| Step | Hyp | Ref
| Expression |
| 1 | | cnf2 23257 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| 2 | 1 | 3expia 1122 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌)) |
| 3 | | elpwi 4607 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) |
| 4 | 3 | adantl 481 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥 ⊆ 𝑋) |
| 5 | | toponuni 22920 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 6 | 5 | ad2antrr 726 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑋 = ∪ 𝐽) |
| 7 | 4, 6 | sseqtrd 4020 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥 ⊆ ∪ 𝐽) |
| 8 | | eqid 2737 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 9 | 8 | cnclsi 23280 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ⊆ ∪ 𝐽) → (𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥))) |
| 10 | 9 | expcom 413 |
. . . . 5
⊢ (𝑥 ⊆ ∪ 𝐽
→ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥)))) |
| 11 | 7, 10 | syl 17 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥)))) |
| 12 | 11 | ralrimdva 3154 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥)))) |
| 13 | 2, 12 | jcad 512 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥))))) |
| 14 | | toponmax 22932 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
| 15 | 14 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑋 ∈ 𝐽) |
| 16 | | cnvimass 6100 |
. . . . . . . . 9
⊢ (◡𝐹 “ 𝑦) ⊆ dom 𝐹 |
| 17 | | fdm 6745 |
. . . . . . . . . 10
⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) |
| 18 | 17 | ad2antlr 727 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → dom 𝐹 = 𝑋) |
| 19 | 16, 18 | sseqtrid 4026 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (◡𝐹 “ 𝑦) ⊆ 𝑋) |
| 20 | 15, 19 | sselpwd 5328 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (◡𝐹 “ 𝑦) ∈ 𝒫 𝑋) |
| 21 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((cls‘𝐽)‘𝑥) = ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) |
| 22 | 21 | imaeq2d 6078 |
. . . . . . . . 9
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝐹 “ ((cls‘𝐽)‘𝑥)) = (𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦)))) |
| 23 | | imaeq2 6074 |
. . . . . . . . . 10
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝐹 “ 𝑥) = (𝐹 “ (◡𝐹 “ 𝑦))) |
| 24 | 23 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((cls‘𝐾)‘(𝐹 “ 𝑥)) = ((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦)))) |
| 25 | 22, 24 | sseq12d 4017 |
. . . . . . . 8
⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥)) ↔ (𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦))))) |
| 26 | 25 | rspcv 3618 |
. . . . . . 7
⊢ ((◡𝐹 “ 𝑦) ∈ 𝒫 𝑋 → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥)) → (𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦))))) |
| 27 | 20, 26 | syl 17 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥)) → (𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦))))) |
| 28 | | topontop 22919 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
| 29 | 28 | ad3antlr 731 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝐾 ∈ Top) |
| 30 | | elpwi 4607 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝒫 𝑌 → 𝑦 ⊆ 𝑌) |
| 31 | 30 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑦 ⊆ 𝑌) |
| 32 | | toponuni 22920 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
| 33 | 32 | ad3antlr 731 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑌 = ∪ 𝐾) |
| 34 | 31, 33 | sseqtrd 4020 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑦 ⊆ ∪ 𝐾) |
| 35 | | ffun 6739 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋⟶𝑌 → Fun 𝐹) |
| 36 | 35 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → Fun 𝐹) |
| 37 | | funimacnv 6647 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 → (𝐹 “ (◡𝐹 “ 𝑦)) = (𝑦 ∩ ran 𝐹)) |
| 38 | 36, 37 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹 “ (◡𝐹 “ 𝑦)) = (𝑦 ∩ ran 𝐹)) |
| 39 | | inss1 4237 |
. . . . . . . . . 10
⊢ (𝑦 ∩ ran 𝐹) ⊆ 𝑦 |
| 40 | 38, 39 | eqsstrdi 4028 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹 “ (◡𝐹 “ 𝑦)) ⊆ 𝑦) |
| 41 | | eqid 2737 |
. . . . . . . . . 10
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 42 | 41 | clsss 23062 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐾
∧ (𝐹 “ (◡𝐹 “ 𝑦)) ⊆ 𝑦) → ((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘𝑦)) |
| 43 | 29, 34, 40, 42 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘𝑦)) |
| 44 | | sstr2 3990 |
. . . . . . . 8
⊢ ((𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦))) → (((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘𝑦) → (𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘𝑦))) |
| 45 | 43, 44 | syl5com 31 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦))) → (𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘𝑦))) |
| 46 | | topontop 22919 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 47 | 46 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝐽 ∈ Top) |
| 48 | 5 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑋 = ∪ 𝐽) |
| 49 | 18, 48 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → dom 𝐹 = ∪ 𝐽) |
| 50 | 16, 49 | sseqtrid 4026 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (◡𝐹 “ 𝑦) ⊆ ∪ 𝐽) |
| 51 | 8 | clsss3 23067 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ 𝑦) ⊆ ∪ 𝐽) → ((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ ∪ 𝐽) |
| 52 | 47, 50, 51 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ ∪ 𝐽) |
| 53 | 52, 49 | sseqtrrd 4021 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ dom 𝐹) |
| 54 | | funimass3 7074 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ ((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ dom 𝐹) → ((𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘𝑦) ↔ ((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑦)))) |
| 55 | 36, 53, 54 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘𝑦) ↔ ((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑦)))) |
| 56 | 45, 55 | sylibd 239 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦))) → ((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑦)))) |
| 57 | 27, 56 | syld 47 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥)) → ((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑦)))) |
| 58 | 57 | ralrimdva 3154 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥)) → ∀𝑦 ∈ 𝒫 𝑌((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑦)))) |
| 59 | 58 | imdistanda 571 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥))) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝒫 𝑌((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑦))))) |
| 60 | | cncls2 23281 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝒫 𝑌((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑦))))) |
| 61 | 59, 60 | sylibrd 259 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾))) |
| 62 | 13, 61 | impbid 212 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥))))) |