MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnntr Structured version   Visualization version   GIF version

Theorem cnntr 22334
Description: Continuity in terms of interior. (Contributed by Jeff Hankins, 2-Oct-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cnntr ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑥,𝑌

Proof of Theorem cnntr
StepHypRef Expression
1 cnf2 22308 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
213expia 1119 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌))
3 elpwi 4539 . . . . . . 7 (𝑥 ∈ 𝒫 𝑌𝑥𝑌)
43adantl 481 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥𝑌)
5 toponuni 21971 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
65ad2antlr 723 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑌 = 𝐾)
74, 6sseqtrd 3957 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥 𝐾)
8 eqid 2738 . . . . . . 7 𝐾 = 𝐾
98cnntri 22330 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 𝐾) → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))
109expcom 413 . . . . 5 (𝑥 𝐾 → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
117, 10syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
1211ralrimdva 3112 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
132, 12jcad 512 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))))
14 toponss 21984 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝐾) → 𝑥𝑌)
15 velpw 4535 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝑌𝑥𝑌)
1614, 15sylibr 233 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝐾) → 𝑥 ∈ 𝒫 𝑌)
1716ex 412 . . . . . . . 8 (𝐾 ∈ (TopOn‘𝑌) → (𝑥𝐾𝑥 ∈ 𝒫 𝑌))
1817ad2antlr 723 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥𝐾𝑥 ∈ 𝒫 𝑌))
1918imim1d 82 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ 𝒫 𝑌 → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) → (𝑥𝐾 → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))))
20 topontop 21970 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2120ad3antrrr 726 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → 𝐽 ∈ Top)
22 cnvimass 5978 . . . . . . . . . . 11 (𝐹𝑥) ⊆ dom 𝐹
23 fdm 6593 . . . . . . . . . . . . 13 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
2423ad2antlr 723 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → dom 𝐹 = 𝑋)
25 toponuni 21971 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2625ad3antrrr 726 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → 𝑋 = 𝐽)
2724, 26eqtrd 2778 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → dom 𝐹 = 𝐽)
2822, 27sseqtrid 3969 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → (𝐹𝑥) ⊆ 𝐽)
29 eqid 2738 . . . . . . . . . . 11 𝐽 = 𝐽
3029ntrss2 22116 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹𝑥) ⊆ 𝐽) → ((int‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥))
3121, 28, 30syl2anc 583 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((int‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥))
32 eqss 3932 . . . . . . . . . 10 (((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥) ↔ (((int‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥) ∧ (𝐹𝑥) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
3332baib 535 . . . . . . . . 9 (((int‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥) → (((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥) ↔ (𝐹𝑥) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
3431, 33syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → (((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥) ↔ (𝐹𝑥) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
3529isopn3 22125 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝐹𝑥) ⊆ 𝐽) → ((𝐹𝑥) ∈ 𝐽 ↔ ((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥)))
3621, 28, 35syl2anc 583 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((𝐹𝑥) ∈ 𝐽 ↔ ((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥)))
37 topontop 21970 . . . . . . . . . . . 12 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
3837ad3antlr 727 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → 𝐾 ∈ Top)
39 isopn3i 22141 . . . . . . . . . . 11 ((𝐾 ∈ Top ∧ 𝑥𝐾) → ((int‘𝐾)‘𝑥) = 𝑥)
4038, 39sylancom 587 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((int‘𝐾)‘𝑥) = 𝑥)
4140imaeq2d 5958 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → (𝐹 “ ((int‘𝐾)‘𝑥)) = (𝐹𝑥))
4241sseq1d 3948 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)) ↔ (𝐹𝑥) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
4334, 36, 423bitr4rd 311 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)) ↔ (𝐹𝑥) ∈ 𝐽))
4443pm5.74da 800 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥𝐾 → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) ↔ (𝑥𝐾 → (𝐹𝑥) ∈ 𝐽)))
4519, 44sylibd 238 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ 𝒫 𝑌 → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) → (𝑥𝐾 → (𝐹𝑥) ∈ 𝐽)))
4645ralimdv2 3101 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)) → ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽))
4746imdistanda 571 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) → (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
48 iscn 22294 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
4947, 48sylibrd 258 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾)))
5013, 49impbid 211 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  𝒫 cpw 4530   cuni 4836  ccnv 5579  dom cdm 5580  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  Topctop 21950  TopOnctopon 21967  intcnt 22076   Cn ccn 22283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-top 21951  df-topon 21968  df-ntr 22079  df-cn 22286
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator