MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caussi Structured version   Visualization version   GIF version

Theorem caussi 25224
Description: Cauchy sequence on a metric subspace. (Contributed by NM, 30-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
caussi (𝐷 ∈ (∞Met‘𝑋) → (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ⊆ (Cau‘𝐷))

Proof of Theorem caussi
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4184 . . . . . . . . 9 (𝑋𝑌) ⊆ 𝑋
2 xpss2 5634 . . . . . . . . 9 ((𝑋𝑌) ⊆ 𝑋 → (ℂ × (𝑋𝑌)) ⊆ (ℂ × 𝑋))
31, 2ax-mp 5 . . . . . . . 8 (ℂ × (𝑋𝑌)) ⊆ (ℂ × 𝑋)
4 sstr 3938 . . . . . . . 8 ((𝑓 ⊆ (ℂ × (𝑋𝑌)) ∧ (ℂ × (𝑋𝑌)) ⊆ (ℂ × 𝑋)) → 𝑓 ⊆ (ℂ × 𝑋))
53, 4mpan2 691 . . . . . . 7 (𝑓 ⊆ (ℂ × (𝑋𝑌)) → 𝑓 ⊆ (ℂ × 𝑋))
65anim2i 617 . . . . . 6 ((Fun 𝑓𝑓 ⊆ (ℂ × (𝑋𝑌))) → (Fun 𝑓𝑓 ⊆ (ℂ × 𝑋)))
76a1i 11 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → ((Fun 𝑓𝑓 ⊆ (ℂ × (𝑋𝑌))) → (Fun 𝑓𝑓 ⊆ (ℂ × 𝑋))))
8 elfvdm 6856 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
9 inex1g 5255 . . . . . . 7 (𝑋 ∈ dom ∞Met → (𝑋𝑌) ∈ V)
108, 9syl 17 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ∈ V)
11 cnex 11087 . . . . . 6 ℂ ∈ V
12 elpmg 8767 . . . . . 6 (((𝑋𝑌) ∈ V ∧ ℂ ∈ V) → (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ↔ (Fun 𝑓𝑓 ⊆ (ℂ × (𝑋𝑌)))))
1310, 11, 12sylancl 586 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ↔ (Fun 𝑓𝑓 ⊆ (ℂ × (𝑋𝑌)))))
14 elpmg 8767 . . . . . 6 ((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) → (𝑓 ∈ (𝑋pm ℂ) ↔ (Fun 𝑓𝑓 ⊆ (ℂ × 𝑋))))
158, 11, 14sylancl 586 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (𝑋pm ℂ) ↔ (Fun 𝑓𝑓 ⊆ (ℂ × 𝑋))))
167, 13, 153imtr4d 294 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) → 𝑓 ∈ (𝑋pm ℂ)))
17 uzid 12747 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ (ℤ𝑦))
1817adantl 481 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ (ℤ𝑦))
19 simp2 1137 . . . . . . . . . 10 ((𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → (𝑓𝑧) ∈ (𝑋𝑌))
2019ralimi 3069 . . . . . . . . 9 (∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∀𝑧 ∈ (ℤ𝑦)(𝑓𝑧) ∈ (𝑋𝑌))
21 fveq2 6822 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝑓𝑧) = (𝑓𝑦))
2221eleq1d 2816 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝑓𝑧) ∈ (𝑋𝑌) ↔ (𝑓𝑦) ∈ (𝑋𝑌)))
2322rspcva 3570 . . . . . . . . 9 ((𝑦 ∈ (ℤ𝑦) ∧ ∀𝑧 ∈ (ℤ𝑦)(𝑓𝑧) ∈ (𝑋𝑌)) → (𝑓𝑦) ∈ (𝑋𝑌))
2418, 20, 23syl2an 596 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → (𝑓𝑦) ∈ (𝑋𝑌))
25 simpr 484 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → (𝑓𝑦) ∈ (𝑋𝑌))
2625elin2d 4152 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → (𝑓𝑦) ∈ 𝑌)
27 inss2 4185 . . . . . . . . . . . . . . . . . . . 20 (𝑋𝑌) ⊆ 𝑌
2827a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (𝑋𝑌) ⊆ 𝑌)
2928sselda 3929 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → (𝑓𝑧) ∈ 𝑌)
30 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → (𝑓𝑦) ∈ 𝑌)
3129, 30ovresd 7513 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) = ((𝑓𝑧)𝐷(𝑓𝑦)))
3231breq1d 5099 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → (((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥 ↔ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))
3332biimpd 229 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → (((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥 → ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))
3433imdistanda 571 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
351a1i 11 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (𝑋𝑌) ⊆ 𝑋)
3635sseld 3928 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → ((𝑓𝑧) ∈ (𝑋𝑌) → (𝑓𝑧) ∈ 𝑋))
3736anim1d 611 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥) → ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
3834, 37syld 47 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
3926, 38syldan 591 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → (((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4039anim2d 612 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → ((𝑧 ∈ dom 𝑓 ∧ ((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → (𝑧 ∈ dom 𝑓 ∧ ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))))
41 3anass 1094 . . . . . . . . . . 11 ((𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) ↔ (𝑧 ∈ dom 𝑓 ∧ ((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)))
42 3anass 1094 . . . . . . . . . . 11 ((𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥) ↔ (𝑧 ∈ dom 𝑓 ∧ ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4340, 41, 423imtr4g 296 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → ((𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → (𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4443ralimdv 3146 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → (∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4544impancom 451 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → ((𝑓𝑦) ∈ (𝑋𝑌) → ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4624, 45mpd 15 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))
4746ex 412 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) → (∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4847reximdva 3145 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (∃𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∃𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4948ralimdv 3146 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
5016, 49anim12d 609 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ((𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → (𝑓 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))))
51 xmetres 24279 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
52 iscau2 25204 . . . 4 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) → (𝑓 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥))))
5351, 52syl 17 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥))))
54 iscau2 25204 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (Cau‘𝐷) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))))
5550, 53, 543imtr4d 294 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) → 𝑓 ∈ (Cau‘𝐷)))
5655ssrdv 3935 1 (𝐷 ∈ (∞Met‘𝑋) → (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ⊆ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cin 3896  wss 3897   class class class wbr 5089   × cxp 5612  dom cdm 5614  cres 5616  Fun wfun 6475  cfv 6481  (class class class)co 7346  pm cpm 8751  cc 11004   < clt 11146  cz 12468  cuz 12732  +crp 12890  ∞Metcxmet 21276  Cauccau 25180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-neg 11347  df-z 12469  df-uz 12733  df-rp 12891  df-xadd 13012  df-psmet 21283  df-xmet 21284  df-bl 21286  df-cau 25183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator