MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnntr Structured version   Visualization version   GIF version

Theorem cnntr 23299
Description: Continuity in terms of interior. (Contributed by Jeff Hankins, 2-Oct-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cnntr ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑥,𝑌

Proof of Theorem cnntr
StepHypRef Expression
1 cnf2 23273 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
213expia 1120 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌))
3 elpwi 4612 . . . . . . 7 (𝑥 ∈ 𝒫 𝑌𝑥𝑌)
43adantl 481 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥𝑌)
5 toponuni 22936 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
65ad2antlr 727 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑌 = 𝐾)
74, 6sseqtrd 4036 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥 𝐾)
8 eqid 2735 . . . . . . 7 𝐾 = 𝐾
98cnntri 23295 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 𝐾) → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))
109expcom 413 . . . . 5 (𝑥 𝐾 → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
117, 10syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
1211ralrimdva 3152 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
132, 12jcad 512 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))))
14 toponss 22949 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝐾) → 𝑥𝑌)
15 velpw 4610 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝑌𝑥𝑌)
1614, 15sylibr 234 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝐾) → 𝑥 ∈ 𝒫 𝑌)
1716ex 412 . . . . . . . 8 (𝐾 ∈ (TopOn‘𝑌) → (𝑥𝐾𝑥 ∈ 𝒫 𝑌))
1817ad2antlr 727 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥𝐾𝑥 ∈ 𝒫 𝑌))
1918imim1d 82 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ 𝒫 𝑌 → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) → (𝑥𝐾 → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))))
20 topontop 22935 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2120ad3antrrr 730 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → 𝐽 ∈ Top)
22 cnvimass 6102 . . . . . . . . . . 11 (𝐹𝑥) ⊆ dom 𝐹
23 fdm 6746 . . . . . . . . . . . . 13 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
2423ad2antlr 727 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → dom 𝐹 = 𝑋)
25 toponuni 22936 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2625ad3antrrr 730 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → 𝑋 = 𝐽)
2724, 26eqtrd 2775 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → dom 𝐹 = 𝐽)
2822, 27sseqtrid 4048 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → (𝐹𝑥) ⊆ 𝐽)
29 eqid 2735 . . . . . . . . . . 11 𝐽 = 𝐽
3029ntrss2 23081 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹𝑥) ⊆ 𝐽) → ((int‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥))
3121, 28, 30syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((int‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥))
32 eqss 4011 . . . . . . . . . 10 (((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥) ↔ (((int‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥) ∧ (𝐹𝑥) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
3332baib 535 . . . . . . . . 9 (((int‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥) → (((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥) ↔ (𝐹𝑥) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
3431, 33syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → (((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥) ↔ (𝐹𝑥) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
3529isopn3 23090 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝐹𝑥) ⊆ 𝐽) → ((𝐹𝑥) ∈ 𝐽 ↔ ((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥)))
3621, 28, 35syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((𝐹𝑥) ∈ 𝐽 ↔ ((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥)))
37 topontop 22935 . . . . . . . . . . . 12 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
3837ad3antlr 731 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → 𝐾 ∈ Top)
39 isopn3i 23106 . . . . . . . . . . 11 ((𝐾 ∈ Top ∧ 𝑥𝐾) → ((int‘𝐾)‘𝑥) = 𝑥)
4038, 39sylancom 588 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((int‘𝐾)‘𝑥) = 𝑥)
4140imaeq2d 6080 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → (𝐹 “ ((int‘𝐾)‘𝑥)) = (𝐹𝑥))
4241sseq1d 4027 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)) ↔ (𝐹𝑥) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
4334, 36, 423bitr4rd 312 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)) ↔ (𝐹𝑥) ∈ 𝐽))
4443pm5.74da 804 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥𝐾 → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) ↔ (𝑥𝐾 → (𝐹𝑥) ∈ 𝐽)))
4519, 44sylibd 239 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ 𝒫 𝑌 → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) → (𝑥𝐾 → (𝐹𝑥) ∈ 𝐽)))
4645ralimdv2 3161 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)) → ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽))
4746imdistanda 571 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) → (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
48 iscn 23259 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
4947, 48sylibrd 259 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾)))
5013, 49impbid 212 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wss 3963  𝒫 cpw 4605   cuni 4912  ccnv 5688  dom cdm 5689  cima 5692  wf 6559  cfv 6563  (class class class)co 7431  Topctop 22915  TopOnctopon 22932  intcnt 23041   Cn ccn 23248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-top 22916  df-topon 22933  df-ntr 23044  df-cn 23251
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator