Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrngo3 Structured version   Visualization version   GIF version

Theorem isdrngo3 37925
Description: A division ring is a ring in which 1 ≠ 0 and every nonzero element is invertible. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
isdivrng1.1 𝐺 = (1st𝑅)
isdivrng1.2 𝐻 = (2nd𝑅)
isdivrng1.3 𝑍 = (GId‘𝐺)
isdivrng1.4 𝑋 = ran 𝐺
isdivrng2.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
isdrngo3 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
Distinct variable groups:   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem isdrngo3
StepHypRef Expression
1 isdivrng1.1 . . 3 𝐺 = (1st𝑅)
2 isdivrng1.2 . . 3 𝐻 = (2nd𝑅)
3 isdivrng1.3 . . 3 𝑍 = (GId‘𝐺)
4 isdivrng1.4 . . 3 𝑋 = ran 𝐺
5 isdivrng2.5 . . 3 𝑈 = (GId‘𝐻)
61, 2, 3, 4, 5isdrngo2 37924 . 2 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)))
7 eldifi 4111 . . . . . 6 (𝑥 ∈ (𝑋 ∖ {𝑍}) → 𝑥𝑋)
8 difss 4116 . . . . . . . 8 (𝑋 ∖ {𝑍}) ⊆ 𝑋
9 ssrexv 4033 . . . . . . . 8 ((𝑋 ∖ {𝑍}) ⊆ 𝑋 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 → ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈))
108, 9ax-mp 5 . . . . . . 7 (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 → ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)
11 neeq1 2993 . . . . . . . . . . . . . . . 16 ((𝑦𝐻𝑥) = 𝑈 → ((𝑦𝐻𝑥) ≠ 𝑍𝑈𝑍))
1211biimparc 479 . . . . . . . . . . . . . . 15 ((𝑈𝑍 ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦𝐻𝑥) ≠ 𝑍)
133, 4, 1, 2rngolz 37888 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑍𝐻𝑥) = 𝑍)
14 oveq1 7420 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑍 → (𝑦𝐻𝑥) = (𝑍𝐻𝑥))
1514eqeq1d 2736 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑍 → ((𝑦𝐻𝑥) = 𝑍 ↔ (𝑍𝐻𝑥) = 𝑍))
1613, 15syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑦 = 𝑍 → (𝑦𝐻𝑥) = 𝑍))
1716necon3d 2952 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → ((𝑦𝐻𝑥) ≠ 𝑍𝑦𝑍))
1817imp 406 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑥𝑋) ∧ (𝑦𝐻𝑥) ≠ 𝑍) → 𝑦𝑍)
1912, 18sylan2 593 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑥𝑋) ∧ (𝑈𝑍 ∧ (𝑦𝐻𝑥) = 𝑈)) → 𝑦𝑍)
2019an4s 660 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ (𝑥𝑋 ∧ (𝑦𝐻𝑥) = 𝑈)) → 𝑦𝑍)
2120anassrs 467 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) ∧ (𝑦𝐻𝑥) = 𝑈) → 𝑦𝑍)
22 pm3.2 469 . . . . . . . . . . . 12 (𝑦𝑋 → (𝑦𝑍 → (𝑦𝑋𝑦𝑍)))
2321, 22syl5com 31 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦𝑋 → (𝑦𝑋𝑦𝑍)))
24 eldifsn 4766 . . . . . . . . . . 11 (𝑦 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑦𝑋𝑦𝑍))
2523, 24imbitrrdi 252 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦𝑋𝑦 ∈ (𝑋 ∖ {𝑍})))
2625imdistanda 571 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) → (((𝑦𝐻𝑥) = 𝑈𝑦𝑋) → ((𝑦𝐻𝑥) = 𝑈𝑦 ∈ (𝑋 ∖ {𝑍}))))
27 ancom 460 . . . . . . . . 9 ((𝑦𝑋 ∧ (𝑦𝐻𝑥) = 𝑈) ↔ ((𝑦𝐻𝑥) = 𝑈𝑦𝑋))
28 ancom 460 . . . . . . . . 9 ((𝑦 ∈ (𝑋 ∖ {𝑍}) ∧ (𝑦𝐻𝑥) = 𝑈) ↔ ((𝑦𝐻𝑥) = 𝑈𝑦 ∈ (𝑋 ∖ {𝑍})))
2926, 27, 283imtr4g 296 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) → ((𝑦𝑋 ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦 ∈ (𝑋 ∖ {𝑍}) ∧ (𝑦𝐻𝑥) = 𝑈)))
3029reximdv2 3151 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) → (∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈 → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))
3110, 30impbid2 226 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥𝑋) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈))
327, 31sylan2 593 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑈𝑍) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈))
3332ralbidva 3163 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → (∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈))
3433pm5.32da 579 . . 3 (𝑅 ∈ RingOps → ((𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) ↔ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
3534pm5.32i 574 . 2 ((𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
366, 35bitri 275 1 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  wral 3050  wrex 3059  cdif 3928  wss 3931  {csn 4606  ran crn 5666  cfv 6541  (class class class)co 7413  1st c1st 7994  2nd c2nd 7995  GIdcgi 30437  RingOpscrngo 37860  DivRingOpscdrng 37914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-1st 7996  df-2nd 7997  df-1o 8488  df-en 8968  df-grpo 30440  df-gid 30441  df-ginv 30442  df-ablo 30492  df-ass 37809  df-exid 37811  df-mgmOLD 37815  df-sgrOLD 37827  df-mndo 37833  df-rngo 37861  df-drngo 37915
This theorem is referenced by:  isfldidl  38034
  Copyright terms: Public domain W3C validator