MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzss Structured version   Visualization version   GIF version

Theorem uzss 12816
Description: Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.)
Assertion
Ref Expression
uzss (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))

Proof of Theorem uzss
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eluzle 12806 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
21adantr 480 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀𝑁)
3 eluzel2 12798 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
4 eluzelz 12803 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4jca 511 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
6 zletr 12577 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀𝑁𝑁𝑘) → 𝑀𝑘))
763expa 1118 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑁𝑁𝑘) → 𝑀𝑘))
85, 7sylan 580 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑁𝑁𝑘) → 𝑀𝑘))
92, 8mpand 695 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑁𝑘𝑀𝑘))
109imdistanda 571 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝑘 ∈ ℤ ∧ 𝑀𝑘)))
11 eluz1 12797 . . . 4 (𝑁 ∈ ℤ → (𝑘 ∈ (ℤ𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁𝑘)))
124, 11syl 17 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁𝑘)))
13 eluz1 12797 . . . 4 (𝑀 ∈ ℤ → (𝑘 ∈ (ℤ𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘)))
143, 13syl 17 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘)))
1510, 12, 143imtr4d 294 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ (ℤ𝑀)))
1615ssrdv 3952 1 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wss 3914   class class class wbr 5107  cfv 6511  cle 11209  cz 12529  cuz 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-neg 11408  df-z 12530  df-uz 12794
This theorem is referenced by:  uzin  12833  uzuzle35  12846  uznnssnn  12854  fzopth  13522  4fvwrd4  13609  fzouzsplit  13655  fzoopth  13723  seqfeq2  13990  rexuzre  15319  cau3lem  15321  climsup  15636  isumsplit  15806  isumrpcl  15809  cvgrat  15849  clim2prod  15854  fprodntriv  15908  isprm3  16653  pcfac  16870  lmflf  23892  caucfil  25183  uniioombllem4  25487  mbflimsup  25567  ulmres  26297  ulmcaulem  26303  logfaclbnd  27133  axlowdimlem17  28885  clwwlkinwwlk  29969  fz2ssnn0  32708  evl1deg1  33545  evl1deg2  33546  evl1deg3  33547  poimirlem1  37615  poimirlem2  37616  poimirlem6  37620  poimirlem7  37621  poimirlem20  37634  uzssd  45404  climinf  45604  climsuse  45606  climresmpt  45657  climleltrp  45674  limsupequzlem  45720  supcnvlimsup  45738  ioodvbdlimc1lem1  45929  ioodvbdlimc1lem2  45930  ioodvbdlimc2lem  45932  meaiininclem  46484  smflimlem2  46770  smflimsuplem2  46819  smflimsuplem3  46820  smflimsuplem4  46821  smflimsuplem5  46822  smflimsuplem6  46823  smflimsuplem7  46824
  Copyright terms: Public domain W3C validator