| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzss | Structured version Visualization version GIF version | ||
| Description: Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.) |
| Ref | Expression |
|---|---|
| uzss | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzle 12806 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀 ≤ 𝑁) |
| 3 | eluzel2 12798 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 4 | eluzelz 12803 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 5 | 3, 4 | jca 511 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 6 | zletr 12577 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘) → 𝑀 ≤ 𝑘)) | |
| 7 | 6 | 3expa 1118 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘) → 𝑀 ≤ 𝑘)) |
| 8 | 5, 7 | sylan 580 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘) → 𝑀 ≤ 𝑘)) |
| 9 | 2, 8 | mpand 695 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → (𝑁 ≤ 𝑘 → 𝑀 ≤ 𝑘)) |
| 10 | 9 | imdistanda 571 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘) → (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) |
| 11 | eluz1 12797 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑘 ∈ (ℤ≥‘𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘))) | |
| 12 | 4, 11 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘))) |
| 13 | eluz1 12797 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) | |
| 14 | 3, 13 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) |
| 15 | 10, 12, 14 | 3imtr4d 294 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑁) → 𝑘 ∈ (ℤ≥‘𝑀))) |
| 16 | 15 | ssrdv 3952 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 ‘cfv 6511 ≤ cle 11209 ℤcz 12529 ℤ≥cuz 12793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-neg 11408 df-z 12530 df-uz 12794 |
| This theorem is referenced by: uzin 12833 uzuzle35 12846 uznnssnn 12854 fzopth 13522 4fvwrd4 13609 fzouzsplit 13655 fzoopth 13723 seqfeq2 13990 rexuzre 15319 cau3lem 15321 climsup 15636 isumsplit 15806 isumrpcl 15809 cvgrat 15849 clim2prod 15854 fprodntriv 15908 isprm3 16653 pcfac 16870 lmflf 23892 caucfil 25183 uniioombllem4 25487 mbflimsup 25567 ulmres 26297 ulmcaulem 26303 logfaclbnd 27133 axlowdimlem17 28885 clwwlkinwwlk 29969 fz2ssnn0 32708 evl1deg1 33545 evl1deg2 33546 evl1deg3 33547 poimirlem1 37615 poimirlem2 37616 poimirlem6 37620 poimirlem7 37621 poimirlem20 37634 uzssd 45404 climinf 45604 climsuse 45606 climresmpt 45657 climleltrp 45674 limsupequzlem 45720 supcnvlimsup 45738 ioodvbdlimc1lem1 45929 ioodvbdlimc1lem2 45930 ioodvbdlimc2lem 45932 meaiininclem 46484 smflimlem2 46770 smflimsuplem2 46819 smflimsuplem3 46820 smflimsuplem4 46821 smflimsuplem5 46822 smflimsuplem6 46823 smflimsuplem7 46824 |
| Copyright terms: Public domain | W3C validator |