| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzss | Structured version Visualization version GIF version | ||
| Description: Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.) |
| Ref | Expression |
|---|---|
| uzss | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzle 12782 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀 ≤ 𝑁) |
| 3 | eluzel2 12774 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 4 | eluzelz 12779 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 5 | 3, 4 | jca 511 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 6 | zletr 12553 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘) → 𝑀 ≤ 𝑘)) | |
| 7 | 6 | 3expa 1118 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘) → 𝑀 ≤ 𝑘)) |
| 8 | 5, 7 | sylan 580 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘) → 𝑀 ≤ 𝑘)) |
| 9 | 2, 8 | mpand 695 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → (𝑁 ≤ 𝑘 → 𝑀 ≤ 𝑘)) |
| 10 | 9 | imdistanda 571 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘) → (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) |
| 11 | eluz1 12773 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑘 ∈ (ℤ≥‘𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘))) | |
| 12 | 4, 11 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘))) |
| 13 | eluz1 12773 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) | |
| 14 | 3, 13 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) |
| 15 | 10, 12, 14 | 3imtr4d 294 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑁) → 𝑘 ∈ (ℤ≥‘𝑀))) |
| 16 | 15 | ssrdv 3949 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3911 class class class wbr 5102 ‘cfv 6499 ≤ cle 11185 ℤcz 12505 ℤ≥cuz 12769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-neg 11384 df-z 12506 df-uz 12770 |
| This theorem is referenced by: uzin 12809 uzuzle35 12822 uznnssnn 12830 fzopth 13498 4fvwrd4 13585 fzouzsplit 13631 fzoopth 13699 seqfeq2 13966 rexuzre 15295 cau3lem 15297 climsup 15612 isumsplit 15782 isumrpcl 15785 cvgrat 15825 clim2prod 15830 fprodntriv 15884 isprm3 16629 pcfac 16846 lmflf 23925 caucfil 25216 uniioombllem4 25520 mbflimsup 25600 ulmres 26330 ulmcaulem 26336 logfaclbnd 27166 axlowdimlem17 28938 clwwlkinwwlk 30019 fz2ssnn0 32758 evl1deg1 33538 evl1deg2 33539 evl1deg3 33540 poimirlem1 37608 poimirlem2 37609 poimirlem6 37613 poimirlem7 37614 poimirlem20 37627 uzssd 45397 climinf 45597 climsuse 45599 climresmpt 45650 climleltrp 45667 limsupequzlem 45713 supcnvlimsup 45731 ioodvbdlimc1lem1 45922 ioodvbdlimc1lem2 45923 ioodvbdlimc2lem 45925 meaiininclem 46477 smflimlem2 46763 smflimsuplem2 46812 smflimsuplem3 46813 smflimsuplem4 46814 smflimsuplem5 46815 smflimsuplem6 46816 smflimsuplem7 46817 |
| Copyright terms: Public domain | W3C validator |