| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzss | Structured version Visualization version GIF version | ||
| Description: Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.) |
| Ref | Expression |
|---|---|
| uzss | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzle 12745 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀 ≤ 𝑁) |
| 3 | eluzel2 12737 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 4 | eluzelz 12742 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 5 | 3, 4 | jca 511 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 6 | zletr 12516 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘) → 𝑀 ≤ 𝑘)) | |
| 7 | 6 | 3expa 1118 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘) → 𝑀 ≤ 𝑘)) |
| 8 | 5, 7 | sylan 580 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘) → 𝑀 ≤ 𝑘)) |
| 9 | 2, 8 | mpand 695 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → (𝑁 ≤ 𝑘 → 𝑀 ≤ 𝑘)) |
| 10 | 9 | imdistanda 571 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘) → (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) |
| 11 | eluz1 12736 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑘 ∈ (ℤ≥‘𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘))) | |
| 12 | 4, 11 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘))) |
| 13 | eluz1 12736 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) | |
| 14 | 3, 13 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) |
| 15 | 10, 12, 14 | 3imtr4d 294 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑁) → 𝑘 ∈ (ℤ≥‘𝑀))) |
| 16 | 15 | ssrdv 3935 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5089 ‘cfv 6481 ≤ cle 11147 ℤcz 12468 ℤ≥cuz 12732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-neg 11347 df-z 12469 df-uz 12733 |
| This theorem is referenced by: uzin 12772 uzuzle35 12785 uznnssnn 12793 fzopth 13461 4fvwrd4 13548 fzouzsplit 13594 fzoopth 13662 seqfeq2 13932 rexuzre 15260 cau3lem 15262 climsup 15577 isumsplit 15747 isumrpcl 15750 cvgrat 15790 clim2prod 15795 fprodntriv 15849 isprm3 16594 pcfac 16811 lmflf 23920 caucfil 25210 uniioombllem4 25514 mbflimsup 25594 ulmres 26324 ulmcaulem 26330 logfaclbnd 27160 axlowdimlem17 28936 clwwlkinwwlk 30020 fz2ssnn0 32768 evl1deg1 33539 evl1deg2 33540 evl1deg3 33541 poimirlem1 37660 poimirlem2 37661 poimirlem6 37665 poimirlem7 37666 poimirlem20 37679 uzssd 45505 climinf 45705 climsuse 45707 climresmpt 45756 climleltrp 45773 limsupequzlem 45819 supcnvlimsup 45837 ioodvbdlimc1lem1 46028 ioodvbdlimc1lem2 46029 ioodvbdlimc2lem 46031 meaiininclem 46583 smflimlem2 46869 smflimsuplem2 46918 smflimsuplem3 46919 smflimsuplem4 46920 smflimsuplem5 46921 smflimsuplem6 46922 smflimsuplem7 46923 |
| Copyright terms: Public domain | W3C validator |