Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrngo3 Structured version   Visualization version   GIF version

Theorem isdrngo3 35107
Description: A division ring is a ring in which 1 ≠ 0 and every nonzero element is invertible. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
isdivrng1.1 𝐺 = (1st𝑅)
isdivrng1.2 𝐻 = (2nd𝑅)
isdivrng1.3 𝑍 = (GId‘𝐺)
isdivrng1.4 𝑋 = ran 𝐺
isdivrng2.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
isdrngo3 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
Distinct variable groups:   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem isdrngo3
StepHypRef Expression
1 isdivrng1.1 . . 3 𝐺 = (1st𝑅)
2 isdivrng1.2 . . 3 𝐻 = (2nd𝑅)
3 isdivrng1.3 . . 3 𝑍 = (GId‘𝐺)
4 isdivrng1.4 . . 3 𝑋 = ran 𝐺
5 isdivrng2.5 . . 3 𝑈 = (GId‘𝐻)
61, 2, 3, 4, 5isdrngo2 35106 . 2 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
7 eldifi 4106 . . . . . 6 (𝑥 ∈ (𝑋 ∖ {𝑍}) → 𝑥𝑋)
8 difss 4111 . . . . . . . 8 (𝑋 ∖ {𝑍}) ⊆ 𝑋
9 ssrexv 4037 . . . . . . . 8 ((𝑋 ∖ {𝑍}) ⊆ 𝑋 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 → ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈))
108, 9ax-mp 5 . . . . . . 7 (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 → ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)
11 neeq1 3082 . . . . . . . . . . . . . . . 16 ((𝑦𝐻𝑥) = 𝑈 → ((𝑦𝐻𝑥) ≠ 𝑍𝑈𝑍))
1211biimparc 480 . . . . . . . . . . . . . . 15 ((𝑈𝑍 ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦𝐻𝑥) ≠ 𝑍)
133, 4, 1, 2rngolz 35070 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑍𝐻𝑥) = 𝑍)
14 oveq1 7158 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑍 → (𝑦𝐻𝑥) = (𝑍𝐻𝑥))
1514eqeq1d 2827 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑍 → ((𝑦𝐻𝑥) = 𝑍 ↔ (𝑍𝐻𝑥) = 𝑍))
1613, 15syl5ibrcom 248 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑦 = 𝑍 → (𝑦𝐻𝑥) = 𝑍))
1716necon3d 3041 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → ((𝑦𝐻𝑥) ≠ 𝑍𝑦𝑍))
1817imp 407 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑥𝑋) ∧ (𝑦𝐻𝑥) ≠ 𝑍) → 𝑦𝑍)
1912, 18sylan2 592 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑥𝑋) ∧ (𝑈𝑍 ∧ (𝑦𝐻𝑥) = 𝑈)) → 𝑦𝑍)
2019an4s 656 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ (𝑥𝑋 ∧ (𝑦𝐻𝑥) = 𝑈)) → 𝑦𝑍)
2120anassrs 468 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) ∧ (𝑦𝐻𝑥) = 𝑈) → 𝑦𝑍)
22 pm3.2 470 . . . . . . . . . . . 12 (𝑦𝑋 → (𝑦𝑍 → (𝑦𝑋𝑦𝑍)))
2321, 22syl5com 31 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦𝑋 → (𝑦𝑋𝑦𝑍)))
24 eldifsn 4717 . . . . . . . . . . 11 (𝑦 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑦𝑋𝑦𝑍))
2523, 24syl6ibr 253 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦𝑋𝑦 ∈ (𝑋 ∖ {𝑍})))
2625imdistanda 572 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) → (((𝑦𝐻𝑥) = 𝑈𝑦𝑋) → ((𝑦𝐻𝑥) = 𝑈𝑦 ∈ (𝑋 ∖ {𝑍}))))
27 ancom 461 . . . . . . . . 9 ((𝑦𝑋 ∧ (𝑦𝐻𝑥) = 𝑈) ↔ ((𝑦𝐻𝑥) = 𝑈𝑦𝑋))
28 ancom 461 . . . . . . . . 9 ((𝑦 ∈ (𝑋 ∖ {𝑍}) ∧ (𝑦𝐻𝑥) = 𝑈) ↔ ((𝑦𝐻𝑥) = 𝑈𝑦 ∈ (𝑋 ∖ {𝑍})))
2926, 27, 283imtr4g 297 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) → ((𝑦𝑋 ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦 ∈ (𝑋 ∖ {𝑍}) ∧ (𝑦𝐻𝑥) = 𝑈)))
3029reximdv2 3275 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) → (∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈 → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
3110, 30impbid2 227 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈))
327, 31sylan2 592 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈))
3332ralbidva 3200 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → (∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈))
3433pm5.32da 579 . . 3 (𝑅 ∈ RingOps → ((𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) ↔ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
3534pm5.32i 575 . 2 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
366, 35bitri 276 1 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wne 3020  wral 3142  wrex 3143  cdif 3936  wss 3939  {csn 4563  ran crn 5554  cfv 6351  (class class class)co 7151  1st c1st 7681  2nd c2nd 7682  GIdcgi 28183  RingOpscrngo 35042  DivRingOpscdrng 35096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-om 7572  df-1st 7683  df-2nd 7684  df-1o 8096  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-grpo 28186  df-gid 28187  df-ginv 28188  df-ablo 28238  df-ass 34991  df-exid 34993  df-mgmOLD 34997  df-sgrOLD 35009  df-mndo 35015  df-rngo 35043  df-drngo 35097
This theorem is referenced by:  isfldidl  35216
  Copyright terms: Public domain W3C validator