Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrngo3 Structured version   Visualization version   GIF version

Theorem isdrngo3 37983
Description: A division ring is a ring in which 1 ≠ 0 and every nonzero element is invertible. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
isdivrng1.1 𝐺 = (1st𝑅)
isdivrng1.2 𝐻 = (2nd𝑅)
isdivrng1.3 𝑍 = (GId‘𝐺)
isdivrng1.4 𝑋 = ran 𝐺
isdivrng2.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
isdrngo3 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
Distinct variable groups:   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem isdrngo3
StepHypRef Expression
1 isdivrng1.1 . . 3 𝐺 = (1st𝑅)
2 isdivrng1.2 . . 3 𝐻 = (2nd𝑅)
3 isdivrng1.3 . . 3 𝑍 = (GId‘𝐺)
4 isdivrng1.4 . . 3 𝑋 = ran 𝐺
5 isdivrng2.5 . . 3 𝑈 = (GId‘𝐻)
61, 2, 3, 4, 5isdrngo2 37982 . 2 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
7 eldifi 4106 . . . . . 6 (𝑥 ∈ (𝑋 ∖ {𝑍}) → 𝑥𝑋)
8 difss 4111 . . . . . . . 8 (𝑋 ∖ {𝑍}) ⊆ 𝑋
9 ssrexv 4028 . . . . . . . 8 ((𝑋 ∖ {𝑍}) ⊆ 𝑋 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 → ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈))
108, 9ax-mp 5 . . . . . . 7 (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 → ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)
11 neeq1 2994 . . . . . . . . . . . . . . . 16 ((𝑦𝐻𝑥) = 𝑈 → ((𝑦𝐻𝑥) ≠ 𝑍𝑈𝑍))
1211biimparc 479 . . . . . . . . . . . . . . 15 ((𝑈𝑍 ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦𝐻𝑥) ≠ 𝑍)
133, 4, 1, 2rngolz 37946 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑍𝐻𝑥) = 𝑍)
14 oveq1 7412 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑍 → (𝑦𝐻𝑥) = (𝑍𝐻𝑥))
1514eqeq1d 2737 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑍 → ((𝑦𝐻𝑥) = 𝑍 ↔ (𝑍𝐻𝑥) = 𝑍))
1613, 15syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑦 = 𝑍 → (𝑦𝐻𝑥) = 𝑍))
1716necon3d 2953 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → ((𝑦𝐻𝑥) ≠ 𝑍𝑦𝑍))
1817imp 406 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑥𝑋) ∧ (𝑦𝐻𝑥) ≠ 𝑍) → 𝑦𝑍)
1912, 18sylan2 593 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑥𝑋) ∧ (𝑈𝑍 ∧ (𝑦𝐻𝑥) = 𝑈)) → 𝑦𝑍)
2019an4s 660 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ (𝑥𝑋 ∧ (𝑦𝐻𝑥) = 𝑈)) → 𝑦𝑍)
2120anassrs 467 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) ∧ (𝑦𝐻𝑥) = 𝑈) → 𝑦𝑍)
22 pm3.2 469 . . . . . . . . . . . 12 (𝑦𝑋 → (𝑦𝑍 → (𝑦𝑋𝑦𝑍)))
2321, 22syl5com 31 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦𝑋 → (𝑦𝑋𝑦𝑍)))
24 eldifsn 4762 . . . . . . . . . . 11 (𝑦 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑦𝑋𝑦𝑍))
2523, 24imbitrrdi 252 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦𝑋𝑦 ∈ (𝑋 ∖ {𝑍})))
2625imdistanda 571 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) → (((𝑦𝐻𝑥) = 𝑈𝑦𝑋) → ((𝑦𝐻𝑥) = 𝑈𝑦 ∈ (𝑋 ∖ {𝑍}))))
27 ancom 460 . . . . . . . . 9 ((𝑦𝑋 ∧ (𝑦𝐻𝑥) = 𝑈) ↔ ((𝑦𝐻𝑥) = 𝑈𝑦𝑋))
28 ancom 460 . . . . . . . . 9 ((𝑦 ∈ (𝑋 ∖ {𝑍}) ∧ (𝑦𝐻𝑥) = 𝑈) ↔ ((𝑦𝐻𝑥) = 𝑈𝑦 ∈ (𝑋 ∖ {𝑍})))
2926, 27, 283imtr4g 296 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) → ((𝑦𝑋 ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦 ∈ (𝑋 ∖ {𝑍}) ∧ (𝑦𝐻𝑥) = 𝑈)))
3029reximdv2 3150 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) → (∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈 → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
3110, 30impbid2 226 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈))
327, 31sylan2 593 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈))
3332ralbidva 3161 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → (∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈))
3433pm5.32da 579 . . 3 (𝑅 ∈ RingOps → ((𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) ↔ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
3534pm5.32i 574 . 2 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
366, 35bitri 275 1 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  cdif 3923  wss 3926  {csn 4601  ran crn 5655  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  GIdcgi 30471  RingOpscrngo 37918  DivRingOpscdrng 37972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-1st 7988  df-2nd 7989  df-1o 8480  df-en 8960  df-grpo 30474  df-gid 30475  df-ginv 30476  df-ablo 30526  df-ass 37867  df-exid 37869  df-mgmOLD 37873  df-sgrOLD 37885  df-mndo 37891  df-rngo 37919  df-drngo 37973
This theorem is referenced by:  isfldidl  38092
  Copyright terms: Public domain W3C validator