MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmullem Structured version   Visualization version   GIF version

Theorem i1fmullem 25729
Description: Decompose the preimage of a product. (Contributed by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
Assertion
Ref Expression
i1fmullem ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝐹f · 𝐺) “ {𝐴}) = 𝑦 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐺   𝜑,𝑦

Proof of Theorem i1fmullem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 i1fadd.1 . . . . . . . . 9 (𝜑𝐹 ∈ dom ∫1)
2 i1ff 25711 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
31, 2syl 17 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
43ffnd 6737 . . . . . . 7 (𝜑𝐹 Fn ℝ)
5 i1fadd.2 . . . . . . . . 9 (𝜑𝐺 ∈ dom ∫1)
6 i1ff 25711 . . . . . . . . 9 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
75, 6syl 17 . . . . . . . 8 (𝜑𝐺:ℝ⟶ℝ)
87ffnd 6737 . . . . . . 7 (𝜑𝐺 Fn ℝ)
9 reex 11246 . . . . . . . 8 ℝ ∈ V
109a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
11 inidm 4227 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
124, 8, 10, 10, 11offn 7710 . . . . . 6 (𝜑 → (𝐹f · 𝐺) Fn ℝ)
1312adantr 480 . . . . 5 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝐹f · 𝐺) Fn ℝ)
14 fniniseg 7080 . . . . 5 ((𝐹f · 𝐺) Fn ℝ → (𝑧 ∈ ((𝐹f · 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹f · 𝐺)‘𝑧) = 𝐴)))
1513, 14syl 17 . . . 4 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((𝐹f · 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹f · 𝐺)‘𝑧) = 𝐴)))
164adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → 𝐹 Fn ℝ)
178adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → 𝐺 Fn ℝ)
189a1i 11 . . . . . . 7 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ℝ ∈ V)
19 eqidd 2738 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) = (𝐹𝑧))
20 eqidd 2738 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) = (𝐺𝑧))
2116, 17, 18, 18, 11, 19, 20ofval 7708 . . . . . 6 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐹f · 𝐺)‘𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
2221eqeq1d 2739 . . . . 5 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → (((𝐹f · 𝐺)‘𝑧) = 𝐴 ↔ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴))
2322pm5.32da 579 . . . 4 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ ℝ ∧ ((𝐹f · 𝐺)‘𝑧) = 𝐴) ↔ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)))
248ad2antrr 726 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐺 Fn ℝ)
25 simprl 771 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝑧 ∈ ℝ)
26 fnfvelrn 7100 . . . . . . . . 9 ((𝐺 Fn ℝ ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ran 𝐺)
2724, 25, 26syl2anc 584 . . . . . . . 8 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ∈ ran 𝐺)
28 eldifsni 4790 . . . . . . . . . . 11 (𝐴 ∈ (ℂ ∖ {0}) → 𝐴 ≠ 0)
2928ad2antlr 727 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐴 ≠ 0)
30 simprr 773 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)
313ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐹:ℝ⟶ℝ)
3231, 25ffvelcdmd 7105 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐹𝑧) ∈ ℝ)
3332recnd 11289 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐹𝑧) ∈ ℂ)
3433mul01d 11460 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → ((𝐹𝑧) · 0) = 0)
3529, 30, 343netr4d 3018 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → ((𝐹𝑧) · (𝐺𝑧)) ≠ ((𝐹𝑧) · 0))
36 oveq2 7439 . . . . . . . . . 10 ((𝐺𝑧) = 0 → ((𝐹𝑧) · (𝐺𝑧)) = ((𝐹𝑧) · 0))
3736necon3i 2973 . . . . . . . . 9 (((𝐹𝑧) · (𝐺𝑧)) ≠ ((𝐹𝑧) · 0) → (𝐺𝑧) ≠ 0)
3835, 37syl 17 . . . . . . . 8 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ≠ 0)
39 eldifsn 4786 . . . . . . . 8 ((𝐺𝑧) ∈ (ran 𝐺 ∖ {0}) ↔ ((𝐺𝑧) ∈ ran 𝐺 ∧ (𝐺𝑧) ≠ 0))
4027, 38, 39sylanbrc 583 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ∈ (ran 𝐺 ∖ {0}))
417ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐺:ℝ⟶ℝ)
4241, 25ffvelcdmd 7105 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ∈ ℝ)
4342recnd 11289 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ∈ ℂ)
4433, 43, 38divcan4d 12049 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (((𝐹𝑧) · (𝐺𝑧)) / (𝐺𝑧)) = (𝐹𝑧))
4530oveq1d 7446 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (((𝐹𝑧) · (𝐺𝑧)) / (𝐺𝑧)) = (𝐴 / (𝐺𝑧)))
4644, 45eqtr3d 2779 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐹𝑧) = (𝐴 / (𝐺𝑧)))
4731ffnd 6737 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐹 Fn ℝ)
48 fniniseg 7080 . . . . . . . . . 10 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐴 / (𝐺𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / (𝐺𝑧)))))
4947, 48syl 17 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝑧 ∈ (𝐹 “ {(𝐴 / (𝐺𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / (𝐺𝑧)))))
5025, 46, 49mpbir2and 713 . . . . . . . 8 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝑧 ∈ (𝐹 “ {(𝐴 / (𝐺𝑧))}))
51 eqidd 2738 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) = (𝐺𝑧))
52 fniniseg 7080 . . . . . . . . . 10 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {(𝐺𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = (𝐺𝑧))))
5324, 52syl 17 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝑧 ∈ (𝐺 “ {(𝐺𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = (𝐺𝑧))))
5425, 51, 53mpbir2and 713 . . . . . . . 8 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝑧 ∈ (𝐺 “ {(𝐺𝑧)}))
5550, 54elind 4200 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝑧 ∈ ((𝐹 “ {(𝐴 / (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)})))
56 oveq2 7439 . . . . . . . . . . . 12 (𝑦 = (𝐺𝑧) → (𝐴 / 𝑦) = (𝐴 / (𝐺𝑧)))
5756sneqd 4638 . . . . . . . . . . 11 (𝑦 = (𝐺𝑧) → {(𝐴 / 𝑦)} = {(𝐴 / (𝐺𝑧))})
5857imaeq2d 6078 . . . . . . . . . 10 (𝑦 = (𝐺𝑧) → (𝐹 “ {(𝐴 / 𝑦)}) = (𝐹 “ {(𝐴 / (𝐺𝑧))}))
59 sneq 4636 . . . . . . . . . . 11 (𝑦 = (𝐺𝑧) → {𝑦} = {(𝐺𝑧)})
6059imaeq2d 6078 . . . . . . . . . 10 (𝑦 = (𝐺𝑧) → (𝐺 “ {𝑦}) = (𝐺 “ {(𝐺𝑧)}))
6158, 60ineq12d 4221 . . . . . . . . 9 (𝑦 = (𝐺𝑧) → ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) = ((𝐹 “ {(𝐴 / (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)})))
6261eleq2d 2827 . . . . . . . 8 (𝑦 = (𝐺𝑧) → (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ 𝑧 ∈ ((𝐹 “ {(𝐴 / (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)}))))
6362rspcev 3622 . . . . . . 7 (((𝐺𝑧) ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ((𝐹 “ {(𝐴 / (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)}))) → ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
6440, 55, 63syl2anc 584 . . . . . 6 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
6564ex 412 . . . . 5 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴) → ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦}))))
66 fniniseg 7080 . . . . . . . . . . 11 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐴 / 𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / 𝑦))))
6716, 66syl 17 . . . . . . . . . 10 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (𝐹 “ {(𝐴 / 𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / 𝑦))))
68 fniniseg 7080 . . . . . . . . . . 11 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
6917, 68syl 17 . . . . . . . . . 10 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
7067, 69anbi12d 632 . . . . . . . . 9 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ (𝐹 “ {(𝐴 / 𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})) ↔ ((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / 𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦))))
71 elin 3967 . . . . . . . . 9 (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ (𝑧 ∈ (𝐹 “ {(𝐴 / 𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})))
72 anandi 676 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦)) ↔ ((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / 𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
7370, 71, 723bitr4g 314 . . . . . . . 8 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦))))
7473adantr 480 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦))))
75 eldifi 4131 . . . . . . . . . . . 12 (𝐴 ∈ (ℂ ∖ {0}) → 𝐴 ∈ ℂ)
7675ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝐴 ∈ ℂ)
777ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝐺:ℝ⟶ℝ)
7877frnd 6744 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → ran 𝐺 ⊆ ℝ)
79 simprl 771 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ (ran 𝐺 ∖ {0}))
80 eldifsn 4786 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ran 𝐺 ∖ {0}) ↔ (𝑦 ∈ ran 𝐺𝑦 ≠ 0))
8179, 80sylib 218 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → (𝑦 ∈ ran 𝐺𝑦 ≠ 0))
8281simpld 494 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ran 𝐺)
8378, 82sseldd 3984 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ℝ)
8483recnd 11289 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ℂ)
8581simprd 495 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ≠ 0)
8676, 84, 85divcan1d 12044 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → ((𝐴 / 𝑦) · 𝑦) = 𝐴)
87 oveq12 7440 . . . . . . . . . . 11 (((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦) → ((𝐹𝑧) · (𝐺𝑧)) = ((𝐴 / 𝑦) · 𝑦))
8887eqeq1d 2739 . . . . . . . . . 10 (((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦) → (((𝐹𝑧) · (𝐺𝑧)) = 𝐴 ↔ ((𝐴 / 𝑦) · 𝑦) = 𝐴))
8986, 88syl5ibrcom 247 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → (((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦) → ((𝐹𝑧) · (𝐺𝑧)) = 𝐴))
9089anassrs 467 . . . . . . . 8 ((((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦) → ((𝐹𝑧) · (𝐺𝑧)) = 𝐴))
9190imdistanda 571 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦)) → (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)))
9274, 91sylbid 240 . . . . . 6 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)))
9392rexlimdva 3155 . . . . 5 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)))
9465, 93impbid 212 . . . 4 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴) ↔ ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦}))))
9515, 23, 943bitrd 305 . . 3 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((𝐹f · 𝐺) “ {𝐴}) ↔ ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦}))))
96 eliun 4995 . . 3 (𝑧 𝑦 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
9795, 96bitr4di 289 . 2 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((𝐹f · 𝐺) “ {𝐴}) ↔ 𝑧 𝑦 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦}))))
9897eqrdv 2735 1 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝐹f · 𝐺) “ {𝐴}) = 𝑦 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  Vcvv 3480  cdif 3948  cin 3950  {csn 4626   ciun 4991  ccnv 5684  dom cdm 5685  ran crn 5686  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  cc 11153  cr 11154  0cc0 11155   · cmul 11160   / cdiv 11920  1citg1 25650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-sum 15723  df-itg1 25655
This theorem is referenced by:  i1fmul  25731
  Copyright terms: Public domain W3C validator