| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . . . 5
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 2 | 1 | fclselbas 24025 | . . . 4
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 ∈ ∪ 𝐽) | 
| 3 |  | toponuni 22921 | . . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | 
| 4 | 3 | adantr 480 | . . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝑋 = ∪ 𝐽) | 
| 5 | 4 | eleq2d 2826 | . . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ ∪ 𝐽)) | 
| 6 | 2, 5 | imbitrrid 246 | . . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 ∈ 𝑋)) | 
| 7 |  | fclsneii 24026 | . . . . 5
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑠 ∈ 𝐹) → (𝑛 ∩ 𝑠) ≠ ∅) | 
| 8 | 7 | 3expb 1120 | . . . 4
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑠 ∈ 𝐹)) → (𝑛 ∩ 𝑠) ≠ ∅) | 
| 9 | 8 | ralrimivva 3201 | . . 3
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅) | 
| 10 | 6, 9 | jca2 513 | . 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅))) | 
| 11 |  | topontop 22920 | . . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | 
| 12 | 11 | ad3antrrr 730 | . . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜)) → 𝐽 ∈ Top) | 
| 13 |  | simprl 770 | . . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜)) → 𝑜 ∈ 𝐽) | 
| 14 |  | simprr 772 | . . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜)) → 𝐴 ∈ 𝑜) | 
| 15 |  | opnneip 23128 | . . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴})) | 
| 16 | 12, 13, 14, 15 | syl3anc 1372 | . . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜)) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴})) | 
| 17 |  | ineq1 4212 | . . . . . . . . . . 11
⊢ (𝑛 = 𝑜 → (𝑛 ∩ 𝑠) = (𝑜 ∩ 𝑠)) | 
| 18 | 17 | neeq1d 2999 | . . . . . . . . . 10
⊢ (𝑛 = 𝑜 → ((𝑛 ∩ 𝑠) ≠ ∅ ↔ (𝑜 ∩ 𝑠) ≠ ∅)) | 
| 19 | 18 | ralbidv 3177 | . . . . . . . . 9
⊢ (𝑛 = 𝑜 → (∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅ ↔ ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)) | 
| 20 | 19 | rspcv 3617 | . . . . . . . 8
⊢ (𝑜 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅ → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)) | 
| 21 | 16, 20 | syl 17 | . . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜)) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅ → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)) | 
| 22 | 21 | expr 456 | . . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (𝐴 ∈ 𝑜 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅ → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅))) | 
| 23 | 22 | com23 86 | . . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅ → (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅))) | 
| 24 | 23 | ralrimdva 3153 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅ → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅))) | 
| 25 | 24 | imdistanda 571 | . . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅) → (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) | 
| 26 |  | fclsopn 24023 | . . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) | 
| 27 | 25, 26 | sylibrd 259 | . 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅) → 𝐴 ∈ (𝐽 fClus 𝐹))) | 
| 28 | 10, 27 | impbid 212 | 1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅))) |