Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uzss | Structured version Visualization version GIF version |
Description: Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.) |
Ref | Expression |
---|---|
uzss | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzle 12688 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | |
2 | 1 | adantr 481 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀 ≤ 𝑁) |
3 | eluzel2 12680 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
4 | eluzelz 12685 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
5 | 3, 4 | jca 512 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
6 | zletr 12457 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘) → 𝑀 ≤ 𝑘)) | |
7 | 6 | 3expa 1117 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘) → 𝑀 ≤ 𝑘)) |
8 | 5, 7 | sylan 580 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘) → 𝑀 ≤ 𝑘)) |
9 | 2, 8 | mpand 692 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → (𝑁 ≤ 𝑘 → 𝑀 ≤ 𝑘)) |
10 | 9 | imdistanda 572 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘) → (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) |
11 | eluz1 12679 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑘 ∈ (ℤ≥‘𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘))) | |
12 | 4, 11 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘))) |
13 | eluz1 12679 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) | |
14 | 3, 13 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) |
15 | 10, 12, 14 | 3imtr4d 293 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑁) → 𝑘 ∈ (ℤ≥‘𝑀))) |
16 | 15 | ssrdv 3937 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2105 ⊆ wss 3897 class class class wbr 5089 ‘cfv 6473 ≤ cle 11103 ℤcz 12412 ℤ≥cuz 12675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-pre-lttri 11038 ax-pre-lttrn 11039 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-neg 11301 df-z 12413 df-uz 12676 |
This theorem is referenced by: uzin 12711 uznnssnn 12728 fzopth 13386 4fvwrd4 13469 fzouzsplit 13515 seqfeq2 13839 rexuzre 15155 cau3lem 15157 climsup 15472 isumsplit 15643 isumrpcl 15646 cvgrat 15686 clim2prod 15691 fprodntriv 15743 isprm3 16477 pcfac 16689 lmflf 23254 caucfil 24545 uniioombllem4 24848 mbflimsup 24928 ulmres 25645 ulmcaulem 25651 logfaclbnd 26468 axlowdimlem17 27556 clwwlkinwwlk 28633 fz2ssnn0 31334 poimirlem1 35876 poimirlem2 35877 poimirlem6 35881 poimirlem7 35882 poimirlem20 35895 uzssd 43272 climinf 43472 climsuse 43474 climresmpt 43525 climleltrp 43542 limsupequzlem 43588 supcnvlimsup 43606 ioodvbdlimc1lem1 43797 ioodvbdlimc1lem2 43798 ioodvbdlimc2lem 43800 meaiininclem 44350 smflimlem2 44636 smflimsuplem2 44685 smflimsuplem3 44686 smflimsuplem4 44687 smflimsuplem5 44688 smflimsuplem6 44689 smflimsuplem7 44690 fzoopth 45159 |
Copyright terms: Public domain | W3C validator |