MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caussi Structured version   Visualization version   GIF version

Theorem caussi 25195
Description: Cauchy sequence on a metric subspace. (Contributed by NM, 30-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
caussi (𝐷 ∈ (∞Met‘𝑋) → (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ⊆ (Cau‘𝐷))

Proof of Theorem caussi
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4188 . . . . . . . . 9 (𝑋𝑌) ⊆ 𝑋
2 xpss2 5639 . . . . . . . . 9 ((𝑋𝑌) ⊆ 𝑋 → (ℂ × (𝑋𝑌)) ⊆ (ℂ × 𝑋))
31, 2ax-mp 5 . . . . . . . 8 (ℂ × (𝑋𝑌)) ⊆ (ℂ × 𝑋)
4 sstr 3944 . . . . . . . 8 ((𝑓 ⊆ (ℂ × (𝑋𝑌)) ∧ (ℂ × (𝑋𝑌)) ⊆ (ℂ × 𝑋)) → 𝑓 ⊆ (ℂ × 𝑋))
53, 4mpan2 691 . . . . . . 7 (𝑓 ⊆ (ℂ × (𝑋𝑌)) → 𝑓 ⊆ (ℂ × 𝑋))
65anim2i 617 . . . . . 6 ((Fun 𝑓𝑓 ⊆ (ℂ × (𝑋𝑌))) → (Fun 𝑓𝑓 ⊆ (ℂ × 𝑋)))
76a1i 11 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → ((Fun 𝑓𝑓 ⊆ (ℂ × (𝑋𝑌))) → (Fun 𝑓𝑓 ⊆ (ℂ × 𝑋))))
8 elfvdm 6857 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
9 inex1g 5258 . . . . . . 7 (𝑋 ∈ dom ∞Met → (𝑋𝑌) ∈ V)
108, 9syl 17 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ∈ V)
11 cnex 11090 . . . . . 6 ℂ ∈ V
12 elpmg 8770 . . . . . 6 (((𝑋𝑌) ∈ V ∧ ℂ ∈ V) → (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ↔ (Fun 𝑓𝑓 ⊆ (ℂ × (𝑋𝑌)))))
1310, 11, 12sylancl 586 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ↔ (Fun 𝑓𝑓 ⊆ (ℂ × (𝑋𝑌)))))
14 elpmg 8770 . . . . . 6 ((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) → (𝑓 ∈ (𝑋pm ℂ) ↔ (Fun 𝑓𝑓 ⊆ (ℂ × 𝑋))))
158, 11, 14sylancl 586 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (𝑋pm ℂ) ↔ (Fun 𝑓𝑓 ⊆ (ℂ × 𝑋))))
167, 13, 153imtr4d 294 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) → 𝑓 ∈ (𝑋pm ℂ)))
17 uzid 12750 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ (ℤ𝑦))
1817adantl 481 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ (ℤ𝑦))
19 simp2 1137 . . . . . . . . . 10 ((𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → (𝑓𝑧) ∈ (𝑋𝑌))
2019ralimi 3066 . . . . . . . . 9 (∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∀𝑧 ∈ (ℤ𝑦)(𝑓𝑧) ∈ (𝑋𝑌))
21 fveq2 6822 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝑓𝑧) = (𝑓𝑦))
2221eleq1d 2813 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝑓𝑧) ∈ (𝑋𝑌) ↔ (𝑓𝑦) ∈ (𝑋𝑌)))
2322rspcva 3575 . . . . . . . . 9 ((𝑦 ∈ (ℤ𝑦) ∧ ∀𝑧 ∈ (ℤ𝑦)(𝑓𝑧) ∈ (𝑋𝑌)) → (𝑓𝑦) ∈ (𝑋𝑌))
2418, 20, 23syl2an 596 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → (𝑓𝑦) ∈ (𝑋𝑌))
25 simpr 484 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → (𝑓𝑦) ∈ (𝑋𝑌))
2625elin2d 4156 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → (𝑓𝑦) ∈ 𝑌)
27 inss2 4189 . . . . . . . . . . . . . . . . . . . 20 (𝑋𝑌) ⊆ 𝑌
2827a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (𝑋𝑌) ⊆ 𝑌)
2928sselda 3935 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → (𝑓𝑧) ∈ 𝑌)
30 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → (𝑓𝑦) ∈ 𝑌)
3129, 30ovresd 7516 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) = ((𝑓𝑧)𝐷(𝑓𝑦)))
3231breq1d 5102 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → (((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥 ↔ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))
3332biimpd 229 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → (((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥 → ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))
3433imdistanda 571 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
351a1i 11 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (𝑋𝑌) ⊆ 𝑋)
3635sseld 3934 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → ((𝑓𝑧) ∈ (𝑋𝑌) → (𝑓𝑧) ∈ 𝑋))
3736anim1d 611 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥) → ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
3834, 37syld 47 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
3926, 38syldan 591 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → (((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4039anim2d 612 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → ((𝑧 ∈ dom 𝑓 ∧ ((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → (𝑧 ∈ dom 𝑓 ∧ ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))))
41 3anass 1094 . . . . . . . . . . 11 ((𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) ↔ (𝑧 ∈ dom 𝑓 ∧ ((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)))
42 3anass 1094 . . . . . . . . . . 11 ((𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥) ↔ (𝑧 ∈ dom 𝑓 ∧ ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4340, 41, 423imtr4g 296 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → ((𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → (𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4443ralimdv 3143 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → (∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4544impancom 451 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → ((𝑓𝑦) ∈ (𝑋𝑌) → ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4624, 45mpd 15 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))
4746ex 412 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) → (∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4847reximdva 3142 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (∃𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∃𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4948ralimdv 3143 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
5016, 49anim12d 609 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ((𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → (𝑓 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))))
51 xmetres 24250 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
52 iscau2 25175 . . . 4 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) → (𝑓 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥))))
5351, 52syl 17 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥))))
54 iscau2 25175 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (Cau‘𝐷) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))))
5550, 53, 543imtr4d 294 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) → 𝑓 ∈ (Cau‘𝐷)))
5655ssrdv 3941 1 (𝐷 ∈ (∞Met‘𝑋) → (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ⊆ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  cin 3902  wss 3903   class class class wbr 5092   × cxp 5617  dom cdm 5619  cres 5621  Fun wfun 6476  cfv 6482  (class class class)co 7349  pm cpm 8754  cc 11007   < clt 11149  cz 12471  cuz 12735  +crp 12893  ∞Metcxmet 21246  Cauccau 25151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-neg 11350  df-z 12472  df-uz 12736  df-rp 12894  df-xadd 13015  df-psmet 21253  df-xmet 21254  df-bl 21256  df-cau 25154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator