MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncls Structured version   Visualization version   GIF version

Theorem cncls 23194
Description: Continuity in terms of closure. (Contributed by Jeff Hankins, 1-Oct-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cncls ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑥,𝑌

Proof of Theorem cncls
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnf2 23169 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
213expia 1121 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌))
3 elpwi 4566 . . . . . . 7 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
43adantl 481 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥𝑋)
5 toponuni 22834 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
65ad2antrr 726 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑋 = 𝐽)
74, 6sseqtrd 3980 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥 𝐽)
8 eqid 2729 . . . . . . 7 𝐽 = 𝐽
98cnclsi 23192 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 𝐽) → (𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)))
109expcom 413 . . . . 5 (𝑥 𝐽 → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))))
117, 10syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))))
1211ralrimdva 3133 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))))
132, 12jcad 512 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)))))
14 toponmax 22846 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
1514ad3antrrr 730 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑋𝐽)
16 cnvimass 6042 . . . . . . . . 9 (𝐹𝑦) ⊆ dom 𝐹
17 fdm 6679 . . . . . . . . . 10 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
1817ad2antlr 727 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → dom 𝐹 = 𝑋)
1916, 18sseqtrid 3986 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹𝑦) ⊆ 𝑋)
2015, 19sselpwd 5278 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹𝑦) ∈ 𝒫 𝑋)
21 fveq2 6840 . . . . . . . . . 10 (𝑥 = (𝐹𝑦) → ((cls‘𝐽)‘𝑥) = ((cls‘𝐽)‘(𝐹𝑦)))
2221imaeq2d 6020 . . . . . . . . 9 (𝑥 = (𝐹𝑦) → (𝐹 “ ((cls‘𝐽)‘𝑥)) = (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))))
23 imaeq2 6016 . . . . . . . . . 10 (𝑥 = (𝐹𝑦) → (𝐹𝑥) = (𝐹 “ (𝐹𝑦)))
2423fveq2d 6844 . . . . . . . . 9 (𝑥 = (𝐹𝑦) → ((cls‘𝐾)‘(𝐹𝑥)) = ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))))
2522, 24sseq12d 3977 . . . . . . . 8 (𝑥 = (𝐹𝑦) → ((𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) ↔ (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦)))))
2625rspcv 3581 . . . . . . 7 ((𝐹𝑦) ∈ 𝒫 𝑋 → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) → (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦)))))
2720, 26syl 17 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) → (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦)))))
28 topontop 22833 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
2928ad3antlr 731 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝐾 ∈ Top)
30 elpwi 4566 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 𝑌𝑦𝑌)
3130adantl 481 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑦𝑌)
32 toponuni 22834 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
3332ad3antlr 731 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑌 = 𝐾)
3431, 33sseqtrd 3980 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑦 𝐾)
35 ffun 6673 . . . . . . . . . . . 12 (𝐹:𝑋𝑌 → Fun 𝐹)
3635ad2antlr 727 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → Fun 𝐹)
37 funimacnv 6581 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (𝐹𝑦)) = (𝑦 ∩ ran 𝐹))
3836, 37syl 17 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹 “ (𝐹𝑦)) = (𝑦 ∩ ran 𝐹))
39 inss1 4196 . . . . . . . . . 10 (𝑦 ∩ ran 𝐹) ⊆ 𝑦
4038, 39eqsstrdi 3988 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹 “ (𝐹𝑦)) ⊆ 𝑦)
41 eqid 2729 . . . . . . . . . 10 𝐾 = 𝐾
4241clsss 22974 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝑦 𝐾 ∧ (𝐹 “ (𝐹𝑦)) ⊆ 𝑦) → ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦))
4329, 34, 40, 42syl3anc 1373 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦))
44 sstr2 3950 . . . . . . . 8 ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) → (((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦) → (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦)))
4543, 44syl5com 31 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) → (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦)))
46 topontop 22833 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
4746ad3antrrr 730 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝐽 ∈ Top)
485ad3antrrr 730 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑋 = 𝐽)
4918, 48eqtrd 2764 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → dom 𝐹 = 𝐽)
5016, 49sseqtrid 3986 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹𝑦) ⊆ 𝐽)
518clsss3 22979 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹𝑦) ⊆ 𝐽) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ 𝐽)
5247, 50, 51syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ 𝐽)
5352, 49sseqtrrd 3981 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ dom 𝐹)
54 funimass3 7008 . . . . . . . 8 ((Fun 𝐹 ∧ ((cls‘𝐽)‘(𝐹𝑦)) ⊆ dom 𝐹) → ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦) ↔ ((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
5536, 53, 54syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦) ↔ ((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
5645, 55sylibd 239 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
5727, 56syld 47 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
5857ralrimdva 3133 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) → ∀𝑦 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
5958imdistanda 571 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))) → (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦)))))
60 cncls2 23193 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦)))))
6159, 60sylibrd 259 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾)))
6213, 61impbid 212 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cin 3910  wss 3911  𝒫 cpw 4559   cuni 4867  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634  Fun wfun 6493  wf 6495  cfv 6499  (class class class)co 7369  Topctop 22813  TopOnctopon 22830  clsccl 22938   Cn ccn 23144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-top 22814  df-topon 22831  df-cld 22939  df-cls 22941  df-cn 23147
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator