MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caussi Structured version   Visualization version   GIF version

Theorem caussi 24366
Description: Cauchy sequence on a metric subspace. (Contributed by NM, 30-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
caussi (𝐷 ∈ (∞Met‘𝑋) → (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ⊆ (Cau‘𝐷))

Proof of Theorem caussi
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4159 . . . . . . . . 9 (𝑋𝑌) ⊆ 𝑋
2 xpss2 5600 . . . . . . . . 9 ((𝑋𝑌) ⊆ 𝑋 → (ℂ × (𝑋𝑌)) ⊆ (ℂ × 𝑋))
31, 2ax-mp 5 . . . . . . . 8 (ℂ × (𝑋𝑌)) ⊆ (ℂ × 𝑋)
4 sstr 3925 . . . . . . . 8 ((𝑓 ⊆ (ℂ × (𝑋𝑌)) ∧ (ℂ × (𝑋𝑌)) ⊆ (ℂ × 𝑋)) → 𝑓 ⊆ (ℂ × 𝑋))
53, 4mpan2 687 . . . . . . 7 (𝑓 ⊆ (ℂ × (𝑋𝑌)) → 𝑓 ⊆ (ℂ × 𝑋))
65anim2i 616 . . . . . 6 ((Fun 𝑓𝑓 ⊆ (ℂ × (𝑋𝑌))) → (Fun 𝑓𝑓 ⊆ (ℂ × 𝑋)))
76a1i 11 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → ((Fun 𝑓𝑓 ⊆ (ℂ × (𝑋𝑌))) → (Fun 𝑓𝑓 ⊆ (ℂ × 𝑋))))
8 elfvdm 6788 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
9 inex1g 5238 . . . . . . 7 (𝑋 ∈ dom ∞Met → (𝑋𝑌) ∈ V)
108, 9syl 17 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ∈ V)
11 cnex 10883 . . . . . 6 ℂ ∈ V
12 elpmg 8589 . . . . . 6 (((𝑋𝑌) ∈ V ∧ ℂ ∈ V) → (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ↔ (Fun 𝑓𝑓 ⊆ (ℂ × (𝑋𝑌)))))
1310, 11, 12sylancl 585 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ↔ (Fun 𝑓𝑓 ⊆ (ℂ × (𝑋𝑌)))))
14 elpmg 8589 . . . . . 6 ((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) → (𝑓 ∈ (𝑋pm ℂ) ↔ (Fun 𝑓𝑓 ⊆ (ℂ × 𝑋))))
158, 11, 14sylancl 585 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (𝑋pm ℂ) ↔ (Fun 𝑓𝑓 ⊆ (ℂ × 𝑋))))
167, 13, 153imtr4d 293 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) → 𝑓 ∈ (𝑋pm ℂ)))
17 uzid 12526 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ (ℤ𝑦))
1817adantl 481 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ (ℤ𝑦))
19 simp2 1135 . . . . . . . . . 10 ((𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → (𝑓𝑧) ∈ (𝑋𝑌))
2019ralimi 3086 . . . . . . . . 9 (∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∀𝑧 ∈ (ℤ𝑦)(𝑓𝑧) ∈ (𝑋𝑌))
21 fveq2 6756 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝑓𝑧) = (𝑓𝑦))
2221eleq1d 2823 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝑓𝑧) ∈ (𝑋𝑌) ↔ (𝑓𝑦) ∈ (𝑋𝑌)))
2322rspcva 3550 . . . . . . . . 9 ((𝑦 ∈ (ℤ𝑦) ∧ ∀𝑧 ∈ (ℤ𝑦)(𝑓𝑧) ∈ (𝑋𝑌)) → (𝑓𝑦) ∈ (𝑋𝑌))
2418, 20, 23syl2an 595 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → (𝑓𝑦) ∈ (𝑋𝑌))
25 simpr 484 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → (𝑓𝑦) ∈ (𝑋𝑌))
2625elin2d 4129 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → (𝑓𝑦) ∈ 𝑌)
27 inss2 4160 . . . . . . . . . . . . . . . . . . . 20 (𝑋𝑌) ⊆ 𝑌
2827a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (𝑋𝑌) ⊆ 𝑌)
2928sselda 3917 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → (𝑓𝑧) ∈ 𝑌)
30 simplr 765 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → (𝑓𝑦) ∈ 𝑌)
3129, 30ovresd 7417 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) = ((𝑓𝑧)𝐷(𝑓𝑦)))
3231breq1d 5080 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → (((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥 ↔ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))
3332biimpd 228 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → (((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥 → ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))
3433imdistanda 571 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
351a1i 11 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (𝑋𝑌) ⊆ 𝑋)
3635sseld 3916 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → ((𝑓𝑧) ∈ (𝑋𝑌) → (𝑓𝑧) ∈ 𝑋))
3736anim1d 610 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥) → ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
3834, 37syld 47 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
3926, 38syldan 590 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → (((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4039anim2d 611 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → ((𝑧 ∈ dom 𝑓 ∧ ((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → (𝑧 ∈ dom 𝑓 ∧ ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))))
41 3anass 1093 . . . . . . . . . . 11 ((𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) ↔ (𝑧 ∈ dom 𝑓 ∧ ((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)))
42 3anass 1093 . . . . . . . . . . 11 ((𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥) ↔ (𝑧 ∈ dom 𝑓 ∧ ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4340, 41, 423imtr4g 295 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → ((𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → (𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4443ralimdv 3103 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → (∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4544impancom 451 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → ((𝑓𝑦) ∈ (𝑋𝑌) → ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4624, 45mpd 15 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))
4746ex 412 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) → (∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4847reximdva 3202 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (∃𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∃𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4948ralimdv 3103 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
5016, 49anim12d 608 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ((𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → (𝑓 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))))
51 xmetres 23425 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
52 iscau2 24346 . . . 4 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) → (𝑓 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥))))
5351, 52syl 17 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥))))
54 iscau2 24346 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (Cau‘𝐷) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))))
5550, 53, 543imtr4d 293 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) → 𝑓 ∈ (Cau‘𝐷)))
5655ssrdv 3923 1 (𝐷 ∈ (∞Met‘𝑋) → (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ⊆ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883   class class class wbr 5070   × cxp 5578  dom cdm 5580  cres 5582  Fun wfun 6412  cfv 6418  (class class class)co 7255  pm cpm 8574  cc 10800   < clt 10940  cz 12249  cuz 12511  +crp 12659  ∞Metcxmet 20495  Cauccau 24322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-neg 11138  df-z 12250  df-uz 12512  df-rp 12660  df-xadd 12778  df-psmet 20502  df-xmet 20503  df-bl 20505  df-cau 24325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator