MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmullem Structured version   Visualization version   GIF version

Theorem i1fmullem 25443
Description: Decompose the preimage of a product. (Contributed by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (πœ‘ β†’ 𝐹 ∈ dom ∫1)
i1fadd.2 (πœ‘ β†’ 𝐺 ∈ dom ∫1)
Assertion
Ref Expression
i1fmullem ((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) β†’ (β—‘(𝐹 ∘f Β· 𝐺) β€œ {𝐴}) = βˆͺ 𝑦 ∈ (ran 𝐺 βˆ– {0})((◑𝐹 β€œ {(𝐴 / 𝑦)}) ∩ (◑𝐺 β€œ {𝑦})))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐺   πœ‘,𝑦

Proof of Theorem i1fmullem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 i1fadd.1 . . . . . . . . 9 (πœ‘ β†’ 𝐹 ∈ dom ∫1)
2 i1ff 25425 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ 𝐹:β„βŸΆβ„)
31, 2syl 17 . . . . . . . 8 (πœ‘ β†’ 𝐹:β„βŸΆβ„)
43ffnd 6717 . . . . . . 7 (πœ‘ β†’ 𝐹 Fn ℝ)
5 i1fadd.2 . . . . . . . . 9 (πœ‘ β†’ 𝐺 ∈ dom ∫1)
6 i1ff 25425 . . . . . . . . 9 (𝐺 ∈ dom ∫1 β†’ 𝐺:β„βŸΆβ„)
75, 6syl 17 . . . . . . . 8 (πœ‘ β†’ 𝐺:β„βŸΆβ„)
87ffnd 6717 . . . . . . 7 (πœ‘ β†’ 𝐺 Fn ℝ)
9 reex 11203 . . . . . . . 8 ℝ ∈ V
109a1i 11 . . . . . . 7 (πœ‘ β†’ ℝ ∈ V)
11 inidm 4217 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
124, 8, 10, 10, 11offn 7685 . . . . . 6 (πœ‘ β†’ (𝐹 ∘f Β· 𝐺) Fn ℝ)
1312adantr 479 . . . . 5 ((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) β†’ (𝐹 ∘f Β· 𝐺) Fn ℝ)
14 fniniseg 7060 . . . . 5 ((𝐹 ∘f Β· 𝐺) Fn ℝ β†’ (𝑧 ∈ (β—‘(𝐹 ∘f Β· 𝐺) β€œ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f Β· 𝐺)β€˜π‘§) = 𝐴)))
1513, 14syl 17 . . . 4 ((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) β†’ (𝑧 ∈ (β—‘(𝐹 ∘f Β· 𝐺) β€œ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f Β· 𝐺)β€˜π‘§) = 𝐴)))
164adantr 479 . . . . . . 7 ((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) β†’ 𝐹 Fn ℝ)
178adantr 479 . . . . . . 7 ((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) β†’ 𝐺 Fn ℝ)
189a1i 11 . . . . . . 7 ((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) β†’ ℝ ∈ V)
19 eqidd 2731 . . . . . . 7 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ 𝑧 ∈ ℝ) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘§))
20 eqidd 2731 . . . . . . 7 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ 𝑧 ∈ ℝ) β†’ (πΊβ€˜π‘§) = (πΊβ€˜π‘§))
2116, 17, 18, 18, 11, 19, 20ofval 7683 . . . . . 6 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ 𝑧 ∈ ℝ) β†’ ((𝐹 ∘f Β· 𝐺)β€˜π‘§) = ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)))
2221eqeq1d 2732 . . . . 5 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ 𝑧 ∈ ℝ) β†’ (((𝐹 ∘f Β· 𝐺)β€˜π‘§) = 𝐴 ↔ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴))
2322pm5.32da 577 . . . 4 ((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) β†’ ((𝑧 ∈ ℝ ∧ ((𝐹 ∘f Β· 𝐺)β€˜π‘§) = 𝐴) ↔ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)))
248ad2antrr 722 . . . . . . . . 9 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ 𝐺 Fn ℝ)
25 simprl 767 . . . . . . . . 9 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ 𝑧 ∈ ℝ)
26 fnfvelrn 7081 . . . . . . . . 9 ((𝐺 Fn ℝ ∧ 𝑧 ∈ ℝ) β†’ (πΊβ€˜π‘§) ∈ ran 𝐺)
2724, 25, 26syl2anc 582 . . . . . . . 8 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ (πΊβ€˜π‘§) ∈ ran 𝐺)
28 eldifsni 4792 . . . . . . . . . . 11 (𝐴 ∈ (β„‚ βˆ– {0}) β†’ 𝐴 β‰  0)
2928ad2antlr 723 . . . . . . . . . 10 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ 𝐴 β‰  0)
30 simprr 769 . . . . . . . . . 10 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)
313ad2antrr 722 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ 𝐹:β„βŸΆβ„)
3231, 25ffvelcdmd 7086 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ (πΉβ€˜π‘§) ∈ ℝ)
3332recnd 11246 . . . . . . . . . . 11 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ (πΉβ€˜π‘§) ∈ β„‚)
3433mul01d 11417 . . . . . . . . . 10 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ ((πΉβ€˜π‘§) Β· 0) = 0)
3529, 30, 343netr4d 3016 . . . . . . . . 9 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) β‰  ((πΉβ€˜π‘§) Β· 0))
36 oveq2 7419 . . . . . . . . . 10 ((πΊβ€˜π‘§) = 0 β†’ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = ((πΉβ€˜π‘§) Β· 0))
3736necon3i 2971 . . . . . . . . 9 (((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) β‰  ((πΉβ€˜π‘§) Β· 0) β†’ (πΊβ€˜π‘§) β‰  0)
3835, 37syl 17 . . . . . . . 8 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ (πΊβ€˜π‘§) β‰  0)
39 eldifsn 4789 . . . . . . . 8 ((πΊβ€˜π‘§) ∈ (ran 𝐺 βˆ– {0}) ↔ ((πΊβ€˜π‘§) ∈ ran 𝐺 ∧ (πΊβ€˜π‘§) β‰  0))
4027, 38, 39sylanbrc 581 . . . . . . 7 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ (πΊβ€˜π‘§) ∈ (ran 𝐺 βˆ– {0}))
417ad2antrr 722 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ 𝐺:β„βŸΆβ„)
4241, 25ffvelcdmd 7086 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ (πΊβ€˜π‘§) ∈ ℝ)
4342recnd 11246 . . . . . . . . . . 11 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ (πΊβ€˜π‘§) ∈ β„‚)
4433, 43, 38divcan4d 12000 . . . . . . . . . 10 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ (((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) / (πΊβ€˜π‘§)) = (πΉβ€˜π‘§))
4530oveq1d 7426 . . . . . . . . . 10 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ (((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) / (πΊβ€˜π‘§)) = (𝐴 / (πΊβ€˜π‘§)))
4644, 45eqtr3d 2772 . . . . . . . . 9 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ (πΉβ€˜π‘§) = (𝐴 / (πΊβ€˜π‘§)))
4731ffnd 6717 . . . . . . . . . 10 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ 𝐹 Fn ℝ)
48 fniniseg 7060 . . . . . . . . . 10 (𝐹 Fn ℝ β†’ (𝑧 ∈ (◑𝐹 β€œ {(𝐴 / (πΊβ€˜π‘§))}) ↔ (𝑧 ∈ ℝ ∧ (πΉβ€˜π‘§) = (𝐴 / (πΊβ€˜π‘§)))))
4947, 48syl 17 . . . . . . . . 9 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ (𝑧 ∈ (◑𝐹 β€œ {(𝐴 / (πΊβ€˜π‘§))}) ↔ (𝑧 ∈ ℝ ∧ (πΉβ€˜π‘§) = (𝐴 / (πΊβ€˜π‘§)))))
5025, 46, 49mpbir2and 709 . . . . . . . 8 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ 𝑧 ∈ (◑𝐹 β€œ {(𝐴 / (πΊβ€˜π‘§))}))
51 eqidd 2731 . . . . . . . . 9 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ (πΊβ€˜π‘§) = (πΊβ€˜π‘§))
52 fniniseg 7060 . . . . . . . . . 10 (𝐺 Fn ℝ β†’ (𝑧 ∈ (◑𝐺 β€œ {(πΊβ€˜π‘§)}) ↔ (𝑧 ∈ ℝ ∧ (πΊβ€˜π‘§) = (πΊβ€˜π‘§))))
5324, 52syl 17 . . . . . . . . 9 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ (𝑧 ∈ (◑𝐺 β€œ {(πΊβ€˜π‘§)}) ↔ (𝑧 ∈ ℝ ∧ (πΊβ€˜π‘§) = (πΊβ€˜π‘§))))
5425, 51, 53mpbir2and 709 . . . . . . . 8 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ 𝑧 ∈ (◑𝐺 β€œ {(πΊβ€˜π‘§)}))
5550, 54elind 4193 . . . . . . 7 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ 𝑧 ∈ ((◑𝐹 β€œ {(𝐴 / (πΊβ€˜π‘§))}) ∩ (◑𝐺 β€œ {(πΊβ€˜π‘§)})))
56 oveq2 7419 . . . . . . . . . . . 12 (𝑦 = (πΊβ€˜π‘§) β†’ (𝐴 / 𝑦) = (𝐴 / (πΊβ€˜π‘§)))
5756sneqd 4639 . . . . . . . . . . 11 (𝑦 = (πΊβ€˜π‘§) β†’ {(𝐴 / 𝑦)} = {(𝐴 / (πΊβ€˜π‘§))})
5857imaeq2d 6058 . . . . . . . . . 10 (𝑦 = (πΊβ€˜π‘§) β†’ (◑𝐹 β€œ {(𝐴 / 𝑦)}) = (◑𝐹 β€œ {(𝐴 / (πΊβ€˜π‘§))}))
59 sneq 4637 . . . . . . . . . . 11 (𝑦 = (πΊβ€˜π‘§) β†’ {𝑦} = {(πΊβ€˜π‘§)})
6059imaeq2d 6058 . . . . . . . . . 10 (𝑦 = (πΊβ€˜π‘§) β†’ (◑𝐺 β€œ {𝑦}) = (◑𝐺 β€œ {(πΊβ€˜π‘§)}))
6158, 60ineq12d 4212 . . . . . . . . 9 (𝑦 = (πΊβ€˜π‘§) β†’ ((◑𝐹 β€œ {(𝐴 / 𝑦)}) ∩ (◑𝐺 β€œ {𝑦})) = ((◑𝐹 β€œ {(𝐴 / (πΊβ€˜π‘§))}) ∩ (◑𝐺 β€œ {(πΊβ€˜π‘§)})))
6261eleq2d 2817 . . . . . . . 8 (𝑦 = (πΊβ€˜π‘§) β†’ (𝑧 ∈ ((◑𝐹 β€œ {(𝐴 / 𝑦)}) ∩ (◑𝐺 β€œ {𝑦})) ↔ 𝑧 ∈ ((◑𝐹 β€œ {(𝐴 / (πΊβ€˜π‘§))}) ∩ (◑𝐺 β€œ {(πΊβ€˜π‘§)}))))
6362rspcev 3611 . . . . . . 7 (((πΊβ€˜π‘§) ∈ (ran 𝐺 βˆ– {0}) ∧ 𝑧 ∈ ((◑𝐹 β€œ {(𝐴 / (πΊβ€˜π‘§))}) ∩ (◑𝐺 β€œ {(πΊβ€˜π‘§)}))) β†’ βˆƒπ‘¦ ∈ (ran 𝐺 βˆ– {0})𝑧 ∈ ((◑𝐹 β€œ {(𝐴 / 𝑦)}) ∩ (◑𝐺 β€œ {𝑦})))
6440, 55, 63syl2anc 582 . . . . . 6 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)) β†’ βˆƒπ‘¦ ∈ (ran 𝐺 βˆ– {0})𝑧 ∈ ((◑𝐹 β€œ {(𝐴 / 𝑦)}) ∩ (◑𝐺 β€œ {𝑦})))
6564ex 411 . . . . 5 ((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) β†’ ((𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴) β†’ βˆƒπ‘¦ ∈ (ran 𝐺 βˆ– {0})𝑧 ∈ ((◑𝐹 β€œ {(𝐴 / 𝑦)}) ∩ (◑𝐺 β€œ {𝑦}))))
66 fniniseg 7060 . . . . . . . . . . 11 (𝐹 Fn ℝ β†’ (𝑧 ∈ (◑𝐹 β€œ {(𝐴 / 𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (πΉβ€˜π‘§) = (𝐴 / 𝑦))))
6716, 66syl 17 . . . . . . . . . 10 ((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) β†’ (𝑧 ∈ (◑𝐹 β€œ {(𝐴 / 𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (πΉβ€˜π‘§) = (𝐴 / 𝑦))))
68 fniniseg 7060 . . . . . . . . . . 11 (𝐺 Fn ℝ β†’ (𝑧 ∈ (◑𝐺 β€œ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (πΊβ€˜π‘§) = 𝑦)))
6917, 68syl 17 . . . . . . . . . 10 ((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) β†’ (𝑧 ∈ (◑𝐺 β€œ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (πΊβ€˜π‘§) = 𝑦)))
7067, 69anbi12d 629 . . . . . . . . 9 ((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) β†’ ((𝑧 ∈ (◑𝐹 β€œ {(𝐴 / 𝑦)}) ∧ 𝑧 ∈ (◑𝐺 β€œ {𝑦})) ↔ ((𝑧 ∈ ℝ ∧ (πΉβ€˜π‘§) = (𝐴 / 𝑦)) ∧ (𝑧 ∈ ℝ ∧ (πΊβ€˜π‘§) = 𝑦))))
71 elin 3963 . . . . . . . . 9 (𝑧 ∈ ((◑𝐹 β€œ {(𝐴 / 𝑦)}) ∩ (◑𝐺 β€œ {𝑦})) ↔ (𝑧 ∈ (◑𝐹 β€œ {(𝐴 / 𝑦)}) ∧ 𝑧 ∈ (◑𝐺 β€œ {𝑦})))
72 anandi 672 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) = (𝐴 / 𝑦) ∧ (πΊβ€˜π‘§) = 𝑦)) ↔ ((𝑧 ∈ ℝ ∧ (πΉβ€˜π‘§) = (𝐴 / 𝑦)) ∧ (𝑧 ∈ ℝ ∧ (πΊβ€˜π‘§) = 𝑦)))
7370, 71, 723bitr4g 313 . . . . . . . 8 ((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) β†’ (𝑧 ∈ ((◑𝐹 β€œ {(𝐴 / 𝑦)}) ∩ (◑𝐺 β€œ {𝑦})) ↔ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) = (𝐴 / 𝑦) ∧ (πΊβ€˜π‘§) = 𝑦))))
7473adantr 479 . . . . . . 7 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ 𝑦 ∈ (ran 𝐺 βˆ– {0})) β†’ (𝑧 ∈ ((◑𝐹 β€œ {(𝐴 / 𝑦)}) ∩ (◑𝐺 β€œ {𝑦})) ↔ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) = (𝐴 / 𝑦) ∧ (πΊβ€˜π‘§) = 𝑦))))
75 eldifi 4125 . . . . . . . . . . . 12 (𝐴 ∈ (β„‚ βˆ– {0}) β†’ 𝐴 ∈ β„‚)
7675ad2antlr 723 . . . . . . . . . . 11 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑦 ∈ (ran 𝐺 βˆ– {0}) ∧ 𝑧 ∈ ℝ)) β†’ 𝐴 ∈ β„‚)
777ad2antrr 722 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑦 ∈ (ran 𝐺 βˆ– {0}) ∧ 𝑧 ∈ ℝ)) β†’ 𝐺:β„βŸΆβ„)
7877frnd 6724 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑦 ∈ (ran 𝐺 βˆ– {0}) ∧ 𝑧 ∈ ℝ)) β†’ ran 𝐺 βŠ† ℝ)
79 simprl 767 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑦 ∈ (ran 𝐺 βˆ– {0}) ∧ 𝑧 ∈ ℝ)) β†’ 𝑦 ∈ (ran 𝐺 βˆ– {0}))
80 eldifsn 4789 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ran 𝐺 βˆ– {0}) ↔ (𝑦 ∈ ran 𝐺 ∧ 𝑦 β‰  0))
8179, 80sylib 217 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑦 ∈ (ran 𝐺 βˆ– {0}) ∧ 𝑧 ∈ ℝ)) β†’ (𝑦 ∈ ran 𝐺 ∧ 𝑦 β‰  0))
8281simpld 493 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑦 ∈ (ran 𝐺 βˆ– {0}) ∧ 𝑧 ∈ ℝ)) β†’ 𝑦 ∈ ran 𝐺)
8378, 82sseldd 3982 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑦 ∈ (ran 𝐺 βˆ– {0}) ∧ 𝑧 ∈ ℝ)) β†’ 𝑦 ∈ ℝ)
8483recnd 11246 . . . . . . . . . . 11 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑦 ∈ (ran 𝐺 βˆ– {0}) ∧ 𝑧 ∈ ℝ)) β†’ 𝑦 ∈ β„‚)
8581simprd 494 . . . . . . . . . . 11 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑦 ∈ (ran 𝐺 βˆ– {0}) ∧ 𝑧 ∈ ℝ)) β†’ 𝑦 β‰  0)
8676, 84, 85divcan1d 11995 . . . . . . . . . 10 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑦 ∈ (ran 𝐺 βˆ– {0}) ∧ 𝑧 ∈ ℝ)) β†’ ((𝐴 / 𝑦) Β· 𝑦) = 𝐴)
87 oveq12 7420 . . . . . . . . . . 11 (((πΉβ€˜π‘§) = (𝐴 / 𝑦) ∧ (πΊβ€˜π‘§) = 𝑦) β†’ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = ((𝐴 / 𝑦) Β· 𝑦))
8887eqeq1d 2732 . . . . . . . . . 10 (((πΉβ€˜π‘§) = (𝐴 / 𝑦) ∧ (πΊβ€˜π‘§) = 𝑦) β†’ (((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴 ↔ ((𝐴 / 𝑦) Β· 𝑦) = 𝐴))
8986, 88syl5ibrcom 246 . . . . . . . . 9 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ (𝑦 ∈ (ran 𝐺 βˆ– {0}) ∧ 𝑧 ∈ ℝ)) β†’ (((πΉβ€˜π‘§) = (𝐴 / 𝑦) ∧ (πΊβ€˜π‘§) = 𝑦) β†’ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴))
9089anassrs 466 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ 𝑦 ∈ (ran 𝐺 βˆ– {0})) ∧ 𝑧 ∈ ℝ) β†’ (((πΉβ€˜π‘§) = (𝐴 / 𝑦) ∧ (πΊβ€˜π‘§) = 𝑦) β†’ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴))
9190imdistanda 570 . . . . . . 7 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ 𝑦 ∈ (ran 𝐺 βˆ– {0})) β†’ ((𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) = (𝐴 / 𝑦) ∧ (πΊβ€˜π‘§) = 𝑦)) β†’ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)))
9274, 91sylbid 239 . . . . . 6 (((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) ∧ 𝑦 ∈ (ran 𝐺 βˆ– {0})) β†’ (𝑧 ∈ ((◑𝐹 β€œ {(𝐴 / 𝑦)}) ∩ (◑𝐺 β€œ {𝑦})) β†’ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)))
9392rexlimdva 3153 . . . . 5 ((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) β†’ (βˆƒπ‘¦ ∈ (ran 𝐺 βˆ– {0})𝑧 ∈ ((◑𝐹 β€œ {(𝐴 / 𝑦)}) ∩ (◑𝐺 β€œ {𝑦})) β†’ (𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴)))
9465, 93impbid 211 . . . 4 ((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) β†’ ((𝑧 ∈ ℝ ∧ ((πΉβ€˜π‘§) Β· (πΊβ€˜π‘§)) = 𝐴) ↔ βˆƒπ‘¦ ∈ (ran 𝐺 βˆ– {0})𝑧 ∈ ((◑𝐹 β€œ {(𝐴 / 𝑦)}) ∩ (◑𝐺 β€œ {𝑦}))))
9515, 23, 943bitrd 304 . . 3 ((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) β†’ (𝑧 ∈ (β—‘(𝐹 ∘f Β· 𝐺) β€œ {𝐴}) ↔ βˆƒπ‘¦ ∈ (ran 𝐺 βˆ– {0})𝑧 ∈ ((◑𝐹 β€œ {(𝐴 / 𝑦)}) ∩ (◑𝐺 β€œ {𝑦}))))
96 eliun 5000 . . 3 (𝑧 ∈ βˆͺ 𝑦 ∈ (ran 𝐺 βˆ– {0})((◑𝐹 β€œ {(𝐴 / 𝑦)}) ∩ (◑𝐺 β€œ {𝑦})) ↔ βˆƒπ‘¦ ∈ (ran 𝐺 βˆ– {0})𝑧 ∈ ((◑𝐹 β€œ {(𝐴 / 𝑦)}) ∩ (◑𝐺 β€œ {𝑦})))
9795, 96bitr4di 288 . 2 ((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) β†’ (𝑧 ∈ (β—‘(𝐹 ∘f Β· 𝐺) β€œ {𝐴}) ↔ 𝑧 ∈ βˆͺ 𝑦 ∈ (ran 𝐺 βˆ– {0})((◑𝐹 β€œ {(𝐴 / 𝑦)}) ∩ (◑𝐺 β€œ {𝑦}))))
9897eqrdv 2728 1 ((πœ‘ ∧ 𝐴 ∈ (β„‚ βˆ– {0})) β†’ (β—‘(𝐹 ∘f Β· 𝐺) β€œ {𝐴}) = βˆͺ 𝑦 ∈ (ran 𝐺 βˆ– {0})((◑𝐹 β€œ {(𝐴 / 𝑦)}) ∩ (◑𝐺 β€œ {𝑦})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆƒwrex 3068  Vcvv 3472   βˆ– cdif 3944   ∩ cin 3946  {csn 4627  βˆͺ ciun 4996  β—‘ccnv 5674  dom cdm 5675  ran crn 5676   β€œ cima 5678   Fn wfn 6537  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411   ∘f cof 7670  β„‚cc 11110  β„cr 11111  0cc0 11112   Β· cmul 11117   / cdiv 11875  βˆ«1citg1 25364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-sum 15637  df-itg1 25369
This theorem is referenced by:  i1fmul  25445
  Copyright terms: Public domain W3C validator