MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncls Structured version   Visualization version   GIF version

Theorem cncls 21975
Description: Continuity in terms of closure. (Contributed by Jeff Hankins, 1-Oct-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cncls ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑥,𝑌

Proof of Theorem cncls
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnf2 21950 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
213expia 1119 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌))
3 elpwi 4504 . . . . . . 7 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
43adantl 486 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥𝑋)
5 toponuni 21615 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
65ad2antrr 726 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑋 = 𝐽)
74, 6sseqtrd 3933 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥 𝐽)
8 eqid 2759 . . . . . . 7 𝐽 = 𝐽
98cnclsi 21973 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 𝐽) → (𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)))
109expcom 418 . . . . 5 (𝑥 𝐽 → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))))
117, 10syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))))
1211ralrimdva 3119 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))))
132, 12jcad 517 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)))))
14 toponmax 21627 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
1514ad3antrrr 730 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑋𝐽)
16 cnvimass 5922 . . . . . . . . 9 (𝐹𝑦) ⊆ dom 𝐹
17 fdm 6507 . . . . . . . . . 10 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
1817ad2antlr 727 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → dom 𝐹 = 𝑋)
1916, 18sseqtrid 3945 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹𝑦) ⊆ 𝑋)
2015, 19sselpwd 5197 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹𝑦) ∈ 𝒫 𝑋)
21 fveq2 6659 . . . . . . . . . 10 (𝑥 = (𝐹𝑦) → ((cls‘𝐽)‘𝑥) = ((cls‘𝐽)‘(𝐹𝑦)))
2221imaeq2d 5902 . . . . . . . . 9 (𝑥 = (𝐹𝑦) → (𝐹 “ ((cls‘𝐽)‘𝑥)) = (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))))
23 imaeq2 5898 . . . . . . . . . 10 (𝑥 = (𝐹𝑦) → (𝐹𝑥) = (𝐹 “ (𝐹𝑦)))
2423fveq2d 6663 . . . . . . . . 9 (𝑥 = (𝐹𝑦) → ((cls‘𝐾)‘(𝐹𝑥)) = ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))))
2522, 24sseq12d 3926 . . . . . . . 8 (𝑥 = (𝐹𝑦) → ((𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) ↔ (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦)))))
2625rspcv 3537 . . . . . . 7 ((𝐹𝑦) ∈ 𝒫 𝑋 → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) → (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦)))))
2720, 26syl 17 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) → (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦)))))
28 topontop 21614 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
2928ad3antlr 731 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝐾 ∈ Top)
30 elpwi 4504 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 𝑌𝑦𝑌)
3130adantl 486 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑦𝑌)
32 toponuni 21615 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
3332ad3antlr 731 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑌 = 𝐾)
3431, 33sseqtrd 3933 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑦 𝐾)
35 ffun 6502 . . . . . . . . . . . 12 (𝐹:𝑋𝑌 → Fun 𝐹)
3635ad2antlr 727 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → Fun 𝐹)
37 funimacnv 6417 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (𝐹𝑦)) = (𝑦 ∩ ran 𝐹))
3836, 37syl 17 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹 “ (𝐹𝑦)) = (𝑦 ∩ ran 𝐹))
39 inss1 4134 . . . . . . . . . 10 (𝑦 ∩ ran 𝐹) ⊆ 𝑦
4038, 39eqsstrdi 3947 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹 “ (𝐹𝑦)) ⊆ 𝑦)
41 eqid 2759 . . . . . . . . . 10 𝐾 = 𝐾
4241clsss 21755 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝑦 𝐾 ∧ (𝐹 “ (𝐹𝑦)) ⊆ 𝑦) → ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦))
4329, 34, 40, 42syl3anc 1369 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦))
44 sstr2 3900 . . . . . . . 8 ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) → (((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦) → (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦)))
4543, 44syl5com 31 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) → (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦)))
46 topontop 21614 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
4746ad3antrrr 730 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝐽 ∈ Top)
485ad3antrrr 730 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑋 = 𝐽)
4918, 48eqtrd 2794 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → dom 𝐹 = 𝐽)
5016, 49sseqtrid 3945 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹𝑦) ⊆ 𝐽)
518clsss3 21760 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹𝑦) ⊆ 𝐽) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ 𝐽)
5247, 50, 51syl2anc 588 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ 𝐽)
5352, 49sseqtrrd 3934 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ dom 𝐹)
54 funimass3 6816 . . . . . . . 8 ((Fun 𝐹 ∧ ((cls‘𝐽)‘(𝐹𝑦)) ⊆ dom 𝐹) → ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦) ↔ ((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
5536, 53, 54syl2anc 588 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦) ↔ ((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
5645, 55sylibd 242 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
5727, 56syld 47 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
5857ralrimdva 3119 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) → ∀𝑦 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
5958imdistanda 576 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))) → (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦)))))
60 cncls2 21974 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦)))))
6159, 60sylibrd 262 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾)))
6213, 61impbid 215 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  wral 3071  cin 3858  wss 3859  𝒫 cpw 4495   cuni 4799  ccnv 5524  dom cdm 5525  ran crn 5526  cima 5528  Fun wfun 6330  wf 6332  cfv 6336  (class class class)co 7151  Topctop 21594  TopOnctopon 21611  clsccl 21719   Cn ccn 21925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7154  df-oprab 7155  df-mpo 7156  df-map 8419  df-top 21595  df-topon 21612  df-cld 21720  df-cls 21722  df-cn 21928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator