Proof of Theorem isdrngo3
Step | Hyp | Ref
| Expression |
1 | | isdivrng1.1 |
. . 3
⊢ 𝐺 = (1st ‘𝑅) |
2 | | isdivrng1.2 |
. . 3
⊢ 𝐻 = (2nd ‘𝑅) |
3 | | isdivrng1.3 |
. . 3
⊢ 𝑍 = (GId‘𝐺) |
4 | | isdivrng1.4 |
. . 3
⊢ 𝑋 = ran 𝐺 |
5 | | isdivrng2.5 |
. . 3
⊢ 𝑈 = (GId‘𝐻) |
6 | 1, 2, 3, 4, 5 | isdrngo2 36043 |
. 2
⊢ (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))) |
7 | | eldifi 4057 |
. . . . . 6
⊢ (𝑥 ∈ (𝑋 ∖ {𝑍}) → 𝑥 ∈ 𝑋) |
8 | | difss 4062 |
. . . . . . . 8
⊢ (𝑋 ∖ {𝑍}) ⊆ 𝑋 |
9 | | ssrexv 3984 |
. . . . . . . 8
⊢ ((𝑋 ∖ {𝑍}) ⊆ 𝑋 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 → ∃𝑦 ∈ 𝑋 (𝑦𝐻𝑥) = 𝑈)) |
10 | 8, 9 | ax-mp 5 |
. . . . . . 7
⊢
(∃𝑦 ∈
(𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 → ∃𝑦 ∈ 𝑋 (𝑦𝐻𝑥) = 𝑈) |
11 | | neeq1 3005 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦𝐻𝑥) = 𝑈 → ((𝑦𝐻𝑥) ≠ 𝑍 ↔ 𝑈 ≠ 𝑍)) |
12 | 11 | biimparc 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ≠ 𝑍 ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦𝐻𝑥) ≠ 𝑍) |
13 | 3, 4, 1, 2 | rngolz 36007 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → (𝑍𝐻𝑥) = 𝑍) |
14 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑍 → (𝑦𝐻𝑥) = (𝑍𝐻𝑥)) |
15 | 14 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑍 → ((𝑦𝐻𝑥) = 𝑍 ↔ (𝑍𝐻𝑥) = 𝑍)) |
16 | 13, 15 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → (𝑦 = 𝑍 → (𝑦𝐻𝑥) = 𝑍)) |
17 | 16 | necon3d 2963 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → ((𝑦𝐻𝑥) ≠ 𝑍 → 𝑦 ≠ 𝑍)) |
18 | 17 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) ∧ (𝑦𝐻𝑥) ≠ 𝑍) → 𝑦 ≠ 𝑍) |
19 | 12, 18 | sylan2 592 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) ∧ (𝑈 ≠ 𝑍 ∧ (𝑦𝐻𝑥) = 𝑈)) → 𝑦 ≠ 𝑍) |
20 | 19 | an4s 656 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦𝐻𝑥) = 𝑈)) → 𝑦 ≠ 𝑍) |
21 | 20 | anassrs 467 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦𝐻𝑥) = 𝑈) → 𝑦 ≠ 𝑍) |
22 | | pm3.2 469 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑋 → (𝑦 ≠ 𝑍 → (𝑦 ∈ 𝑋 ∧ 𝑦 ≠ 𝑍))) |
23 | 21, 22 | syl5com 31 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦 ∈ 𝑋 → (𝑦 ∈ 𝑋 ∧ 𝑦 ≠ 𝑍))) |
24 | | eldifsn 4717 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑦 ∈ 𝑋 ∧ 𝑦 ≠ 𝑍)) |
25 | 23, 24 | syl6ibr 251 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦 ∈ 𝑋 → 𝑦 ∈ (𝑋 ∖ {𝑍}))) |
26 | 25 | imdistanda 571 |
. . . . . . . . 9
⊢ (((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍) ∧ 𝑥 ∈ 𝑋) → (((𝑦𝐻𝑥) = 𝑈 ∧ 𝑦 ∈ 𝑋) → ((𝑦𝐻𝑥) = 𝑈 ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})))) |
27 | | ancom 460 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑋 ∧ (𝑦𝐻𝑥) = 𝑈) ↔ ((𝑦𝐻𝑥) = 𝑈 ∧ 𝑦 ∈ 𝑋)) |
28 | | ancom 460 |
. . . . . . . . 9
⊢ ((𝑦 ∈ (𝑋 ∖ {𝑍}) ∧ (𝑦𝐻𝑥) = 𝑈) ↔ ((𝑦𝐻𝑥) = 𝑈 ∧ 𝑦 ∈ (𝑋 ∖ {𝑍}))) |
29 | 26, 27, 28 | 3imtr4g 295 |
. . . . . . . 8
⊢ (((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍) ∧ 𝑥 ∈ 𝑋) → ((𝑦 ∈ 𝑋 ∧ (𝑦𝐻𝑥) = 𝑈) → (𝑦 ∈ (𝑋 ∖ {𝑍}) ∧ (𝑦𝐻𝑥) = 𝑈))) |
30 | 29 | reximdv2 3198 |
. . . . . . 7
⊢ (((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍) ∧ 𝑥 ∈ 𝑋) → (∃𝑦 ∈ 𝑋 (𝑦𝐻𝑥) = 𝑈 → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) |
31 | 10, 30 | impbid2 225 |
. . . . . 6
⊢ (((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍) ∧ 𝑥 ∈ 𝑋) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦 ∈ 𝑋 (𝑦𝐻𝑥) = 𝑈)) |
32 | 7, 31 | sylan2 592 |
. . . . 5
⊢ (((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦 ∈ 𝑋 (𝑦𝐻𝑥) = 𝑈)) |
33 | 32 | ralbidva 3119 |
. . . 4
⊢ ((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍) → (∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ 𝑋 (𝑦𝐻𝑥) = 𝑈)) |
34 | 33 | pm5.32da 578 |
. . 3
⊢ (𝑅 ∈ RingOps → ((𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) ↔ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ 𝑋 (𝑦𝐻𝑥) = 𝑈))) |
35 | 34 | pm5.32i 574 |
. 2
⊢ ((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ↔ (𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ 𝑋 (𝑦𝐻𝑥) = 𝑈))) |
36 | 6, 35 | bitri 274 |
1
⊢ (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ 𝑋 (𝑦𝐻𝑥) = 𝑈))) |