MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau4 Structured version   Visualization version   GIF version

Theorem iscau4 24443
Description: Express the property "𝐹 is a Cauchy sequence of metric 𝐷 " using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
iscau3.2 𝑍 = (ℤ𝑀)
iscau3.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
iscau3.4 (𝜑𝑀 ∈ ℤ)
iscau4.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
iscau4.6 ((𝜑𝑗𝑍) → (𝐹𝑗) = 𝐵)
Assertion
Ref Expression
iscau4 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐷   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑋,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘)   𝐵(𝑥,𝑗,𝑘)   𝑀(𝑥,𝑘)

Proof of Theorem iscau4
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 iscau3.2 . . . . 5 𝑍 = (ℤ𝑀)
2 iscau3.3 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
3 iscau3.4 . . . . 5 (𝜑𝑀 ∈ ℤ)
41, 2, 3iscau3 24442 . . . 4 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
5 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍) → 𝑗𝑍)
65, 1eleqtrdi 2849 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
7 eluzelz 12592 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
8 uzid 12597 . . . . . . . . . . . . . 14 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
96, 7, 83syl 18 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑗))
10 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (ℤ𝑘) = (ℤ𝑗))
11 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1211oveq1d 7290 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐹𝑘)𝐷(𝐹𝑚)) = ((𝐹𝑗)𝐷(𝐹𝑚)))
1312breq1d 5084 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ((𝐹𝑗)𝐷(𝐹𝑚)) < 𝑥))
1410, 13raleqbidv 3336 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑚)) < 𝑥))
1514rspcv 3557 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑚)) < 𝑥))
169, 15syl 17 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑚)) < 𝑥))
1716adantr 481 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑚)) < 𝑥))
18 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
1918oveq2d 7291 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → ((𝐹𝑗)𝐷(𝐹𝑚)) = ((𝐹𝑗)𝐷(𝐹𝑘)))
2019breq1d 5084 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (((𝐹𝑗)𝐷(𝐹𝑚)) < 𝑥 ↔ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥))
2120cbvralvw 3383 . . . . . . . . . . . 12 (∀𝑚 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥)
22 simpr 485 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) → (𝐹𝑘) ∈ 𝑋)
2322ralimi 3087 . . . . . . . . . . . . . . 15 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑋)
2411eleq1d 2823 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹𝑗) ∈ 𝑋))
2524rspcv 3557 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑋 → (𝐹𝑗) ∈ 𝑋))
269, 23, 25syl2im 40 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) → (𝐹𝑗) ∈ 𝑋))
2726imp 407 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → (𝐹𝑗) ∈ 𝑋)
28 r19.26 3095 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥) ↔ (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥))
292ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → 𝐷 ∈ (∞Met‘𝑋))
30 simplr 766 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → (𝐹𝑗) ∈ 𝑋)
31 simprr 770 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → (𝐹𝑘) ∈ 𝑋)
32 xmetsym 23500 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
3329, 30, 31, 32syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
3433breq1d 5084 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → (((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
3534biimpd 228 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → (((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥 → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
3635expimpd 454 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) → (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥) → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
3736ralimdv 3109 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) → (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
3828, 37syl5bir 242 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) → ((∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
3938expd 416 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) ∈ 𝑋) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
4039impancom 452 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → ((𝐹𝑗) ∈ 𝑋 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
4127, 40mpd 15 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
4221, 41syl5bi 241 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → (∀𝑚 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑚)) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
4317, 42syld 47 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋)) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
4443imdistanda 572 . . . . . . . . 9 ((𝜑𝑗𝑍) → ((∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
45 r19.26 3095 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
46 r19.26 3095 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
4744, 45, 463imtr4g 296 . . . . . . . 8 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
48 df-3an 1088 . . . . . . . . 9 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4948ralbii 3092 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
50 df-3an 1088 . . . . . . . . 9 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
5150ralbii 3092 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
5247, 49, 513imtr4g 296 . . . . . . 7 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5352reximdva 3203 . . . . . 6 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5453ralimdv 3109 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5554anim2d 612 . . . 4 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)) → (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
564, 55sylbid 239 . . 3 (𝜑 → (𝐹 ∈ (Cau‘𝐷) → (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
57 uzssz 12603 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
581, 57eqsstri 3955 . . . . . . . 8 𝑍 ⊆ ℤ
59 ssrexv 3988 . . . . . . . 8 (𝑍 ⊆ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
6058, 59ax-mp 5 . . . . . . 7 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6160ralimi 3087 . . . . . 6 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6261anim2i 617 . . . . 5 ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)) → (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
63 iscau2 24441 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
6462, 63syl5ibr 245 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)) → 𝐹 ∈ (Cau‘𝐷)))
652, 64syl 17 . . 3 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)) → 𝐹 ∈ (Cau‘𝐷)))
6656, 65impbid 211 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
67 simpl 483 . . . . . . . . 9 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑗𝑍)
681uztrn2 12601 . . . . . . . . 9 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
6967, 68jca 512 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝑗𝑍𝑘𝑍))
70 iscau4.5 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
7170adantrl 713 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → (𝐹𝑘) = 𝐴)
7271eleq1d 2823 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → ((𝐹𝑘) ∈ 𝑋𝐴𝑋))
73 iscau4.6 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (𝐹𝑗) = 𝐵)
7473adantrr 714 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → (𝐹𝑗) = 𝐵)
7571, 74oveq12d 7293 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → ((𝐹𝑘)𝐷(𝐹𝑗)) = (𝐴𝐷𝐵))
7675breq1d 5084 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → (((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥 ↔ (𝐴𝐷𝐵) < 𝑥))
7772, 763anbi23d 1438 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
7869, 77sylan2 593 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
7978anassrs 468 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
8079ralbidva 3111 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
8180rexbidva 3225 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
8281ralbidv 3112 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
8382anbi2d 629 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))))
8466, 83bitrd 278 1 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887   class class class wbr 5074  dom cdm 5589  cfv 6433  (class class class)co 7275  pm cpm 8616  cc 10869   < clt 11009  cz 12319  cuz 12582  +crp 12730  ∞Metcxmet 20582  Cauccau 24417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-z 12320  df-uz 12583  df-rp 12731  df-xneg 12848  df-xadd 12849  df-psmet 20589  df-xmet 20590  df-bl 20592  df-cau 24420
This theorem is referenced by:  iscauf  24444  cmetcaulem  24452  caures  35918  caushft  35919
  Copyright terms: Public domain W3C validator