Step | Hyp | Ref
| Expression |
1 | | cnf2 21950 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
2 | 1 | 3expia 1119 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌)) |
3 | | elpwi 4504 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) |
4 | 3 | adantl 486 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥 ⊆ 𝑋) |
5 | | toponuni 21615 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
6 | 5 | ad2antrr 726 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑋 = ∪ 𝐽) |
7 | 4, 6 | sseqtrd 3933 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥 ⊆ ∪ 𝐽) |
8 | | eqid 2759 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
9 | 8 | cnclsi 21973 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ⊆ ∪ 𝐽) → (𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥))) |
10 | 9 | expcom 418 |
. . . . 5
⊢ (𝑥 ⊆ ∪ 𝐽
→ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥)))) |
11 | 7, 10 | syl 17 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥)))) |
12 | 11 | ralrimdva 3119 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥)))) |
13 | 2, 12 | jcad 517 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥))))) |
14 | | toponmax 21627 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
15 | 14 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑋 ∈ 𝐽) |
16 | | cnvimass 5922 |
. . . . . . . . 9
⊢ (◡𝐹 “ 𝑦) ⊆ dom 𝐹 |
17 | | fdm 6507 |
. . . . . . . . . 10
⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) |
18 | 17 | ad2antlr 727 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → dom 𝐹 = 𝑋) |
19 | 16, 18 | sseqtrid 3945 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (◡𝐹 “ 𝑦) ⊆ 𝑋) |
20 | 15, 19 | sselpwd 5197 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (◡𝐹 “ 𝑦) ∈ 𝒫 𝑋) |
21 | | fveq2 6659 |
. . . . . . . . . 10
⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((cls‘𝐽)‘𝑥) = ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) |
22 | 21 | imaeq2d 5902 |
. . . . . . . . 9
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝐹 “ ((cls‘𝐽)‘𝑥)) = (𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦)))) |
23 | | imaeq2 5898 |
. . . . . . . . . 10
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝐹 “ 𝑥) = (𝐹 “ (◡𝐹 “ 𝑦))) |
24 | 23 | fveq2d 6663 |
. . . . . . . . 9
⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((cls‘𝐾)‘(𝐹 “ 𝑥)) = ((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦)))) |
25 | 22, 24 | sseq12d 3926 |
. . . . . . . 8
⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥)) ↔ (𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦))))) |
26 | 25 | rspcv 3537 |
. . . . . . 7
⊢ ((◡𝐹 “ 𝑦) ∈ 𝒫 𝑋 → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥)) → (𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦))))) |
27 | 20, 26 | syl 17 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥)) → (𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦))))) |
28 | | topontop 21614 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
29 | 28 | ad3antlr 731 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝐾 ∈ Top) |
30 | | elpwi 4504 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝒫 𝑌 → 𝑦 ⊆ 𝑌) |
31 | 30 | adantl 486 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑦 ⊆ 𝑌) |
32 | | toponuni 21615 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
33 | 32 | ad3antlr 731 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑌 = ∪ 𝐾) |
34 | 31, 33 | sseqtrd 3933 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑦 ⊆ ∪ 𝐾) |
35 | | ffun 6502 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋⟶𝑌 → Fun 𝐹) |
36 | 35 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → Fun 𝐹) |
37 | | funimacnv 6417 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 → (𝐹 “ (◡𝐹 “ 𝑦)) = (𝑦 ∩ ran 𝐹)) |
38 | 36, 37 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹 “ (◡𝐹 “ 𝑦)) = (𝑦 ∩ ran 𝐹)) |
39 | | inss1 4134 |
. . . . . . . . . 10
⊢ (𝑦 ∩ ran 𝐹) ⊆ 𝑦 |
40 | 38, 39 | eqsstrdi 3947 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹 “ (◡𝐹 “ 𝑦)) ⊆ 𝑦) |
41 | | eqid 2759 |
. . . . . . . . . 10
⊢ ∪ 𝐾 =
∪ 𝐾 |
42 | 41 | clsss 21755 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐾
∧ (𝐹 “ (◡𝐹 “ 𝑦)) ⊆ 𝑦) → ((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘𝑦)) |
43 | 29, 34, 40, 42 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘𝑦)) |
44 | | sstr2 3900 |
. . . . . . . 8
⊢ ((𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦))) → (((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘𝑦) → (𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘𝑦))) |
45 | 43, 44 | syl5com 31 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦))) → (𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘𝑦))) |
46 | | topontop 21614 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
47 | 46 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝐽 ∈ Top) |
48 | 5 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑋 = ∪ 𝐽) |
49 | 18, 48 | eqtrd 2794 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → dom 𝐹 = ∪ 𝐽) |
50 | 16, 49 | sseqtrid 3945 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (◡𝐹 “ 𝑦) ⊆ ∪ 𝐽) |
51 | 8 | clsss3 21760 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ 𝑦) ⊆ ∪ 𝐽) → ((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ ∪ 𝐽) |
52 | 47, 50, 51 | syl2anc 588 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ ∪ 𝐽) |
53 | 52, 49 | sseqtrrd 3934 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ dom 𝐹) |
54 | | funimass3 6816 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ ((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ dom 𝐹) → ((𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘𝑦) ↔ ((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑦)))) |
55 | 36, 53, 54 | syl2anc 588 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘𝑦) ↔ ((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑦)))) |
56 | 45, 55 | sylibd 242 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹 “ ((cls‘𝐽)‘(◡𝐹 “ 𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (◡𝐹 “ 𝑦))) → ((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑦)))) |
57 | 27, 56 | syld 47 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥)) → ((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑦)))) |
58 | 57 | ralrimdva 3119 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥)) → ∀𝑦 ∈ 𝒫 𝑌((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑦)))) |
59 | 58 | imdistanda 576 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥))) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝒫 𝑌((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑦))))) |
60 | | cncls2 21974 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝒫 𝑌((cls‘𝐽)‘(◡𝐹 “ 𝑦)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑦))))) |
61 | 59, 60 | sylibrd 262 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾))) |
62 | 13, 61 | impbid 215 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑥))))) |