MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmullem Structured version   Visualization version   GIF version

Theorem i1fmullem 24763
Description: Decompose the preimage of a product. (Contributed by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
Assertion
Ref Expression
i1fmullem ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝐹f · 𝐺) “ {𝐴}) = 𝑦 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐺   𝜑,𝑦

Proof of Theorem i1fmullem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 i1fadd.1 . . . . . . . . 9 (𝜑𝐹 ∈ dom ∫1)
2 i1ff 24745 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
31, 2syl 17 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
43ffnd 6585 . . . . . . 7 (𝜑𝐹 Fn ℝ)
5 i1fadd.2 . . . . . . . . 9 (𝜑𝐺 ∈ dom ∫1)
6 i1ff 24745 . . . . . . . . 9 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
75, 6syl 17 . . . . . . . 8 (𝜑𝐺:ℝ⟶ℝ)
87ffnd 6585 . . . . . . 7 (𝜑𝐺 Fn ℝ)
9 reex 10893 . . . . . . . 8 ℝ ∈ V
109a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
11 inidm 4149 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
124, 8, 10, 10, 11offn 7524 . . . . . 6 (𝜑 → (𝐹f · 𝐺) Fn ℝ)
1312adantr 480 . . . . 5 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝐹f · 𝐺) Fn ℝ)
14 fniniseg 6919 . . . . 5 ((𝐹f · 𝐺) Fn ℝ → (𝑧 ∈ ((𝐹f · 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹f · 𝐺)‘𝑧) = 𝐴)))
1513, 14syl 17 . . . 4 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((𝐹f · 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹f · 𝐺)‘𝑧) = 𝐴)))
164adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → 𝐹 Fn ℝ)
178adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → 𝐺 Fn ℝ)
189a1i 11 . . . . . . 7 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ℝ ∈ V)
19 eqidd 2739 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) = (𝐹𝑧))
20 eqidd 2739 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) = (𝐺𝑧))
2116, 17, 18, 18, 11, 19, 20ofval 7522 . . . . . 6 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐹f · 𝐺)‘𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
2221eqeq1d 2740 . . . . 5 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → (((𝐹f · 𝐺)‘𝑧) = 𝐴 ↔ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴))
2322pm5.32da 578 . . . 4 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ ℝ ∧ ((𝐹f · 𝐺)‘𝑧) = 𝐴) ↔ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)))
248ad2antrr 722 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐺 Fn ℝ)
25 simprl 767 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝑧 ∈ ℝ)
26 fnfvelrn 6940 . . . . . . . . 9 ((𝐺 Fn ℝ ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ran 𝐺)
2724, 25, 26syl2anc 583 . . . . . . . 8 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ∈ ran 𝐺)
28 eldifsni 4720 . . . . . . . . . . 11 (𝐴 ∈ (ℂ ∖ {0}) → 𝐴 ≠ 0)
2928ad2antlr 723 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐴 ≠ 0)
30 simprr 769 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)
313ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐹:ℝ⟶ℝ)
3231, 25ffvelrnd 6944 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐹𝑧) ∈ ℝ)
3332recnd 10934 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐹𝑧) ∈ ℂ)
3433mul01d 11104 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → ((𝐹𝑧) · 0) = 0)
3529, 30, 343netr4d 3020 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → ((𝐹𝑧) · (𝐺𝑧)) ≠ ((𝐹𝑧) · 0))
36 oveq2 7263 . . . . . . . . . 10 ((𝐺𝑧) = 0 → ((𝐹𝑧) · (𝐺𝑧)) = ((𝐹𝑧) · 0))
3736necon3i 2975 . . . . . . . . 9 (((𝐹𝑧) · (𝐺𝑧)) ≠ ((𝐹𝑧) · 0) → (𝐺𝑧) ≠ 0)
3835, 37syl 17 . . . . . . . 8 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ≠ 0)
39 eldifsn 4717 . . . . . . . 8 ((𝐺𝑧) ∈ (ran 𝐺 ∖ {0}) ↔ ((𝐺𝑧) ∈ ran 𝐺 ∧ (𝐺𝑧) ≠ 0))
4027, 38, 39sylanbrc 582 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ∈ (ran 𝐺 ∖ {0}))
417ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐺:ℝ⟶ℝ)
4241, 25ffvelrnd 6944 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ∈ ℝ)
4342recnd 10934 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ∈ ℂ)
4433, 43, 38divcan4d 11687 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (((𝐹𝑧) · (𝐺𝑧)) / (𝐺𝑧)) = (𝐹𝑧))
4530oveq1d 7270 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (((𝐹𝑧) · (𝐺𝑧)) / (𝐺𝑧)) = (𝐴 / (𝐺𝑧)))
4644, 45eqtr3d 2780 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐹𝑧) = (𝐴 / (𝐺𝑧)))
4731ffnd 6585 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐹 Fn ℝ)
48 fniniseg 6919 . . . . . . . . . 10 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐴 / (𝐺𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / (𝐺𝑧)))))
4947, 48syl 17 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝑧 ∈ (𝐹 “ {(𝐴 / (𝐺𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / (𝐺𝑧)))))
5025, 46, 49mpbir2and 709 . . . . . . . 8 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝑧 ∈ (𝐹 “ {(𝐴 / (𝐺𝑧))}))
51 eqidd 2739 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) = (𝐺𝑧))
52 fniniseg 6919 . . . . . . . . . 10 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {(𝐺𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = (𝐺𝑧))))
5324, 52syl 17 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝑧 ∈ (𝐺 “ {(𝐺𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = (𝐺𝑧))))
5425, 51, 53mpbir2and 709 . . . . . . . 8 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝑧 ∈ (𝐺 “ {(𝐺𝑧)}))
5550, 54elind 4124 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝑧 ∈ ((𝐹 “ {(𝐴 / (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)})))
56 oveq2 7263 . . . . . . . . . . . 12 (𝑦 = (𝐺𝑧) → (𝐴 / 𝑦) = (𝐴 / (𝐺𝑧)))
5756sneqd 4570 . . . . . . . . . . 11 (𝑦 = (𝐺𝑧) → {(𝐴 / 𝑦)} = {(𝐴 / (𝐺𝑧))})
5857imaeq2d 5958 . . . . . . . . . 10 (𝑦 = (𝐺𝑧) → (𝐹 “ {(𝐴 / 𝑦)}) = (𝐹 “ {(𝐴 / (𝐺𝑧))}))
59 sneq 4568 . . . . . . . . . . 11 (𝑦 = (𝐺𝑧) → {𝑦} = {(𝐺𝑧)})
6059imaeq2d 5958 . . . . . . . . . 10 (𝑦 = (𝐺𝑧) → (𝐺 “ {𝑦}) = (𝐺 “ {(𝐺𝑧)}))
6158, 60ineq12d 4144 . . . . . . . . 9 (𝑦 = (𝐺𝑧) → ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) = ((𝐹 “ {(𝐴 / (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)})))
6261eleq2d 2824 . . . . . . . 8 (𝑦 = (𝐺𝑧) → (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ 𝑧 ∈ ((𝐹 “ {(𝐴 / (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)}))))
6362rspcev 3552 . . . . . . 7 (((𝐺𝑧) ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ((𝐹 “ {(𝐴 / (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)}))) → ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
6440, 55, 63syl2anc 583 . . . . . 6 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
6564ex 412 . . . . 5 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴) → ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦}))))
66 fniniseg 6919 . . . . . . . . . . 11 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐴 / 𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / 𝑦))))
6716, 66syl 17 . . . . . . . . . 10 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (𝐹 “ {(𝐴 / 𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / 𝑦))))
68 fniniseg 6919 . . . . . . . . . . 11 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
6917, 68syl 17 . . . . . . . . . 10 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
7067, 69anbi12d 630 . . . . . . . . 9 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ (𝐹 “ {(𝐴 / 𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})) ↔ ((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / 𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦))))
71 elin 3899 . . . . . . . . 9 (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ (𝑧 ∈ (𝐹 “ {(𝐴 / 𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})))
72 anandi 672 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦)) ↔ ((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / 𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
7370, 71, 723bitr4g 313 . . . . . . . 8 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦))))
7473adantr 480 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦))))
75 eldifi 4057 . . . . . . . . . . . 12 (𝐴 ∈ (ℂ ∖ {0}) → 𝐴 ∈ ℂ)
7675ad2antlr 723 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝐴 ∈ ℂ)
777ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝐺:ℝ⟶ℝ)
7877frnd 6592 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → ran 𝐺 ⊆ ℝ)
79 simprl 767 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ (ran 𝐺 ∖ {0}))
80 eldifsn 4717 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ran 𝐺 ∖ {0}) ↔ (𝑦 ∈ ran 𝐺𝑦 ≠ 0))
8179, 80sylib 217 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → (𝑦 ∈ ran 𝐺𝑦 ≠ 0))
8281simpld 494 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ran 𝐺)
8378, 82sseldd 3918 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ℝ)
8483recnd 10934 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ℂ)
8581simprd 495 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ≠ 0)
8676, 84, 85divcan1d 11682 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → ((𝐴 / 𝑦) · 𝑦) = 𝐴)
87 oveq12 7264 . . . . . . . . . . 11 (((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦) → ((𝐹𝑧) · (𝐺𝑧)) = ((𝐴 / 𝑦) · 𝑦))
8887eqeq1d 2740 . . . . . . . . . 10 (((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦) → (((𝐹𝑧) · (𝐺𝑧)) = 𝐴 ↔ ((𝐴 / 𝑦) · 𝑦) = 𝐴))
8986, 88syl5ibrcom 246 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → (((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦) → ((𝐹𝑧) · (𝐺𝑧)) = 𝐴))
9089anassrs 467 . . . . . . . 8 ((((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦) → ((𝐹𝑧) · (𝐺𝑧)) = 𝐴))
9190imdistanda 571 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦)) → (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)))
9274, 91sylbid 239 . . . . . 6 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)))
9392rexlimdva 3212 . . . . 5 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)))
9465, 93impbid 211 . . . 4 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴) ↔ ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦}))))
9515, 23, 943bitrd 304 . . 3 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((𝐹f · 𝐺) “ {𝐴}) ↔ ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦}))))
96 eliun 4925 . . 3 (𝑧 𝑦 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
9795, 96bitr4di 288 . 2 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((𝐹f · 𝐺) “ {𝐴}) ↔ 𝑧 𝑦 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦}))))
9897eqrdv 2736 1 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝐹f · 𝐺) “ {𝐴}) = 𝑦 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  Vcvv 3422  cdif 3880  cin 3882  {csn 4558   ciun 4921  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  cc 10800  cr 10801  0cc0 10802   · cmul 10807   / cdiv 11562  1citg1 24684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-sum 15326  df-itg1 24689
This theorem is referenced by:  i1fmul  24765
  Copyright terms: Public domain W3C validator