MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncls Structured version   Visualization version   GIF version

Theorem cncls 22625
Description: Continuity in terms of closure. (Contributed by Jeff Hankins, 1-Oct-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cncls ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑥,𝑌

Proof of Theorem cncls
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnf2 22600 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
213expia 1121 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌))
3 elpwi 4567 . . . . . . 7 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
43adantl 482 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥𝑋)
5 toponuni 22263 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
65ad2antrr 724 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑋 = 𝐽)
74, 6sseqtrd 3984 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥 𝐽)
8 eqid 2736 . . . . . . 7 𝐽 = 𝐽
98cnclsi 22623 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 𝐽) → (𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)))
109expcom 414 . . . . 5 (𝑥 𝐽 → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))))
117, 10syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))))
1211ralrimdva 3151 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))))
132, 12jcad 513 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)))))
14 toponmax 22275 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
1514ad3antrrr 728 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑋𝐽)
16 cnvimass 6033 . . . . . . . . 9 (𝐹𝑦) ⊆ dom 𝐹
17 fdm 6677 . . . . . . . . . 10 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
1817ad2antlr 725 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → dom 𝐹 = 𝑋)
1916, 18sseqtrid 3996 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹𝑦) ⊆ 𝑋)
2015, 19sselpwd 5283 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹𝑦) ∈ 𝒫 𝑋)
21 fveq2 6842 . . . . . . . . . 10 (𝑥 = (𝐹𝑦) → ((cls‘𝐽)‘𝑥) = ((cls‘𝐽)‘(𝐹𝑦)))
2221imaeq2d 6013 . . . . . . . . 9 (𝑥 = (𝐹𝑦) → (𝐹 “ ((cls‘𝐽)‘𝑥)) = (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))))
23 imaeq2 6009 . . . . . . . . . 10 (𝑥 = (𝐹𝑦) → (𝐹𝑥) = (𝐹 “ (𝐹𝑦)))
2423fveq2d 6846 . . . . . . . . 9 (𝑥 = (𝐹𝑦) → ((cls‘𝐾)‘(𝐹𝑥)) = ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))))
2522, 24sseq12d 3977 . . . . . . . 8 (𝑥 = (𝐹𝑦) → ((𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) ↔ (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦)))))
2625rspcv 3577 . . . . . . 7 ((𝐹𝑦) ∈ 𝒫 𝑋 → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) → (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦)))))
2720, 26syl 17 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) → (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦)))))
28 topontop 22262 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
2928ad3antlr 729 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝐾 ∈ Top)
30 elpwi 4567 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 𝑌𝑦𝑌)
3130adantl 482 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑦𝑌)
32 toponuni 22263 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
3332ad3antlr 729 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑌 = 𝐾)
3431, 33sseqtrd 3984 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑦 𝐾)
35 ffun 6671 . . . . . . . . . . . 12 (𝐹:𝑋𝑌 → Fun 𝐹)
3635ad2antlr 725 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → Fun 𝐹)
37 funimacnv 6582 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (𝐹𝑦)) = (𝑦 ∩ ran 𝐹))
3836, 37syl 17 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹 “ (𝐹𝑦)) = (𝑦 ∩ ran 𝐹))
39 inss1 4188 . . . . . . . . . 10 (𝑦 ∩ ran 𝐹) ⊆ 𝑦
4038, 39eqsstrdi 3998 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹 “ (𝐹𝑦)) ⊆ 𝑦)
41 eqid 2736 . . . . . . . . . 10 𝐾 = 𝐾
4241clsss 22405 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝑦 𝐾 ∧ (𝐹 “ (𝐹𝑦)) ⊆ 𝑦) → ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦))
4329, 34, 40, 42syl3anc 1371 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦))
44 sstr2 3951 . . . . . . . 8 ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) → (((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦) → (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦)))
4543, 44syl5com 31 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) → (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦)))
46 topontop 22262 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
4746ad3antrrr 728 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝐽 ∈ Top)
485ad3antrrr 728 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑋 = 𝐽)
4918, 48eqtrd 2776 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → dom 𝐹 = 𝐽)
5016, 49sseqtrid 3996 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹𝑦) ⊆ 𝐽)
518clsss3 22410 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹𝑦) ⊆ 𝐽) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ 𝐽)
5247, 50, 51syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ 𝐽)
5352, 49sseqtrrd 3985 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ dom 𝐹)
54 funimass3 7004 . . . . . . . 8 ((Fun 𝐹 ∧ ((cls‘𝐽)‘(𝐹𝑦)) ⊆ dom 𝐹) → ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦) ↔ ((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
5536, 53, 54syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦) ↔ ((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
5645, 55sylibd 238 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
5727, 56syld 47 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
5857ralrimdva 3151 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) → ∀𝑦 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
5958imdistanda 572 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))) → (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦)))))
60 cncls2 22624 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦)))))
6159, 60sylibrd 258 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾)))
6213, 61impbid 211 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  cin 3909  wss 3910  𝒫 cpw 4560   cuni 4865  ccnv 5632  dom cdm 5633  ran crn 5634  cima 5636  Fun wfun 6490  wf 6492  cfv 6496  (class class class)co 7357  Topctop 22242  TopOnctopon 22259  clsccl 22369   Cn ccn 22575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-map 8767  df-top 22243  df-topon 22260  df-cld 22370  df-cls 22372  df-cn 22578
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator