MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsnei Structured version   Visualization version   GIF version

Theorem fclsnei 23743
Description: Cluster points in terms of neighborhoods. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclsnei ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) β†’ (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝐴})βˆ€π‘  ∈ 𝐹 (𝑛 ∩ 𝑠) β‰  βˆ…)))
Distinct variable groups:   𝑛,𝑠,𝐴   𝑛,𝐹,𝑠   𝑛,𝐽,𝑠   𝑋,𝑠
Allowed substitution hint:   𝑋(𝑛)

Proof of Theorem fclsnei
Dummy variable π‘œ is distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . . 5 βˆͺ 𝐽 = βˆͺ 𝐽
21fclselbas 23740 . . . 4 (𝐴 ∈ (𝐽 fClus 𝐹) β†’ 𝐴 ∈ βˆͺ 𝐽)
3 toponuni 22636 . . . . . 6 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
43adantr 481 . . . . 5 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) β†’ 𝑋 = βˆͺ 𝐽)
54eleq2d 2819 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) β†’ (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ βˆͺ 𝐽))
62, 5imbitrrid 245 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) β†’ (𝐴 ∈ (𝐽 fClus 𝐹) β†’ 𝐴 ∈ 𝑋))
7 fclsneii 23741 . . . . 5 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑛 ∈ ((neiβ€˜π½)β€˜{𝐴}) ∧ 𝑠 ∈ 𝐹) β†’ (𝑛 ∩ 𝑠) β‰  βˆ…)
873expb 1120 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑛 ∈ ((neiβ€˜π½)β€˜{𝐴}) ∧ 𝑠 ∈ 𝐹)) β†’ (𝑛 ∩ 𝑠) β‰  βˆ…)
98ralrimivva 3200 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) β†’ βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝐴})βˆ€π‘  ∈ 𝐹 (𝑛 ∩ 𝑠) β‰  βˆ…)
106, 9jca2 514 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) β†’ (𝐴 ∈ (𝐽 fClus 𝐹) β†’ (𝐴 ∈ 𝑋 ∧ βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝐴})βˆ€π‘  ∈ 𝐹 (𝑛 ∩ 𝑠) β‰  βˆ…)))
11 topontop 22635 . . . . . . . . . 10 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐽 ∈ Top)
1211ad3antrrr 728 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ (π‘œ ∈ 𝐽 ∧ 𝐴 ∈ π‘œ)) β†’ 𝐽 ∈ Top)
13 simprl 769 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ (π‘œ ∈ 𝐽 ∧ 𝐴 ∈ π‘œ)) β†’ π‘œ ∈ 𝐽)
14 simprr 771 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ (π‘œ ∈ 𝐽 ∧ 𝐴 ∈ π‘œ)) β†’ 𝐴 ∈ π‘œ)
15 opnneip 22843 . . . . . . . . 9 ((𝐽 ∈ Top ∧ π‘œ ∈ 𝐽 ∧ 𝐴 ∈ π‘œ) β†’ π‘œ ∈ ((neiβ€˜π½)β€˜{𝐴}))
1612, 13, 14, 15syl3anc 1371 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ (π‘œ ∈ 𝐽 ∧ 𝐴 ∈ π‘œ)) β†’ π‘œ ∈ ((neiβ€˜π½)β€˜{𝐴}))
17 ineq1 4205 . . . . . . . . . . 11 (𝑛 = π‘œ β†’ (𝑛 ∩ 𝑠) = (π‘œ ∩ 𝑠))
1817neeq1d 3000 . . . . . . . . . 10 (𝑛 = π‘œ β†’ ((𝑛 ∩ 𝑠) β‰  βˆ… ↔ (π‘œ ∩ 𝑠) β‰  βˆ…))
1918ralbidv 3177 . . . . . . . . 9 (𝑛 = π‘œ β†’ (βˆ€π‘  ∈ 𝐹 (𝑛 ∩ 𝑠) β‰  βˆ… ↔ βˆ€π‘  ∈ 𝐹 (π‘œ ∩ 𝑠) β‰  βˆ…))
2019rspcv 3608 . . . . . . . 8 (π‘œ ∈ ((neiβ€˜π½)β€˜{𝐴}) β†’ (βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝐴})βˆ€π‘  ∈ 𝐹 (𝑛 ∩ 𝑠) β‰  βˆ… β†’ βˆ€π‘  ∈ 𝐹 (π‘œ ∩ 𝑠) β‰  βˆ…))
2116, 20syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ (π‘œ ∈ 𝐽 ∧ 𝐴 ∈ π‘œ)) β†’ (βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝐴})βˆ€π‘  ∈ 𝐹 (𝑛 ∩ 𝑠) β‰  βˆ… β†’ βˆ€π‘  ∈ 𝐹 (π‘œ ∩ 𝑠) β‰  βˆ…))
2221expr 457 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ π‘œ ∈ 𝐽) β†’ (𝐴 ∈ π‘œ β†’ (βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝐴})βˆ€π‘  ∈ 𝐹 (𝑛 ∩ 𝑠) β‰  βˆ… β†’ βˆ€π‘  ∈ 𝐹 (π‘œ ∩ 𝑠) β‰  βˆ…)))
2322com23 86 . . . . 5 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ π‘œ ∈ 𝐽) β†’ (βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝐴})βˆ€π‘  ∈ 𝐹 (𝑛 ∩ 𝑠) β‰  βˆ… β†’ (𝐴 ∈ π‘œ β†’ βˆ€π‘  ∈ 𝐹 (π‘œ ∩ 𝑠) β‰  βˆ…)))
2423ralrimdva 3154 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) β†’ (βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝐴})βˆ€π‘  ∈ 𝐹 (𝑛 ∩ 𝑠) β‰  βˆ… β†’ βˆ€π‘œ ∈ 𝐽 (𝐴 ∈ π‘œ β†’ βˆ€π‘  ∈ 𝐹 (π‘œ ∩ 𝑠) β‰  βˆ…)))
2524imdistanda 572 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) β†’ ((𝐴 ∈ 𝑋 ∧ βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝐴})βˆ€π‘  ∈ 𝐹 (𝑛 ∩ 𝑠) β‰  βˆ…) β†’ (𝐴 ∈ 𝑋 ∧ βˆ€π‘œ ∈ 𝐽 (𝐴 ∈ π‘œ β†’ βˆ€π‘  ∈ 𝐹 (π‘œ ∩ 𝑠) β‰  βˆ…))))
26 fclsopn 23738 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) β†’ (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ βˆ€π‘œ ∈ 𝐽 (𝐴 ∈ π‘œ β†’ βˆ€π‘  ∈ 𝐹 (π‘œ ∩ 𝑠) β‰  βˆ…))))
2725, 26sylibrd 258 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) β†’ ((𝐴 ∈ 𝑋 ∧ βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝐴})βˆ€π‘  ∈ 𝐹 (𝑛 ∩ 𝑠) β‰  βˆ…) β†’ 𝐴 ∈ (𝐽 fClus 𝐹)))
2810, 27impbid 211 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) β†’ (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝐴})βˆ€π‘  ∈ 𝐹 (𝑛 ∩ 𝑠) β‰  βˆ…)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061   ∩ cin 3947  βˆ…c0 4322  {csn 4628  βˆͺ cuni 4908  β€˜cfv 6543  (class class class)co 7411  Topctop 22615  TopOnctopon 22632  neicnei 22821  Filcfil 23569   fClus cfcls 23660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-fbas 21141  df-top 22616  df-topon 22633  df-cld 22743  df-ntr 22744  df-cls 22745  df-nei 22822  df-fil 23570  df-fcls 23665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator