MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsnei Structured version   Visualization version   GIF version

Theorem fclsnei 24028
Description: Cluster points in terms of neighborhoods. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclsnei ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅)))
Distinct variable groups:   𝑛,𝑠,𝐴   𝑛,𝐹,𝑠   𝑛,𝐽,𝑠   𝑋,𝑠
Allowed substitution hint:   𝑋(𝑛)

Proof of Theorem fclsnei
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . 5 𝐽 = 𝐽
21fclselbas 24025 . . . 4 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 𝐽)
3 toponuni 22921 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
43adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝑋 = 𝐽)
54eleq2d 2826 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴𝑋𝐴 𝐽))
62, 5imbitrrid 246 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴𝑋))
7 fclsneii 24026 . . . . 5 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑠𝐹) → (𝑛𝑠) ≠ ∅)
873expb 1120 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑠𝐹)) → (𝑛𝑠) ≠ ∅)
98ralrimivva 3201 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅)
106, 9jca2 513 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅)))
11 topontop 22920 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1211ad3antrrr 730 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝐽 ∈ Top)
13 simprl 770 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝑜𝐽)
14 simprr 772 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝐴𝑜)
15 opnneip 23128 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑜𝐽𝐴𝑜) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴}))
1612, 13, 14, 15syl3anc 1372 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴}))
17 ineq1 4212 . . . . . . . . . . 11 (𝑛 = 𝑜 → (𝑛𝑠) = (𝑜𝑠))
1817neeq1d 2999 . . . . . . . . . 10 (𝑛 = 𝑜 → ((𝑛𝑠) ≠ ∅ ↔ (𝑜𝑠) ≠ ∅))
1918ralbidv 3177 . . . . . . . . 9 (𝑛 = 𝑜 → (∀𝑠𝐹 (𝑛𝑠) ≠ ∅ ↔ ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
2019rspcv 3617 . . . . . . . 8 (𝑜 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅ → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
2116, 20syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅ → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
2221expr 456 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → (𝐴𝑜 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅ → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)))
2322com23 86 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅ → (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)))
2423ralrimdva 3153 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅ → ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)))
2524imdistanda 571 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅) → (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
26 fclsopn 24023 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
2725, 26sylibrd 259 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅) → 𝐴 ∈ (𝐽 fClus 𝐹)))
2810, 27impbid 212 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐹 (𝑛𝑠) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  wral 3060  cin 3949  c0 4332  {csn 4625   cuni 4906  cfv 6560  (class class class)co 7432  Topctop 22900  TopOnctopon 22917  neicnei 23106  Filcfil 23854   fClus cfcls 23945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-fbas 21362  df-top 22901  df-topon 22918  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-fil 23855  df-fcls 23950
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator