MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsnei Structured version   Visualization version   GIF version

Theorem fclsnei 23170
Description: Cluster points in terms of neighborhoods. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclsnei ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅)))
Distinct variable groups:   𝑛,𝑠,𝐴   𝑛,𝐹,𝑠   𝑛,𝐽,𝑠   𝑋,𝑠
Allowed substitution hint:   𝑋(𝑛)

Proof of Theorem fclsnei
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 𝐽 = 𝐽
21fclselbas 23167 . . . 4 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 𝐽)
3 toponuni 22063 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
43adantr 481 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝑋 = 𝐽)
54eleq2d 2824 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴𝑋𝐴 𝐽))
62, 5syl5ibr 245 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴𝑋))
7 fclsneii 23168 . . . . 5 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑠𝐹) → (𝑛𝑠) ≠ ∅)
873expb 1119 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑠𝐹)) → (𝑛𝑠) ≠ ∅)
98ralrimivva 3123 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅)
106, 9jca2 514 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅)))
11 topontop 22062 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1211ad3antrrr 727 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝐽 ∈ Top)
13 simprl 768 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝑜𝐽)
14 simprr 770 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝐴𝑜)
15 opnneip 22270 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑜𝐽𝐴𝑜) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴}))
1612, 13, 14, 15syl3anc 1370 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴}))
17 ineq1 4139 . . . . . . . . . . 11 (𝑛 = 𝑜 → (𝑛𝑠) = (𝑜𝑠))
1817neeq1d 3003 . . . . . . . . . 10 (𝑛 = 𝑜 → ((𝑛𝑠) ≠ ∅ ↔ (𝑜𝑠) ≠ ∅))
1918ralbidv 3112 . . . . . . . . 9 (𝑛 = 𝑜 → (∀𝑠𝐹 (𝑛𝑠) ≠ ∅ ↔ ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
2019rspcv 3557 . . . . . . . 8 (𝑜 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅ → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
2116, 20syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅ → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
2221expr 457 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → (𝐴𝑜 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅ → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)))
2322com23 86 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅ → (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)))
2423ralrimdva 3106 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅ → ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)))
2524imdistanda 572 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅) → (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
26 fclsopn 23165 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
2725, 26sylibrd 258 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅) → 𝐴 ∈ (𝐽 fClus 𝐹)))
2810, 27impbid 211 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  cin 3886  c0 4256  {csn 4561   cuni 4839  cfv 6433  (class class class)co 7275  Topctop 22042  TopOnctopon 22059  neicnei 22248  Filcfil 22996   fClus cfcls 23087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-fbas 20594  df-top 22043  df-topon 22060  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-fil 22997  df-fcls 23092
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator