MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmullem Structured version   Visualization version   GIF version

Theorem i1fmullem 24858
Description: Decompose the preimage of a product. (Contributed by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
Assertion
Ref Expression
i1fmullem ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝐹f · 𝐺) “ {𝐴}) = 𝑦 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐺   𝜑,𝑦

Proof of Theorem i1fmullem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 i1fadd.1 . . . . . . . . 9 (𝜑𝐹 ∈ dom ∫1)
2 i1ff 24840 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
31, 2syl 17 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
43ffnd 6601 . . . . . . 7 (𝜑𝐹 Fn ℝ)
5 i1fadd.2 . . . . . . . . 9 (𝜑𝐺 ∈ dom ∫1)
6 i1ff 24840 . . . . . . . . 9 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
75, 6syl 17 . . . . . . . 8 (𝜑𝐺:ℝ⟶ℝ)
87ffnd 6601 . . . . . . 7 (𝜑𝐺 Fn ℝ)
9 reex 10962 . . . . . . . 8 ℝ ∈ V
109a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
11 inidm 4152 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
124, 8, 10, 10, 11offn 7546 . . . . . 6 (𝜑 → (𝐹f · 𝐺) Fn ℝ)
1312adantr 481 . . . . 5 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝐹f · 𝐺) Fn ℝ)
14 fniniseg 6937 . . . . 5 ((𝐹f · 𝐺) Fn ℝ → (𝑧 ∈ ((𝐹f · 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹f · 𝐺)‘𝑧) = 𝐴)))
1513, 14syl 17 . . . 4 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((𝐹f · 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹f · 𝐺)‘𝑧) = 𝐴)))
164adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → 𝐹 Fn ℝ)
178adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → 𝐺 Fn ℝ)
189a1i 11 . . . . . . 7 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ℝ ∈ V)
19 eqidd 2739 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) = (𝐹𝑧))
20 eqidd 2739 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) = (𝐺𝑧))
2116, 17, 18, 18, 11, 19, 20ofval 7544 . . . . . 6 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐹f · 𝐺)‘𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
2221eqeq1d 2740 . . . . 5 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → (((𝐹f · 𝐺)‘𝑧) = 𝐴 ↔ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴))
2322pm5.32da 579 . . . 4 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ ℝ ∧ ((𝐹f · 𝐺)‘𝑧) = 𝐴) ↔ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)))
248ad2antrr 723 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐺 Fn ℝ)
25 simprl 768 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝑧 ∈ ℝ)
26 fnfvelrn 6958 . . . . . . . . 9 ((𝐺 Fn ℝ ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ran 𝐺)
2724, 25, 26syl2anc 584 . . . . . . . 8 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ∈ ran 𝐺)
28 eldifsni 4723 . . . . . . . . . . 11 (𝐴 ∈ (ℂ ∖ {0}) → 𝐴 ≠ 0)
2928ad2antlr 724 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐴 ≠ 0)
30 simprr 770 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)
313ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐹:ℝ⟶ℝ)
3231, 25ffvelrnd 6962 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐹𝑧) ∈ ℝ)
3332recnd 11003 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐹𝑧) ∈ ℂ)
3433mul01d 11174 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → ((𝐹𝑧) · 0) = 0)
3529, 30, 343netr4d 3021 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → ((𝐹𝑧) · (𝐺𝑧)) ≠ ((𝐹𝑧) · 0))
36 oveq2 7283 . . . . . . . . . 10 ((𝐺𝑧) = 0 → ((𝐹𝑧) · (𝐺𝑧)) = ((𝐹𝑧) · 0))
3736necon3i 2976 . . . . . . . . 9 (((𝐹𝑧) · (𝐺𝑧)) ≠ ((𝐹𝑧) · 0) → (𝐺𝑧) ≠ 0)
3835, 37syl 17 . . . . . . . 8 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ≠ 0)
39 eldifsn 4720 . . . . . . . 8 ((𝐺𝑧) ∈ (ran 𝐺 ∖ {0}) ↔ ((𝐺𝑧) ∈ ran 𝐺 ∧ (𝐺𝑧) ≠ 0))
4027, 38, 39sylanbrc 583 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ∈ (ran 𝐺 ∖ {0}))
417ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐺:ℝ⟶ℝ)
4241, 25ffvelrnd 6962 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ∈ ℝ)
4342recnd 11003 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ∈ ℂ)
4433, 43, 38divcan4d 11757 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (((𝐹𝑧) · (𝐺𝑧)) / (𝐺𝑧)) = (𝐹𝑧))
4530oveq1d 7290 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (((𝐹𝑧) · (𝐺𝑧)) / (𝐺𝑧)) = (𝐴 / (𝐺𝑧)))
4644, 45eqtr3d 2780 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐹𝑧) = (𝐴 / (𝐺𝑧)))
4731ffnd 6601 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐹 Fn ℝ)
48 fniniseg 6937 . . . . . . . . . 10 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐴 / (𝐺𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / (𝐺𝑧)))))
4947, 48syl 17 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝑧 ∈ (𝐹 “ {(𝐴 / (𝐺𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / (𝐺𝑧)))))
5025, 46, 49mpbir2and 710 . . . . . . . 8 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝑧 ∈ (𝐹 “ {(𝐴 / (𝐺𝑧))}))
51 eqidd 2739 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) = (𝐺𝑧))
52 fniniseg 6937 . . . . . . . . . 10 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {(𝐺𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = (𝐺𝑧))))
5324, 52syl 17 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝑧 ∈ (𝐺 “ {(𝐺𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = (𝐺𝑧))))
5425, 51, 53mpbir2and 710 . . . . . . . 8 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝑧 ∈ (𝐺 “ {(𝐺𝑧)}))
5550, 54elind 4128 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝑧 ∈ ((𝐹 “ {(𝐴 / (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)})))
56 oveq2 7283 . . . . . . . . . . . 12 (𝑦 = (𝐺𝑧) → (𝐴 / 𝑦) = (𝐴 / (𝐺𝑧)))
5756sneqd 4573 . . . . . . . . . . 11 (𝑦 = (𝐺𝑧) → {(𝐴 / 𝑦)} = {(𝐴 / (𝐺𝑧))})
5857imaeq2d 5969 . . . . . . . . . 10 (𝑦 = (𝐺𝑧) → (𝐹 “ {(𝐴 / 𝑦)}) = (𝐹 “ {(𝐴 / (𝐺𝑧))}))
59 sneq 4571 . . . . . . . . . . 11 (𝑦 = (𝐺𝑧) → {𝑦} = {(𝐺𝑧)})
6059imaeq2d 5969 . . . . . . . . . 10 (𝑦 = (𝐺𝑧) → (𝐺 “ {𝑦}) = (𝐺 “ {(𝐺𝑧)}))
6158, 60ineq12d 4147 . . . . . . . . 9 (𝑦 = (𝐺𝑧) → ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) = ((𝐹 “ {(𝐴 / (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)})))
6261eleq2d 2824 . . . . . . . 8 (𝑦 = (𝐺𝑧) → (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ 𝑧 ∈ ((𝐹 “ {(𝐴 / (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)}))))
6362rspcev 3561 . . . . . . 7 (((𝐺𝑧) ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ((𝐹 “ {(𝐴 / (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)}))) → ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
6440, 55, 63syl2anc 584 . . . . . 6 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
6564ex 413 . . . . 5 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴) → ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦}))))
66 fniniseg 6937 . . . . . . . . . . 11 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐴 / 𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / 𝑦))))
6716, 66syl 17 . . . . . . . . . 10 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (𝐹 “ {(𝐴 / 𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / 𝑦))))
68 fniniseg 6937 . . . . . . . . . . 11 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
6917, 68syl 17 . . . . . . . . . 10 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
7067, 69anbi12d 631 . . . . . . . . 9 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ (𝐹 “ {(𝐴 / 𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})) ↔ ((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / 𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦))))
71 elin 3903 . . . . . . . . 9 (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ (𝑧 ∈ (𝐹 “ {(𝐴 / 𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})))
72 anandi 673 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦)) ↔ ((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / 𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
7370, 71, 723bitr4g 314 . . . . . . . 8 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦))))
7473adantr 481 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦))))
75 eldifi 4061 . . . . . . . . . . . 12 (𝐴 ∈ (ℂ ∖ {0}) → 𝐴 ∈ ℂ)
7675ad2antlr 724 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝐴 ∈ ℂ)
777ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝐺:ℝ⟶ℝ)
7877frnd 6608 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → ran 𝐺 ⊆ ℝ)
79 simprl 768 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ (ran 𝐺 ∖ {0}))
80 eldifsn 4720 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ran 𝐺 ∖ {0}) ↔ (𝑦 ∈ ran 𝐺𝑦 ≠ 0))
8179, 80sylib 217 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → (𝑦 ∈ ran 𝐺𝑦 ≠ 0))
8281simpld 495 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ran 𝐺)
8378, 82sseldd 3922 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ℝ)
8483recnd 11003 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ℂ)
8581simprd 496 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ≠ 0)
8676, 84, 85divcan1d 11752 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → ((𝐴 / 𝑦) · 𝑦) = 𝐴)
87 oveq12 7284 . . . . . . . . . . 11 (((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦) → ((𝐹𝑧) · (𝐺𝑧)) = ((𝐴 / 𝑦) · 𝑦))
8887eqeq1d 2740 . . . . . . . . . 10 (((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦) → (((𝐹𝑧) · (𝐺𝑧)) = 𝐴 ↔ ((𝐴 / 𝑦) · 𝑦) = 𝐴))
8986, 88syl5ibrcom 246 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → (((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦) → ((𝐹𝑧) · (𝐺𝑧)) = 𝐴))
9089anassrs 468 . . . . . . . 8 ((((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦) → ((𝐹𝑧) · (𝐺𝑧)) = 𝐴))
9190imdistanda 572 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦)) → (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)))
9274, 91sylbid 239 . . . . . 6 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)))
9392rexlimdva 3213 . . . . 5 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)))
9465, 93impbid 211 . . . 4 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴) ↔ ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦}))))
9515, 23, 943bitrd 305 . . 3 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((𝐹f · 𝐺) “ {𝐴}) ↔ ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦}))))
96 eliun 4928 . . 3 (𝑧 𝑦 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
9795, 96bitr4di 289 . 2 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((𝐹f · 𝐺) “ {𝐴}) ↔ 𝑧 𝑦 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦}))))
9897eqrdv 2736 1 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝐹f · 𝐺) “ {𝐴}) = 𝑦 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  Vcvv 3432  cdif 3884  cin 3886  {csn 4561   ciun 4924  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  cc 10869  cr 10870  0cc0 10871   · cmul 10876   / cdiv 11632  1citg1 24779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-sum 15398  df-itg1 24784
This theorem is referenced by:  i1fmul  24860
  Copyright terms: Public domain W3C validator