Step | Hyp | Ref
| Expression |
1 | | i1fadd.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ dom
∫1) |
2 | | i1ff 23843 |
. . . . . . . . 9
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
3 | 1, 2 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
4 | 3 | ffnd 6280 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn ℝ) |
5 | | i1fadd.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ dom
∫1) |
6 | | i1ff 23843 |
. . . . . . . . 9
⊢ (𝐺 ∈ dom ∫1
→ 𝐺:ℝ⟶ℝ) |
7 | 5, 6 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
8 | 7 | ffnd 6280 |
. . . . . . 7
⊢ (𝜑 → 𝐺 Fn ℝ) |
9 | | reex 10344 |
. . . . . . . 8
⊢ ℝ
∈ V |
10 | 9 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ ∈
V) |
11 | | inidm 4048 |
. . . . . . 7
⊢ (ℝ
∩ ℝ) = ℝ |
12 | 4, 8, 10, 10, 11 | offn 7169 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) Fn ℝ) |
13 | 12 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) → (𝐹 ∘𝑓
· 𝐺) Fn
ℝ) |
14 | | fniniseg 6588 |
. . . . 5
⊢ ((𝐹 ∘𝑓
· 𝐺) Fn ℝ
→ (𝑧 ∈ (◡(𝐹 ∘𝑓 · 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 · 𝐺)‘𝑧) = 𝐴))) |
15 | 13, 14 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (◡(𝐹 ∘𝑓 · 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹 ∘𝑓 · 𝐺)‘𝑧) = 𝐴))) |
16 | 4 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) → 𝐹 Fn ℝ) |
17 | 8 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) → 𝐺 Fn ℝ) |
18 | 9 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) →
ℝ ∈ V) |
19 | | eqidd 2827 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) = (𝐹‘𝑧)) |
20 | | eqidd 2827 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) = (𝐺‘𝑧)) |
21 | 16, 17, 18, 18, 11, 19, 20 | ofval 7167 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐹 ∘𝑓
· 𝐺)‘𝑧) = ((𝐹‘𝑧) · (𝐺‘𝑧))) |
22 | 21 | eqeq1d 2828 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → (((𝐹 ∘𝑓
· 𝐺)‘𝑧) = 𝐴 ↔ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) |
23 | 22 | pm5.32da 576 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) →
((𝑧 ∈ ℝ ∧
((𝐹
∘𝑓 · 𝐺)‘𝑧) = 𝐴) ↔ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴))) |
24 | 8 | ad2antrr 719 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → 𝐺 Fn ℝ) |
25 | | simprl 789 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → 𝑧 ∈ ℝ) |
26 | | fnfvelrn 6606 |
. . . . . . . . 9
⊢ ((𝐺 Fn ℝ ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) ∈ ran 𝐺) |
27 | 24, 25, 26 | syl2anc 581 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → (𝐺‘𝑧) ∈ ran 𝐺) |
28 | | eldifsni 4541 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (ℂ ∖ {0})
→ 𝐴 ≠
0) |
29 | 28 | ad2antlr 720 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → 𝐴 ≠ 0) |
30 | | simprr 791 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴) |
31 | 3 | ad2antrr 719 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → 𝐹:ℝ⟶ℝ) |
32 | 31, 25 | ffvelrnd 6610 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → (𝐹‘𝑧) ∈ ℝ) |
33 | 32 | recnd 10386 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → (𝐹‘𝑧) ∈ ℂ) |
34 | 33 | mul01d 10555 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → ((𝐹‘𝑧) · 0) = 0) |
35 | 29, 30, 34 | 3netr4d 3077 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → ((𝐹‘𝑧) · (𝐺‘𝑧)) ≠ ((𝐹‘𝑧) · 0)) |
36 | | oveq2 6914 |
. . . . . . . . . 10
⊢ ((𝐺‘𝑧) = 0 → ((𝐹‘𝑧) · (𝐺‘𝑧)) = ((𝐹‘𝑧) · 0)) |
37 | 36 | necon3i 3032 |
. . . . . . . . 9
⊢ (((𝐹‘𝑧) · (𝐺‘𝑧)) ≠ ((𝐹‘𝑧) · 0) → (𝐺‘𝑧) ≠ 0) |
38 | 35, 37 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → (𝐺‘𝑧) ≠ 0) |
39 | | eldifsn 4537 |
. . . . . . . 8
⊢ ((𝐺‘𝑧) ∈ (ran 𝐺 ∖ {0}) ↔ ((𝐺‘𝑧) ∈ ran 𝐺 ∧ (𝐺‘𝑧) ≠ 0)) |
40 | 27, 38, 39 | sylanbrc 580 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → (𝐺‘𝑧) ∈ (ran 𝐺 ∖ {0})) |
41 | 7 | ad2antrr 719 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → 𝐺:ℝ⟶ℝ) |
42 | 41, 25 | ffvelrnd 6610 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → (𝐺‘𝑧) ∈ ℝ) |
43 | 42 | recnd 10386 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → (𝐺‘𝑧) ∈ ℂ) |
44 | 33, 43, 38 | divcan4d 11134 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → (((𝐹‘𝑧) · (𝐺‘𝑧)) / (𝐺‘𝑧)) = (𝐹‘𝑧)) |
45 | 30 | oveq1d 6921 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → (((𝐹‘𝑧) · (𝐺‘𝑧)) / (𝐺‘𝑧)) = (𝐴 / (𝐺‘𝑧))) |
46 | 44, 45 | eqtr3d 2864 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → (𝐹‘𝑧) = (𝐴 / (𝐺‘𝑧))) |
47 | 31 | ffnd 6280 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → 𝐹 Fn ℝ) |
48 | | fniniseg 6588 |
. . . . . . . . . 10
⊢ (𝐹 Fn ℝ → (𝑧 ∈ (◡𝐹 “ {(𝐴 / (𝐺‘𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 / (𝐺‘𝑧))))) |
49 | 47, 48 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → (𝑧 ∈ (◡𝐹 “ {(𝐴 / (𝐺‘𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 / (𝐺‘𝑧))))) |
50 | 25, 46, 49 | mpbir2and 706 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → 𝑧 ∈ (◡𝐹 “ {(𝐴 / (𝐺‘𝑧))})) |
51 | | eqidd 2827 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → (𝐺‘𝑧) = (𝐺‘𝑧)) |
52 | | fniniseg 6588 |
. . . . . . . . . 10
⊢ (𝐺 Fn ℝ → (𝑧 ∈ (◡𝐺 “ {(𝐺‘𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = (𝐺‘𝑧)))) |
53 | 24, 52 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → (𝑧 ∈ (◡𝐺 “ {(𝐺‘𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = (𝐺‘𝑧)))) |
54 | 25, 51, 53 | mpbir2and 706 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → 𝑧 ∈ (◡𝐺 “ {(𝐺‘𝑧)})) |
55 | | elin 4024 |
. . . . . . . 8
⊢ (𝑧 ∈ ((◡𝐹 “ {(𝐴 / (𝐺‘𝑧))}) ∩ (◡𝐺 “ {(𝐺‘𝑧)})) ↔ (𝑧 ∈ (◡𝐹 “ {(𝐴 / (𝐺‘𝑧))}) ∧ 𝑧 ∈ (◡𝐺 “ {(𝐺‘𝑧)}))) |
56 | 50, 54, 55 | sylanbrc 580 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → 𝑧 ∈ ((◡𝐹 “ {(𝐴 / (𝐺‘𝑧))}) ∩ (◡𝐺 “ {(𝐺‘𝑧)}))) |
57 | | oveq2 6914 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐺‘𝑧) → (𝐴 / 𝑦) = (𝐴 / (𝐺‘𝑧))) |
58 | 57 | sneqd 4410 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐺‘𝑧) → {(𝐴 / 𝑦)} = {(𝐴 / (𝐺‘𝑧))}) |
59 | 58 | imaeq2d 5708 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐺‘𝑧) → (◡𝐹 “ {(𝐴 / 𝑦)}) = (◡𝐹 “ {(𝐴 / (𝐺‘𝑧))})) |
60 | | sneq 4408 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐺‘𝑧) → {𝑦} = {(𝐺‘𝑧)}) |
61 | 60 | imaeq2d 5708 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐺‘𝑧) → (◡𝐺 “ {𝑦}) = (◡𝐺 “ {(𝐺‘𝑧)})) |
62 | 59, 61 | ineq12d 4043 |
. . . . . . . . 9
⊢ (𝑦 = (𝐺‘𝑧) → ((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦})) = ((◡𝐹 “ {(𝐴 / (𝐺‘𝑧))}) ∩ (◡𝐺 “ {(𝐺‘𝑧)}))) |
63 | 62 | eleq2d 2893 |
. . . . . . . 8
⊢ (𝑦 = (𝐺‘𝑧) → (𝑧 ∈ ((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦})) ↔ 𝑧 ∈ ((◡𝐹 “ {(𝐴 / (𝐺‘𝑧))}) ∩ (◡𝐺 “ {(𝐺‘𝑧)})))) |
64 | 63 | rspcev 3527 |
. . . . . . 7
⊢ (((𝐺‘𝑧) ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ((◡𝐹 “ {(𝐴 / (𝐺‘𝑧))}) ∩ (◡𝐺 “ {(𝐺‘𝑧)}))) → ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) |
65 | 40, 56, 64 | syl2anc 581 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) → ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) |
66 | 65 | ex 403 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) →
((𝑧 ∈ ℝ ∧
((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴) → ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦})))) |
67 | | fniniseg 6588 |
. . . . . . . . . . 11
⊢ (𝐹 Fn ℝ → (𝑧 ∈ (◡𝐹 “ {(𝐴 / 𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 / 𝑦)))) |
68 | 16, 67 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (◡𝐹 “ {(𝐴 / 𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 / 𝑦)))) |
69 | | fniniseg 6588 |
. . . . . . . . . . 11
⊢ (𝐺 Fn ℝ → (𝑧 ∈ (◡𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = 𝑦))) |
70 | 17, 69 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (◡𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = 𝑦))) |
71 | 68, 70 | anbi12d 626 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) →
((𝑧 ∈ (◡𝐹 “ {(𝐴 / 𝑦)}) ∧ 𝑧 ∈ (◡𝐺 “ {𝑦})) ↔ ((𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 / 𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = 𝑦)))) |
72 | | elin 4024 |
. . . . . . . . 9
⊢ (𝑧 ∈ ((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦})) ↔ (𝑧 ∈ (◡𝐹 “ {(𝐴 / 𝑦)}) ∧ 𝑧 ∈ (◡𝐺 “ {𝑦}))) |
73 | | anandi 668 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 / 𝑦) ∧ (𝐺‘𝑧) = 𝑦)) ↔ ((𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 / 𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = 𝑦))) |
74 | 71, 72, 73 | 3bitr4g 306 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦})) ↔ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 / 𝑦) ∧ (𝐺‘𝑧) = 𝑦)))) |
75 | 74 | adantr 474 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ ((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦})) ↔ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 / 𝑦) ∧ (𝐺‘𝑧) = 𝑦)))) |
76 | | eldifi 3960 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (ℂ ∖ {0})
→ 𝐴 ∈
ℂ) |
77 | 76 | ad2antlr 720 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝐴 ∈ ℂ) |
78 | 7 | ad2antrr 719 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝐺:ℝ⟶ℝ) |
79 | 78 | frnd 6286 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → ran 𝐺 ⊆
ℝ) |
80 | | simprl 789 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ (ran 𝐺 ∖ {0})) |
81 | | eldifsn 4537 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (ran 𝐺 ∖ {0}) ↔ (𝑦 ∈ ran 𝐺 ∧ 𝑦 ≠ 0)) |
82 | 80, 81 | sylib 210 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → (𝑦 ∈ ran 𝐺 ∧ 𝑦 ≠ 0)) |
83 | 82 | simpld 490 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ran 𝐺) |
84 | 79, 83 | sseldd 3829 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ℝ) |
85 | 84 | recnd 10386 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ℂ) |
86 | 82 | simprd 491 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ≠ 0) |
87 | 77, 85, 86 | divcan1d 11129 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → ((𝐴 / 𝑦) · 𝑦) = 𝐴) |
88 | | oveq12 6915 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑧) = (𝐴 / 𝑦) ∧ (𝐺‘𝑧) = 𝑦) → ((𝐹‘𝑧) · (𝐺‘𝑧)) = ((𝐴 / 𝑦) · 𝑦)) |
89 | 88 | eqeq1d 2828 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑧) = (𝐴 / 𝑦) ∧ (𝐺‘𝑧) = 𝑦) → (((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴 ↔ ((𝐴 / 𝑦) · 𝑦) = 𝐴)) |
90 | 87, 89 | syl5ibrcom 239 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → (((𝐹‘𝑧) = (𝐴 / 𝑦) ∧ (𝐺‘𝑧) = 𝑦) → ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) |
91 | 90 | anassrs 461 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (((𝐹‘𝑧) = (𝐴 / 𝑦) ∧ (𝐺‘𝑧) = 𝑦) → ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴)) |
92 | 91 | imdistanda 569 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 / 𝑦) ∧ (𝐺‘𝑧) = 𝑦)) → (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴))) |
93 | 75, 92 | sylbid 232 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ ((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴))) |
94 | 93 | rexlimdva 3241 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) →
(∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴))) |
95 | 66, 94 | impbid 204 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) →
((𝑧 ∈ ℝ ∧
((𝐹‘𝑧) · (𝐺‘𝑧)) = 𝐴) ↔ ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦})))) |
96 | 15, 23, 95 | 3bitrd 297 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (◡(𝐹 ∘𝑓 · 𝐺) “ {𝐴}) ↔ ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦})))) |
97 | | eliun 4745 |
. . 3
⊢ (𝑧 ∈ ∪ 𝑦 ∈ (ran 𝐺 ∖ {0})((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦})) ↔ ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) |
98 | 96, 97 | syl6bbr 281 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (◡(𝐹 ∘𝑓 · 𝐺) “ {𝐴}) ↔ 𝑧 ∈ ∪
𝑦 ∈ (ran 𝐺 ∖ {0})((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦})))) |
99 | 98 | eqrdv 2824 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) → (◡(𝐹 ∘𝑓 · 𝐺) “ {𝐴}) = ∪
𝑦 ∈ (ran 𝐺 ∖ {0})((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) |