Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . . 5
β’ βͺ π½ =
βͺ π½ |
2 | 1 | fclselbas 23740 |
. . . 4
β’ (π΄ β (π½ fClus πΉ) β π΄ β βͺ π½) |
3 | | toponuni 22636 |
. . . . . 6
β’ (π½ β (TopOnβπ) β π = βͺ π½) |
4 | 3 | adantr 481 |
. . . . 5
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β π = βͺ π½) |
5 | 4 | eleq2d 2819 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β (π΄ β π β π΄ β βͺ π½)) |
6 | 2, 5 | imbitrrid 245 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β (π΄ β (π½ fClus πΉ) β π΄ β π)) |
7 | | fclsneii 23741 |
. . . . 5
β’ ((π΄ β (π½ fClus πΉ) β§ π β ((neiβπ½)β{π΄}) β§ π β πΉ) β (π β© π ) β β
) |
8 | 7 | 3expb 1120 |
. . . 4
β’ ((π΄ β (π½ fClus πΉ) β§ (π β ((neiβπ½)β{π΄}) β§ π β πΉ)) β (π β© π ) β β
) |
9 | 8 | ralrimivva 3200 |
. . 3
β’ (π΄ β (π½ fClus πΉ) β βπ β ((neiβπ½)β{π΄})βπ β πΉ (π β© π ) β β
) |
10 | 6, 9 | jca2 514 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β (π΄ β (π½ fClus πΉ) β (π΄ β π β§ βπ β ((neiβπ½)β{π΄})βπ β πΉ (π β© π ) β β
))) |
11 | | topontop 22635 |
. . . . . . . . . 10
β’ (π½ β (TopOnβπ) β π½ β Top) |
12 | 11 | ad3antrrr 728 |
. . . . . . . . 9
β’ ((((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β§ π΄ β π) β§ (π β π½ β§ π΄ β π)) β π½ β Top) |
13 | | simprl 769 |
. . . . . . . . 9
β’ ((((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β§ π΄ β π) β§ (π β π½ β§ π΄ β π)) β π β π½) |
14 | | simprr 771 |
. . . . . . . . 9
β’ ((((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β§ π΄ β π) β§ (π β π½ β§ π΄ β π)) β π΄ β π) |
15 | | opnneip 22843 |
. . . . . . . . 9
β’ ((π½ β Top β§ π β π½ β§ π΄ β π) β π β ((neiβπ½)β{π΄})) |
16 | 12, 13, 14, 15 | syl3anc 1371 |
. . . . . . . 8
β’ ((((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β§ π΄ β π) β§ (π β π½ β§ π΄ β π)) β π β ((neiβπ½)β{π΄})) |
17 | | ineq1 4205 |
. . . . . . . . . . 11
β’ (π = π β (π β© π ) = (π β© π )) |
18 | 17 | neeq1d 3000 |
. . . . . . . . . 10
β’ (π = π β ((π β© π ) β β
β (π β© π ) β β
)) |
19 | 18 | ralbidv 3177 |
. . . . . . . . 9
β’ (π = π β (βπ β πΉ (π β© π ) β β
β βπ β πΉ (π β© π ) β β
)) |
20 | 19 | rspcv 3608 |
. . . . . . . 8
β’ (π β ((neiβπ½)β{π΄}) β (βπ β ((neiβπ½)β{π΄})βπ β πΉ (π β© π ) β β
β βπ β πΉ (π β© π ) β β
)) |
21 | 16, 20 | syl 17 |
. . . . . . 7
β’ ((((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β§ π΄ β π) β§ (π β π½ β§ π΄ β π)) β (βπ β ((neiβπ½)β{π΄})βπ β πΉ (π β© π ) β β
β βπ β πΉ (π β© π ) β β
)) |
22 | 21 | expr 457 |
. . . . . 6
β’ ((((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β§ π΄ β π) β§ π β π½) β (π΄ β π β (βπ β ((neiβπ½)β{π΄})βπ β πΉ (π β© π ) β β
β βπ β πΉ (π β© π ) β β
))) |
23 | 22 | com23 86 |
. . . . 5
β’ ((((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β§ π΄ β π) β§ π β π½) β (βπ β ((neiβπ½)β{π΄})βπ β πΉ (π β© π ) β β
β (π΄ β π β βπ β πΉ (π β© π ) β β
))) |
24 | 23 | ralrimdva 3154 |
. . . 4
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β§ π΄ β π) β (βπ β ((neiβπ½)β{π΄})βπ β πΉ (π β© π ) β β
β βπ β π½ (π΄ β π β βπ β πΉ (π β© π ) β β
))) |
25 | 24 | imdistanda 572 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β ((π΄ β π β§ βπ β ((neiβπ½)β{π΄})βπ β πΉ (π β© π ) β β
) β (π΄ β π β§ βπ β π½ (π΄ β π β βπ β πΉ (π β© π ) β β
)))) |
26 | | fclsopn 23738 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β (π΄ β (π½ fClus πΉ) β (π΄ β π β§ βπ β π½ (π΄ β π β βπ β πΉ (π β© π ) β β
)))) |
27 | 25, 26 | sylibrd 258 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β ((π΄ β π β§ βπ β ((neiβπ½)β{π΄})βπ β πΉ (π β© π ) β β
) β π΄ β (π½ fClus πΉ))) |
28 | 10, 27 | impbid 211 |
1
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β (π΄ β (π½ fClus πΉ) β (π΄ β π β§ βπ β ((neiβπ½)β{π΄})βπ β πΉ (π β© π ) β β
))) |