Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrngo3 Structured version   Visualization version   GIF version

Theorem isdrngo3 37340
Description: A division ring is a ring in which 1 ≠ 0 and every nonzero element is invertible. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
isdivrng1.1 𝐺 = (1st𝑅)
isdivrng1.2 𝐻 = (2nd𝑅)
isdivrng1.3 𝑍 = (GId‘𝐺)
isdivrng1.4 𝑋 = ran 𝐺
isdivrng2.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
isdrngo3 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
Distinct variable groups:   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem isdrngo3
StepHypRef Expression
1 isdivrng1.1 . . 3 𝐺 = (1st𝑅)
2 isdivrng1.2 . . 3 𝐻 = (2nd𝑅)
3 isdivrng1.3 . . 3 𝑍 = (GId‘𝐺)
4 isdivrng1.4 . . 3 𝑋 = ran 𝐺
5 isdivrng2.5 . . 3 𝑈 = (GId‘𝐻)
61, 2, 3, 4, 5isdrngo2 37339 . 2 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
7 eldifi 4121 . . . . . 6 (𝑥 ∈ (𝑋 ∖ {𝑍}) → 𝑥𝑋)
8 difss 4126 . . . . . . . 8 (𝑋 ∖ {𝑍}) ⊆ 𝑋
9 ssrexv 4046 . . . . . . . 8 ((𝑋 ∖ {𝑍}) ⊆ 𝑋 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 → ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈))
108, 9ax-mp 5 . . . . . . 7 (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 → ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)
11 neeq1 2997 . . . . . . . . . . . . . . . 16 ((𝑦𝐻𝑥) = 𝑈 → ((𝑦𝐻𝑥) ≠ 𝑍𝑈𝑍))
1211biimparc 479 . . . . . . . . . . . . . . 15 ((𝑈𝑍 ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦𝐻𝑥) ≠ 𝑍)
133, 4, 1, 2rngolz 37303 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑍𝐻𝑥) = 𝑍)
14 oveq1 7412 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑍 → (𝑦𝐻𝑥) = (𝑍𝐻𝑥))
1514eqeq1d 2728 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑍 → ((𝑦𝐻𝑥) = 𝑍 ↔ (𝑍𝐻𝑥) = 𝑍))
1613, 15syl5ibrcom 246 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑦 = 𝑍 → (𝑦𝐻𝑥) = 𝑍))
1716necon3d 2955 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → ((𝑦𝐻𝑥) ≠ 𝑍𝑦𝑍))
1817imp 406 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑥𝑋) ∧ (𝑦𝐻𝑥) ≠ 𝑍) → 𝑦𝑍)
1912, 18sylan2 592 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑥𝑋) ∧ (𝑈𝑍 ∧ (𝑦𝐻𝑥) = 𝑈)) → 𝑦𝑍)
2019an4s 657 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ (𝑥𝑋 ∧ (𝑦𝐻𝑥) = 𝑈)) → 𝑦𝑍)
2120anassrs 467 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) ∧ (𝑦𝐻𝑥) = 𝑈) → 𝑦𝑍)
22 pm3.2 469 . . . . . . . . . . . 12 (𝑦𝑋 → (𝑦𝑍 → (𝑦𝑋𝑦𝑍)))
2321, 22syl5com 31 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦𝑋 → (𝑦𝑋𝑦𝑍)))
24 eldifsn 4785 . . . . . . . . . . 11 (𝑦 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑦𝑋𝑦𝑍))
2523, 24imbitrrdi 251 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦𝑋𝑦 ∈ (𝑋 ∖ {𝑍})))
2625imdistanda 571 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) → (((𝑦𝐻𝑥) = 𝑈𝑦𝑋) → ((𝑦𝐻𝑥) = 𝑈𝑦 ∈ (𝑋 ∖ {𝑍}))))
27 ancom 460 . . . . . . . . 9 ((𝑦𝑋 ∧ (𝑦𝐻𝑥) = 𝑈) ↔ ((𝑦𝐻𝑥) = 𝑈𝑦𝑋))
28 ancom 460 . . . . . . . . 9 ((𝑦 ∈ (𝑋 ∖ {𝑍}) ∧ (𝑦𝐻𝑥) = 𝑈) ↔ ((𝑦𝐻𝑥) = 𝑈𝑦 ∈ (𝑋 ∖ {𝑍})))
2926, 27, 283imtr4g 296 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) → ((𝑦𝑋 ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦 ∈ (𝑋 ∖ {𝑍}) ∧ (𝑦𝐻𝑥) = 𝑈)))
3029reximdv2 3158 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) → (∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈 → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
3110, 30impbid2 225 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈))
327, 31sylan2 592 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈))
3332ralbidva 3169 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → (∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈))
3433pm5.32da 578 . . 3 (𝑅 ∈ RingOps → ((𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) ↔ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
3534pm5.32i 574 . 2 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
366, 35bitri 275 1 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2934  wral 3055  wrex 3064  cdif 3940  wss 3943  {csn 4623  ran crn 5670  cfv 6537  (class class class)co 7405  1st c1st 7972  2nd c2nd 7973  GIdcgi 30252  RingOpscrngo 37275  DivRingOpscdrng 37329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-1st 7974  df-2nd 7975  df-1o 8467  df-en 8942  df-grpo 30255  df-gid 30256  df-ginv 30257  df-ablo 30307  df-ass 37224  df-exid 37226  df-mgmOLD 37230  df-sgrOLD 37242  df-mndo 37248  df-rngo 37276  df-drngo 37330
This theorem is referenced by:  isfldidl  37449
  Copyright terms: Public domain W3C validator