 7446 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) = ((𝐹‘𝑗)𝐷(𝐹‘𝑚))) |
| 13 | 12 | breq1d 5153 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥 ↔ ((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < 𝑥)) |
| 14 | 10, 13 | raleqbidv 3346 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < 𝑥)) |
| 15 | 14 | rspcv 3618 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < 𝑥)) |
| 16 | 9, 15 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < 𝑥)) |
| 17 | 16 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < 𝑥)) |
| 18 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) |
| 19 | 18 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑘 → ((𝐹‘𝑗)𝐷(𝐹‘𝑚)) = ((𝐹‘𝑗)𝐷(𝐹‘𝑘))) |
| 20 | 19 | breq1d 5153 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑘 → (((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < 𝑥 ↔ ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥)) |
| 21 | 20 | cbvralvw 3237 |
. . . . . . . . . . . 12
⊢
(∀𝑚 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥) |
| 22 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) → (𝐹‘𝑘) ∈ 𝑋) |
| 23 | 22 | ralimi 3083 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑋) |
| 24 | 11 | eleq1d 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ 𝑋 ↔ (𝐹‘𝑗) ∈ 𝑋)) |
| 25 | 24 | rspcv 3618 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑋 → (𝐹‘𝑗) ∈ 𝑋)) |
| 26 | 9, 23, 25 | syl2im 40 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) → (𝐹‘𝑗) ∈ 𝑋)) |
| 27 | 26 | imp 406 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → (𝐹‘𝑗) ∈ 𝑋) |
| 28 | | r19.26 3111 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥) ↔ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥)) |
| 29 | 2 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → 𝐷 ∈ (∞Met‘𝑋)) |
| 30 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → (𝐹‘𝑗) ∈ 𝑋) |
| 31 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → (𝐹‘𝑘) ∈ 𝑋) |
| 32 | | xmetsym 24357 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ (𝐹‘𝑘) ∈ 𝑋) → ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(𝐹‘𝑗))) |
| 33 | 29, 30, 31, 32 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(𝐹‘𝑗))) |
| 34 | 33 | breq1d 5153 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → (((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
| 35 | 34 | biimpd 229 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → (((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥 → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
| 36 | 35 | expimpd 453 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) → (((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥) → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
| 37 | 36 | ralimdv 3169 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
| 38 | 28, 37 | biimtrrid 243 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) → ((∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
| 39 | 38 | expd 415 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) ∈ 𝑋) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
| 40 | 39 | impancom 451 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → ((𝐹‘𝑗) ∈ 𝑋 → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
| 41 | 27, 40 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
| 42 | 21, 41 | biimtrid 242 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → (∀𝑚 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
| 43 | 17, 42 | syld 47 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
| 44 | 43 | imdistanda 571 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
| 45 | | r19.26 3111 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) ↔ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) |
| 46 | | r19.26 3111 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
| 47 | 44, 45, 46 | 3imtr4g 296 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
| 48 | | df-3an 1089 |
. . . . . . . . 9
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) |
| 49 | 48 | ralbii 3093 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) |
| 50 | | df-3an 1089 |
. . . . . . . . 9
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
| 51 | 50 | ralbii 3093 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
| 52 | 47, 49, 51 | 3imtr4g 296 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
| 53 | 52 | reximdva 3168 |
. . . . . 6
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
| 54 | 53 | ralimdv 3169 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
| 55 | 54 | anim2d 612 |
. . . 4
⊢ (𝜑 → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) |
| 56 | 4, 55 | sylbid 240 |
. . 3
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) |
| 57 | | uzssz 12899 |
. . . . . . . . 9
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
| 58 | 1, 57 | eqsstri 4030 |
. . . . . . . 8
⊢ 𝑍 ⊆
ℤ |
| 59 | | ssrexv 4053 |
. . . . . . . 8
⊢ (𝑍 ⊆ ℤ →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
| 60 | 58, 59 | ax-mp 5 |
. . . . . . 7
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
| 61 | 60 | ralimi 3083 |
. . . . . 6
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
| 62 | 61 | anim2i 617 |
. . . . 5
⊢ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
| 63 | | iscau2 25311 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) |
| 64 | 62, 63 | imbitrrid 246 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) → 𝐹 ∈ (Cau‘𝐷))) |
| 65 | 2, 64 | syl 17 |
. . 3
⊢ (𝜑 → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) → 𝐹 ∈ (Cau‘𝐷))) |
| 66 | 56, 65 | impbid 212 |
. 2
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) |
| 67 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑗 ∈ 𝑍) |
| 68 | 1 | uztrn2 12897 |
. . . . . . . . 9
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
| 69 | 67, 68 | jca 511 |
. . . . . . . 8
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) |
| 70 | | iscau4.5 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
| 71 | 70 | adantrl 716 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) → (𝐹‘𝑘) = 𝐴) |
| 72 | 71 | eleq1d 2826 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) → ((𝐹‘𝑘) ∈ 𝑋 ↔ 𝐴 ∈ 𝑋)) |
| 73 | | iscau4.6 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = 𝐵) |
| 74 | 73 | adantrr 717 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) → (𝐹‘𝑗) = 𝐵) |
| 75 | 71, 74 | oveq12d 7449 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) = (𝐴𝐷𝐵)) |
| 76 | 75 | breq1d 5153 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) → (((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥 ↔ (𝐴𝐷𝐵) < 𝑥)) |
| 77 | 72, 76 | 3anbi23d 1441 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))) |
| 78 | 69, 77 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))) |
| 79 | 78 | anassrs 467 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))) |
| 80 | 79 | ralbidva 3176 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))) |
| 81 | 80 | rexbidva 3177 |
. . . 4
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))) |
| 82 | 81 | ralbidv 3178 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))) |
| 83 | 82 | anbi2d 630 |
. 2
⊢ (𝜑 → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))) |
| 84 | 66, 83 | bitrd 279 |
1
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))) |