MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnntr Structured version   Visualization version   GIF version

Theorem cnntr 23195
Description: Continuity in terms of interior. (Contributed by Jeff Hankins, 2-Oct-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cnntr ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑥,𝑌

Proof of Theorem cnntr
StepHypRef Expression
1 cnf2 23169 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
213expia 1121 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌))
3 elpwi 4566 . . . . . . 7 (𝑥 ∈ 𝒫 𝑌𝑥𝑌)
43adantl 481 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥𝑌)
5 toponuni 22834 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
65ad2antlr 727 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑌 = 𝐾)
74, 6sseqtrd 3980 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥 𝐾)
8 eqid 2729 . . . . . . 7 𝐾 = 𝐾
98cnntri 23191 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 𝐾) → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))
109expcom 413 . . . . 5 (𝑥 𝐾 → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
117, 10syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
1211ralrimdva 3133 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
132, 12jcad 512 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))))
14 toponss 22847 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝐾) → 𝑥𝑌)
15 velpw 4564 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝑌𝑥𝑌)
1614, 15sylibr 234 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝐾) → 𝑥 ∈ 𝒫 𝑌)
1716ex 412 . . . . . . . 8 (𝐾 ∈ (TopOn‘𝑌) → (𝑥𝐾𝑥 ∈ 𝒫 𝑌))
1817ad2antlr 727 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥𝐾𝑥 ∈ 𝒫 𝑌))
1918imim1d 82 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ 𝒫 𝑌 → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) → (𝑥𝐾 → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))))
20 topontop 22833 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2120ad3antrrr 730 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → 𝐽 ∈ Top)
22 cnvimass 6042 . . . . . . . . . . 11 (𝐹𝑥) ⊆ dom 𝐹
23 fdm 6679 . . . . . . . . . . . . 13 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
2423ad2antlr 727 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → dom 𝐹 = 𝑋)
25 toponuni 22834 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2625ad3antrrr 730 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → 𝑋 = 𝐽)
2724, 26eqtrd 2764 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → dom 𝐹 = 𝐽)
2822, 27sseqtrid 3986 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → (𝐹𝑥) ⊆ 𝐽)
29 eqid 2729 . . . . . . . . . . 11 𝐽 = 𝐽
3029ntrss2 22977 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹𝑥) ⊆ 𝐽) → ((int‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥))
3121, 28, 30syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((int‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥))
32 eqss 3959 . . . . . . . . . 10 (((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥) ↔ (((int‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥) ∧ (𝐹𝑥) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
3332baib 535 . . . . . . . . 9 (((int‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥) → (((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥) ↔ (𝐹𝑥) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
3431, 33syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → (((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥) ↔ (𝐹𝑥) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
3529isopn3 22986 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝐹𝑥) ⊆ 𝐽) → ((𝐹𝑥) ∈ 𝐽 ↔ ((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥)))
3621, 28, 35syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((𝐹𝑥) ∈ 𝐽 ↔ ((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥)))
37 topontop 22833 . . . . . . . . . . . 12 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
3837ad3antlr 731 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → 𝐾 ∈ Top)
39 isopn3i 23002 . . . . . . . . . . 11 ((𝐾 ∈ Top ∧ 𝑥𝐾) → ((int‘𝐾)‘𝑥) = 𝑥)
4038, 39sylancom 588 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((int‘𝐾)‘𝑥) = 𝑥)
4140imaeq2d 6020 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → (𝐹 “ ((int‘𝐾)‘𝑥)) = (𝐹𝑥))
4241sseq1d 3975 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)) ↔ (𝐹𝑥) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
4334, 36, 423bitr4rd 312 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)) ↔ (𝐹𝑥) ∈ 𝐽))
4443pm5.74da 803 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥𝐾 → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) ↔ (𝑥𝐾 → (𝐹𝑥) ∈ 𝐽)))
4519, 44sylibd 239 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ 𝒫 𝑌 → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) → (𝑥𝐾 → (𝐹𝑥) ∈ 𝐽)))
4645ralimdv2 3142 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)) → ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽))
4746imdistanda 571 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) → (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
48 iscn 23155 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
4947, 48sylibrd 259 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾)))
5013, 49impbid 212 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3911  𝒫 cpw 4559   cuni 4867  ccnv 5630  dom cdm 5631  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  Topctop 22813  TopOnctopon 22830  intcnt 22937   Cn ccn 23144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-top 22814  df-topon 22831  df-ntr 22940  df-cn 23147
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator