MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem3 Structured version   Visualization version   GIF version

Theorem pgpfac1lem3 19989
Description: Lemma for pgpfac1 19992. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
pgpfac1.c (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
pgpfac1.mg · = (.g𝐺)
pgpfac1.m (𝜑𝑀 ∈ ℤ)
pgpfac1.mw (𝜑 → ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊)
pgpfac1.d 𝐷 = (𝐶(+g𝐺)((𝑀 / 𝑃) · 𝐴))
Assertion
Ref Expression
pgpfac1lem3 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Distinct variable groups:   𝑡, 0   𝑤,𝑡,𝐴   𝑡,𝐷,𝑤   𝑡, ,𝑤   𝑡,𝑃,𝑤   𝑡,𝐵   𝑡,𝐺,𝑤   𝑡,𝑈,𝑤   𝑡,𝐶,𝑤   𝑡,𝑆,𝑤   𝑡,𝑊,𝑤   𝜑,𝑡,𝑤   𝑡, · ,𝑤   𝑡,𝐾,𝑤
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤,𝑡)   𝑀(𝑤,𝑡)   𝑂(𝑤,𝑡)   0 (𝑤)

Proof of Theorem pgpfac1lem3
Dummy variables 𝑏 𝑥 𝑦 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.g . . 3 (𝜑𝐺 ∈ Abel)
2 pgpfac1.w . . 3 (𝜑𝑊 ∈ (SubGrp‘𝐺))
3 ablgrp 19695 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
41, 3syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
5 pgpfac1.b . . . . . 6 𝐵 = (Base‘𝐺)
65subgacs 19071 . . . . 5 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
7 acsmre 17555 . . . . 5 ((SubGrp‘𝐺) ∈ (ACS‘𝐵) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
84, 6, 73syl 18 . . . 4 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
9 pgpfac1.u . . . . . 6 (𝜑𝑈 ∈ (SubGrp‘𝐺))
105subgss 19037 . . . . . 6 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
119, 10syl 17 . . . . 5 (𝜑𝑈𝐵)
12 pgpfac1.d . . . . . 6 𝐷 = (𝐶(+g𝐺)((𝑀 / 𝑃) · 𝐴))
13 pgpfac1.c . . . . . . . 8 (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
1413eldifad 3914 . . . . . . 7 (𝜑𝐶𝑈)
15 pgpfac1.s . . . . . . . . . . 11 𝑆 = (𝐾‘{𝐴})
16 pgpfac1.au . . . . . . . . . . . . 13 (𝜑𝐴𝑈)
1711, 16sseldd 3935 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
18 pgpfac1.k . . . . . . . . . . . . 13 𝐾 = (mrCls‘(SubGrp‘𝐺))
1918mrcsncl 17515 . . . . . . . . . . . 12 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
208, 17, 19syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
2115, 20eqeltrid 2835 . . . . . . . . . 10 (𝜑𝑆 ∈ (SubGrp‘𝐺))
22 pgpfac1.l . . . . . . . . . . 11 = (LSSum‘𝐺)
2322lsmub1 19567 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 𝑊))
2421, 2, 23syl2anc 584 . . . . . . . . 9 (𝜑𝑆 ⊆ (𝑆 𝑊))
25 pgpfac1.ss . . . . . . . . 9 (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
2624, 25sstrd 3945 . . . . . . . 8 (𝜑𝑆𝑈)
27 pgpfac1.o . . . . . . . . . . . 12 𝑂 = (od‘𝐺)
28 pgpfac1.e . . . . . . . . . . . 12 𝐸 = (gEx‘𝐺)
29 pgpfac1.z . . . . . . . . . . . 12 0 = (0g𝐺)
30 pgpfac1.p . . . . . . . . . . . 12 (𝜑𝑃 pGrp 𝐺)
31 pgpfac1.n . . . . . . . . . . . 12 (𝜑𝐵 ∈ Fin)
32 pgpfac1.oe . . . . . . . . . . . 12 (𝜑 → (𝑂𝐴) = 𝐸)
33 pgpfac1.i . . . . . . . . . . . 12 (𝜑 → (𝑆𝑊) = { 0 })
34 pgpfac1.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
35 pgpfac1.mg . . . . . . . . . . . 12 · = (.g𝐺)
36 pgpfac1.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
37 pgpfac1.mw . . . . . . . . . . . 12 (𝜑 → ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊)
3818, 15, 5, 27, 28, 29, 22, 30, 1, 31, 32, 9, 16, 2, 33, 25, 34, 13, 35, 36, 37pgpfac1lem3a 19988 . . . . . . . . . . 11 (𝜑 → (𝑃𝐸𝑃𝑀))
3938simprd 495 . . . . . . . . . 10 (𝜑𝑃𝑀)
40 pgpprm 19503 . . . . . . . . . . . . 13 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
4130, 40syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
42 prmz 16583 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
4341, 42syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℤ)
44 prmnn 16582 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
4541, 44syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
4645nnne0d 12172 . . . . . . . . . . 11 (𝜑𝑃 ≠ 0)
47 dvdsval2 16163 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝑃𝑀 ↔ (𝑀 / 𝑃) ∈ ℤ))
4843, 46, 36, 47syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑃𝑀 ↔ (𝑀 / 𝑃) ∈ ℤ))
4939, 48mpbid 232 . . . . . . . . 9 (𝜑 → (𝑀 / 𝑃) ∈ ℤ)
5017snssd 4761 . . . . . . . . . . . 12 (𝜑 → {𝐴} ⊆ 𝐵)
518, 18, 50mrcssidd 17528 . . . . . . . . . . 11 (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴}))
5251, 15sseqtrrdi 3976 . . . . . . . . . 10 (𝜑 → {𝐴} ⊆ 𝑆)
53 snssg 4736 . . . . . . . . . . 11 (𝐴𝑈 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
5416, 53syl 17 . . . . . . . . . 10 (𝜑 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
5552, 54mpbird 257 . . . . . . . . 9 (𝜑𝐴𝑆)
5635subgmulgcl 19049 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑀 / 𝑃) ∈ ℤ ∧ 𝐴𝑆) → ((𝑀 / 𝑃) · 𝐴) ∈ 𝑆)
5721, 49, 55, 56syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝑀 / 𝑃) · 𝐴) ∈ 𝑆)
5826, 57sseldd 3935 . . . . . . 7 (𝜑 → ((𝑀 / 𝑃) · 𝐴) ∈ 𝑈)
59 eqid 2731 . . . . . . . 8 (+g𝐺) = (+g𝐺)
6059subgcl 19046 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝐶𝑈 ∧ ((𝑀 / 𝑃) · 𝐴) ∈ 𝑈) → (𝐶(+g𝐺)((𝑀 / 𝑃) · 𝐴)) ∈ 𝑈)
619, 14, 58, 60syl3anc 1373 . . . . . 6 (𝜑 → (𝐶(+g𝐺)((𝑀 / 𝑃) · 𝐴)) ∈ 𝑈)
6212, 61eqeltrid 2835 . . . . 5 (𝜑𝐷𝑈)
6311, 62sseldd 3935 . . . 4 (𝜑𝐷𝐵)
6418mrcsncl 17515 . . . 4 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐷𝐵) → (𝐾‘{𝐷}) ∈ (SubGrp‘𝐺))
658, 63, 64syl2anc 584 . . 3 (𝜑 → (𝐾‘{𝐷}) ∈ (SubGrp‘𝐺))
6622lsmsubg2 19769 . . 3 ((𝐺 ∈ Abel ∧ 𝑊 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐷}) ∈ (SubGrp‘𝐺)) → (𝑊 (𝐾‘{𝐷})) ∈ (SubGrp‘𝐺))
671, 2, 65, 66syl3anc 1373 . 2 (𝜑 → (𝑊 (𝐾‘{𝐷})) ∈ (SubGrp‘𝐺))
68 eqid 2731 . . . . . . . . . . 11 (-g𝐺) = (-g𝐺)
6968, 22, 2, 65lsmelvalm 19561 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝑊 (𝐾‘{𝐷})) ↔ ∃𝑤𝑊𝑦 ∈ (𝐾‘{𝐷})𝑥 = (𝑤(-g𝐺)𝑦)))
70 eqid 2731 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ ↦ (𝑛 · 𝐷)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐷))
715, 35, 70, 18cycsubg2 19120 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝐷𝐵) → (𝐾‘{𝐷}) = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐷)))
724, 63, 71syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐾‘{𝐷}) = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐷)))
7372rexeqdv 3293 . . . . . . . . . . . 12 (𝜑 → (∃𝑦 ∈ (𝐾‘{𝐷})𝑥 = (𝑤(-g𝐺)𝑦) ↔ ∃𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐷))𝑥 = (𝑤(-g𝐺)𝑦)))
74 ovex 7379 . . . . . . . . . . . . . 14 (𝑛 · 𝐷) ∈ V
7574rgenw 3051 . . . . . . . . . . . . 13 𝑛 ∈ ℤ (𝑛 · 𝐷) ∈ V
76 oveq2 7354 . . . . . . . . . . . . . . 15 (𝑦 = (𝑛 · 𝐷) → (𝑤(-g𝐺)𝑦) = (𝑤(-g𝐺)(𝑛 · 𝐷)))
7776eqeq2d 2742 . . . . . . . . . . . . . 14 (𝑦 = (𝑛 · 𝐷) → (𝑥 = (𝑤(-g𝐺)𝑦) ↔ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))))
7870, 77rexrnmptw 7028 . . . . . . . . . . . . 13 (∀𝑛 ∈ ℤ (𝑛 · 𝐷) ∈ V → (∃𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐷))𝑥 = (𝑤(-g𝐺)𝑦) ↔ ∃𝑛 ∈ ℤ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))))
7975, 78ax-mp 5 . . . . . . . . . . . 12 (∃𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐷))𝑥 = (𝑤(-g𝐺)𝑦) ↔ ∃𝑛 ∈ ℤ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷)))
8073, 79bitrdi 287 . . . . . . . . . . 11 (𝜑 → (∃𝑦 ∈ (𝐾‘{𝐷})𝑥 = (𝑤(-g𝐺)𝑦) ↔ ∃𝑛 ∈ ℤ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))))
8180rexbidv 3156 . . . . . . . . . 10 (𝜑 → (∃𝑤𝑊𝑦 ∈ (𝐾‘{𝐷})𝑥 = (𝑤(-g𝐺)𝑦) ↔ ∃𝑤𝑊𝑛 ∈ ℤ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))))
8269, 81bitrd 279 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑊 (𝐾‘{𝐷})) ↔ ∃𝑤𝑊𝑛 ∈ ℤ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))))
8382adantr 480 . . . . . . . 8 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝑊 (𝐾‘{𝐷})) ↔ ∃𝑤𝑊𝑛 ∈ ℤ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))))
84 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷)))
852ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝑊 ∈ (SubGrp‘𝐺))
86 simplrl 776 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝑤𝑊)
87 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝑛 ∈ ℤ)
8887zcnd 12575 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝑛 ∈ ℂ)
8945nncnd 12138 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℂ)
9089ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝑃 ∈ ℂ)
9146ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝑃 ≠ 0)
9288, 90, 91divcan1d 11895 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → ((𝑛 / 𝑃) · 𝑃) = 𝑛)
9392oveq1d 7361 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (((𝑛 / 𝑃) · 𝑃) · 𝐷) = (𝑛 · 𝐷))
944ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝐺 ∈ Grp)
9513eldifbd 3915 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ 𝐶 ∈ (𝑆 𝑊))
9622lsmsubg2 19769 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
971, 21, 2, 96syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
9824, 57sseldd 3935 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑀 / 𝑃) · 𝐴) ∈ (𝑆 𝑊))
9968subgsubcl 19047 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ 𝐷 ∈ (𝑆 𝑊) ∧ ((𝑀 / 𝑃) · 𝐴) ∈ (𝑆 𝑊)) → (𝐷(-g𝐺)((𝑀 / 𝑃) · 𝐴)) ∈ (𝑆 𝑊))
100993expia 1121 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ 𝐷 ∈ (𝑆 𝑊)) → (((𝑀 / 𝑃) · 𝐴) ∈ (𝑆 𝑊) → (𝐷(-g𝐺)((𝑀 / 𝑃) · 𝐴)) ∈ (𝑆 𝑊)))
101100impancom 451 . . . . . . . . . . . . . . . . . . . . 21 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ ((𝑀 / 𝑃) · 𝐴) ∈ (𝑆 𝑊)) → (𝐷 ∈ (𝑆 𝑊) → (𝐷(-g𝐺)((𝑀 / 𝑃) · 𝐴)) ∈ (𝑆 𝑊)))
10297, 98, 101syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐷 ∈ (𝑆 𝑊) → (𝐷(-g𝐺)((𝑀 / 𝑃) · 𝐴)) ∈ (𝑆 𝑊)))
10312oveq1i 7356 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷(-g𝐺)((𝑀 / 𝑃) · 𝐴)) = ((𝐶(+g𝐺)((𝑀 / 𝑃) · 𝐴))(-g𝐺)((𝑀 / 𝑃) · 𝐴))
10411, 14sseldd 3935 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐶𝐵)
1055subgss 19037 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
10621, 105syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑆𝐵)
107106, 57sseldd 3935 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑀 / 𝑃) · 𝐴) ∈ 𝐵)
1085, 59, 68grppncan 18941 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ 𝐶𝐵 ∧ ((𝑀 / 𝑃) · 𝐴) ∈ 𝐵) → ((𝐶(+g𝐺)((𝑀 / 𝑃) · 𝐴))(-g𝐺)((𝑀 / 𝑃) · 𝐴)) = 𝐶)
1094, 104, 107, 108syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝐶(+g𝐺)((𝑀 / 𝑃) · 𝐴))(-g𝐺)((𝑀 / 𝑃) · 𝐴)) = 𝐶)
110103, 109eqtrid 2778 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐷(-g𝐺)((𝑀 / 𝑃) · 𝐴)) = 𝐶)
111110eleq1d 2816 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐷(-g𝐺)((𝑀 / 𝑃) · 𝐴)) ∈ (𝑆 𝑊) ↔ 𝐶 ∈ (𝑆 𝑊)))
112102, 111sylibd 239 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐷 ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊)))
11395, 112mtod 198 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ 𝐷 ∈ (𝑆 𝑊))
114113ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → ¬ 𝐷 ∈ (𝑆 𝑊))
11541ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝑃 ∈ ℙ)
116 coprm 16619 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℤ) → (¬ 𝑃𝑛 ↔ (𝑃 gcd 𝑛) = 1))
117115, 87, 116syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (¬ 𝑃𝑛 ↔ (𝑃 gcd 𝑛) = 1))
11843ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝑃 ∈ ℤ)
119 bezout 16451 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑃 gcd 𝑛) = ((𝑃 · 𝑎) + (𝑛 · 𝑏)))
120118, 87, 119syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑃 gcd 𝑛) = ((𝑃 · 𝑎) + (𝑛 · 𝑏)))
121 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 gcd 𝑛) = 1 → ((𝑃 gcd 𝑛) = ((𝑃 · 𝑎) + (𝑛 · 𝑏)) ↔ 1 = ((𝑃 · 𝑎) + (𝑛 · 𝑏))))
1221212rexbidv 3197 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 gcd 𝑛) = 1 → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑃 gcd 𝑛) = ((𝑃 · 𝑎) + (𝑛 · 𝑏)) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 1 = ((𝑃 · 𝑎) + (𝑛 · 𝑏))))
123120, 122syl5ibcom 245 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → ((𝑃 gcd 𝑛) = 1 → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 1 = ((𝑃 · 𝑎) + (𝑛 · 𝑏))))
12494adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐺 ∈ Grp)
125118adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑃 ∈ ℤ)
126 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ)
127125, 126zmulcld 12580 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑃 · 𝑎) ∈ ℤ)
12887adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑛 ∈ ℤ)
129 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ)
130128, 129zmulcld 12580 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑛 · 𝑏) ∈ ℤ)
13163ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝐷𝐵)
132131adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐷𝐵)
1335, 35, 59mulgdir 19016 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ Grp ∧ ((𝑃 · 𝑎) ∈ ℤ ∧ (𝑛 · 𝑏) ∈ ℤ ∧ 𝐷𝐵)) → (((𝑃 · 𝑎) + (𝑛 · 𝑏)) · 𝐷) = (((𝑃 · 𝑎) · 𝐷)(+g𝐺)((𝑛 · 𝑏) · 𝐷)))
134124, 127, 130, 132, 133syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑃 · 𝑎) + (𝑛 · 𝑏)) · 𝐷) = (((𝑃 · 𝑎) · 𝐷)(+g𝐺)((𝑛 · 𝑏) · 𝐷)))
13597ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
136135adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
13790adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑃 ∈ ℂ)
138 zcn 12470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
139138ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℂ)
140137, 139mulcomd 11130 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑃 · 𝑎) = (𝑎 · 𝑃))
141140oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑃 · 𝑎) · 𝐷) = ((𝑎 · 𝑃) · 𝐷))
1425, 35mulgass 19021 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐺 ∈ Grp ∧ (𝑎 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝐷𝐵)) → ((𝑎 · 𝑃) · 𝐷) = (𝑎 · (𝑃 · 𝐷)))
143124, 126, 125, 132, 142syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · 𝑃) · 𝐷) = (𝑎 · (𝑃 · 𝐷)))
144141, 143eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑃 · 𝑎) · 𝐷) = (𝑎 · (𝑃 · 𝐷)))
14522lsmub2 19568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → 𝑊 ⊆ (𝑆 𝑊))
14621, 2, 145syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑊 ⊆ (𝑆 𝑊))
14712oveq2i 7357 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑃 · 𝐷) = (𝑃 · (𝐶(+g𝐺)((𝑀 / 𝑃) · 𝐴)))
1485, 35, 59mulgdi 19736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐺 ∈ Abel ∧ (𝑃 ∈ ℤ ∧ 𝐶𝐵 ∧ ((𝑀 / 𝑃) · 𝐴) ∈ 𝐵)) → (𝑃 · (𝐶(+g𝐺)((𝑀 / 𝑃) · 𝐴))) = ((𝑃 · 𝐶)(+g𝐺)(𝑃 · ((𝑀 / 𝑃) · 𝐴))))
1491, 43, 104, 107, 148syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑃 · (𝐶(+g𝐺)((𝑀 / 𝑃) · 𝐴))) = ((𝑃 · 𝐶)(+g𝐺)(𝑃 · ((𝑀 / 𝑃) · 𝐴))))
150147, 149eqtrid 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑃 · 𝐷) = ((𝑃 · 𝐶)(+g𝐺)(𝑃 · ((𝑀 / 𝑃) · 𝐴))))
1515, 35mulgass 19021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐺 ∈ Grp ∧ (𝑃 ∈ ℤ ∧ (𝑀 / 𝑃) ∈ ℤ ∧ 𝐴𝐵)) → ((𝑃 · (𝑀 / 𝑃)) · 𝐴) = (𝑃 · ((𝑀 / 𝑃) · 𝐴)))
1524, 43, 49, 17, 151syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → ((𝑃 · (𝑀 / 𝑃)) · 𝐴) = (𝑃 · ((𝑀 / 𝑃) · 𝐴)))
15336zcnd 12575 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑𝑀 ∈ ℂ)
154153, 89, 46divcan2d 11896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑃 · (𝑀 / 𝑃)) = 𝑀)
155154oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → ((𝑃 · (𝑀 / 𝑃)) · 𝐴) = (𝑀 · 𝐴))
156152, 155eqtr3d 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑃 · ((𝑀 / 𝑃) · 𝐴)) = (𝑀 · 𝐴))
157156oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → ((𝑃 · 𝐶)(+g𝐺)(𝑃 · ((𝑀 / 𝑃) · 𝐴))) = ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)))
158150, 157eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (𝑃 · 𝐷) = ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)))
159158, 37eqeltrd 2831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝑃 · 𝐷) ∈ 𝑊)
160146, 159sseldd 3935 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝑃 · 𝐷) ∈ (𝑆 𝑊))
161160ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (𝑃 · 𝐷) ∈ (𝑆 𝑊))
162161adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑃 · 𝐷) ∈ (𝑆 𝑊))
16335subgmulgcl 19049 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ 𝑎 ∈ ℤ ∧ (𝑃 · 𝐷) ∈ (𝑆 𝑊)) → (𝑎 · (𝑃 · 𝐷)) ∈ (𝑆 𝑊))
164136, 126, 162, 163syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · (𝑃 · 𝐷)) ∈ (𝑆 𝑊))
165144, 164eqeltrd 2831 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑃 · 𝑎) · 𝐷) ∈ (𝑆 𝑊))
16688adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑛 ∈ ℂ)
167 zcn 12470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
168167ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℂ)
169166, 168mulcomd 11130 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑛 · 𝑏) = (𝑏 · 𝑛))
170169oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑛 · 𝑏) · 𝐷) = ((𝑏 · 𝑛) · 𝐷))
1715, 35mulgass 19021 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐺 ∈ Grp ∧ (𝑏 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐷𝐵)) → ((𝑏 · 𝑛) · 𝐷) = (𝑏 · (𝑛 · 𝐷)))
172124, 129, 128, 132, 171syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · 𝑛) · 𝐷) = (𝑏 · (𝑛 · 𝐷)))
173170, 172eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑛 · 𝑏) · 𝐷) = (𝑏 · (𝑛 · 𝐷)))
17484oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (𝑤(-g𝐺)𝑥) = (𝑤(-g𝐺)(𝑤(-g𝐺)(𝑛 · 𝐷))))
1751ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝐺 ∈ Abel)
1765subgss 19037 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑊 ∈ (SubGrp‘𝐺) → 𝑊𝐵)
17785, 176syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝑊𝐵)
178177, 86sseldd 3935 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝑤𝐵)
1795, 35mulgcl 19001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝐷𝐵) → (𝑛 · 𝐷) ∈ 𝐵)
18094, 87, 131, 179syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (𝑛 · 𝐷) ∈ 𝐵)
1815, 68, 175, 178, 180ablnncan 19730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (𝑤(-g𝐺)(𝑤(-g𝐺)(𝑛 · 𝐷))) = (𝑛 · 𝐷))
182174, 181eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (𝑤(-g𝐺)𝑥) = (𝑛 · 𝐷))
183146ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝑊 ⊆ (𝑆 𝑊))
184183, 86sseldd 3935 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝑤 ∈ (𝑆 𝑊))
18524sselda 3934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑥𝑆) → 𝑥 ∈ (𝑆 𝑊))
186185ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝑥 ∈ (𝑆 𝑊))
18768subgsubcl 19047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ 𝑤 ∈ (𝑆 𝑊) ∧ 𝑥 ∈ (𝑆 𝑊)) → (𝑤(-g𝐺)𝑥) ∈ (𝑆 𝑊))
188135, 184, 186, 187syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (𝑤(-g𝐺)𝑥) ∈ (𝑆 𝑊))
189182, 188eqeltrrd 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (𝑛 · 𝐷) ∈ (𝑆 𝑊))
190189adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑛 · 𝐷) ∈ (𝑆 𝑊))
19135subgmulgcl 19049 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ 𝑏 ∈ ℤ ∧ (𝑛 · 𝐷) ∈ (𝑆 𝑊)) → (𝑏 · (𝑛 · 𝐷)) ∈ (𝑆 𝑊))
192136, 129, 190, 191syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑏 · (𝑛 · 𝐷)) ∈ (𝑆 𝑊))
193173, 192eqeltrd 2831 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑛 · 𝑏) · 𝐷) ∈ (𝑆 𝑊))
19459subgcl 19046 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ ((𝑃 · 𝑎) · 𝐷) ∈ (𝑆 𝑊) ∧ ((𝑛 · 𝑏) · 𝐷) ∈ (𝑆 𝑊)) → (((𝑃 · 𝑎) · 𝐷)(+g𝐺)((𝑛 · 𝑏) · 𝐷)) ∈ (𝑆 𝑊))
195136, 165, 193, 194syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑃 · 𝑎) · 𝐷)(+g𝐺)((𝑛 · 𝑏) · 𝐷)) ∈ (𝑆 𝑊))
196134, 195eqeltrd 2831 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑃 · 𝑎) + (𝑛 · 𝑏)) · 𝐷) ∈ (𝑆 𝑊))
197 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . 23 (1 = ((𝑃 · 𝑎) + (𝑛 · 𝑏)) → (1 · 𝐷) = (((𝑃 · 𝑎) + (𝑛 · 𝑏)) · 𝐷))
198197eleq1d 2816 . . . . . . . . . . . . . . . . . . . . . 22 (1 = ((𝑃 · 𝑎) + (𝑛 · 𝑏)) → ((1 · 𝐷) ∈ (𝑆 𝑊) ↔ (((𝑃 · 𝑎) + (𝑛 · 𝑏)) · 𝐷) ∈ (𝑆 𝑊)))
199196, 198syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (1 = ((𝑃 · 𝑎) + (𝑛 · 𝑏)) → (1 · 𝐷) ∈ (𝑆 𝑊)))
200199rexlimdvva 3189 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 1 = ((𝑃 · 𝑎) + (𝑛 · 𝑏)) → (1 · 𝐷) ∈ (𝑆 𝑊)))
201123, 200syld 47 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → ((𝑃 gcd 𝑛) = 1 → (1 · 𝐷) ∈ (𝑆 𝑊)))
2025, 35mulg1 18991 . . . . . . . . . . . . . . . . . . . . 21 (𝐷𝐵 → (1 · 𝐷) = 𝐷)
203131, 202syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (1 · 𝐷) = 𝐷)
204203eleq1d 2816 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → ((1 · 𝐷) ∈ (𝑆 𝑊) ↔ 𝐷 ∈ (𝑆 𝑊)))
205201, 204sylibd 239 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → ((𝑃 gcd 𝑛) = 1 → 𝐷 ∈ (𝑆 𝑊)))
206117, 205sylbid 240 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (¬ 𝑃𝑛𝐷 ∈ (𝑆 𝑊)))
207114, 206mt3d 148 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝑃𝑛)
208 dvdsval2 16163 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑛 ∈ ℤ) → (𝑃𝑛 ↔ (𝑛 / 𝑃) ∈ ℤ))
209118, 91, 87, 208syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (𝑃𝑛 ↔ (𝑛 / 𝑃) ∈ ℤ))
210207, 209mpbid 232 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (𝑛 / 𝑃) ∈ ℤ)
2115, 35mulgass 19021 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ ((𝑛 / 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝐷𝐵)) → (((𝑛 / 𝑃) · 𝑃) · 𝐷) = ((𝑛 / 𝑃) · (𝑃 · 𝐷)))
21294, 210, 118, 131, 211syl13anc 1374 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (((𝑛 / 𝑃) · 𝑃) · 𝐷) = ((𝑛 / 𝑃) · (𝑃 · 𝐷)))
21393, 212eqtr3d 2768 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (𝑛 · 𝐷) = ((𝑛 / 𝑃) · (𝑃 · 𝐷)))
214159ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (𝑃 · 𝐷) ∈ 𝑊)
21535subgmulgcl 19049 . . . . . . . . . . . . . 14 ((𝑊 ∈ (SubGrp‘𝐺) ∧ (𝑛 / 𝑃) ∈ ℤ ∧ (𝑃 · 𝐷) ∈ 𝑊) → ((𝑛 / 𝑃) · (𝑃 · 𝐷)) ∈ 𝑊)
21685, 210, 214, 215syl3anc 1373 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → ((𝑛 / 𝑃) · (𝑃 · 𝐷)) ∈ 𝑊)
217213, 216eqeltrd 2831 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (𝑛 · 𝐷) ∈ 𝑊)
21868subgsubcl 19047 . . . . . . . . . . . 12 ((𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑤𝑊 ∧ (𝑛 · 𝐷) ∈ 𝑊) → (𝑤(-g𝐺)(𝑛 · 𝐷)) ∈ 𝑊)
21985, 86, 217, 218syl3anc 1373 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → (𝑤(-g𝐺)(𝑛 · 𝐷)) ∈ 𝑊)
22084, 219eqeltrd 2831 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) ∧ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷))) → 𝑥𝑊)
221220ex 412 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ (𝑤𝑊𝑛 ∈ ℤ)) → (𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷)) → 𝑥𝑊))
222221rexlimdvva 3189 . . . . . . . 8 ((𝜑𝑥𝑆) → (∃𝑤𝑊𝑛 ∈ ℤ 𝑥 = (𝑤(-g𝐺)(𝑛 · 𝐷)) → 𝑥𝑊))
22383, 222sylbid 240 . . . . . . 7 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝑊 (𝐾‘{𝐷})) → 𝑥𝑊))
224223imdistanda 571 . . . . . 6 (𝜑 → ((𝑥𝑆𝑥 ∈ (𝑊 (𝐾‘{𝐷}))) → (𝑥𝑆𝑥𝑊)))
225 elin 3918 . . . . . 6 (𝑥 ∈ (𝑆 ∩ (𝑊 (𝐾‘{𝐷}))) ↔ (𝑥𝑆𝑥 ∈ (𝑊 (𝐾‘{𝐷}))))
226 elin 3918 . . . . . 6 (𝑥 ∈ (𝑆𝑊) ↔ (𝑥𝑆𝑥𝑊))
227224, 225, 2263imtr4g 296 . . . . 5 (𝜑 → (𝑥 ∈ (𝑆 ∩ (𝑊 (𝐾‘{𝐷}))) → 𝑥 ∈ (𝑆𝑊)))
228227ssrdv 3940 . . . 4 (𝜑 → (𝑆 ∩ (𝑊 (𝐾‘{𝐷}))) ⊆ (𝑆𝑊))
229228, 33sseqtrd 3971 . . 3 (𝜑 → (𝑆 ∩ (𝑊 (𝐾‘{𝐷}))) ⊆ { 0 })
23029subg0cl 19044 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 0𝑆)
23121, 230syl 17 . . . . 5 (𝜑0𝑆)
23229subg0cl 19044 . . . . . 6 ((𝑊 (𝐾‘{𝐷})) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑊 (𝐾‘{𝐷})))
23367, 232syl 17 . . . . 5 (𝜑0 ∈ (𝑊 (𝐾‘{𝐷})))
234231, 233elind 4150 . . . 4 (𝜑0 ∈ (𝑆 ∩ (𝑊 (𝐾‘{𝐷}))))
235234snssd 4761 . . 3 (𝜑 → { 0 } ⊆ (𝑆 ∩ (𝑊 (𝐾‘{𝐷}))))
236229, 235eqssd 3952 . 2 (𝜑 → (𝑆 ∩ (𝑊 (𝐾‘{𝐷}))) = { 0 })
23722lsmass 19579 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐷}) ∈ (SubGrp‘𝐺)) → ((𝑆 𝑊) (𝐾‘{𝐷})) = (𝑆 (𝑊 (𝐾‘{𝐷}))))
23821, 2, 65, 237syl3anc 1373 . . 3 (𝜑 → ((𝑆 𝑊) (𝐾‘{𝐷})) = (𝑆 (𝑊 (𝐾‘{𝐷}))))
23962, 113eldifd 3913 . . . 4 (𝜑𝐷 ∈ (𝑈 ∖ (𝑆 𝑊)))
24018, 15, 5, 27, 28, 29, 22, 30, 1, 31, 32, 9, 16, 2, 33, 25, 34pgpfac1lem1 19986 . . . 4 ((𝜑𝐷 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐷})) = 𝑈)
241239, 240mpdan 687 . . 3 (𝜑 → ((𝑆 𝑊) (𝐾‘{𝐷})) = 𝑈)
242238, 241eqtr3d 2768 . 2 (𝜑 → (𝑆 (𝑊 (𝐾‘{𝐷}))) = 𝑈)
243 ineq2 4164 . . . . 5 (𝑡 = (𝑊 (𝐾‘{𝐷})) → (𝑆𝑡) = (𝑆 ∩ (𝑊 (𝐾‘{𝐷}))))
244243eqeq1d 2733 . . . 4 (𝑡 = (𝑊 (𝐾‘{𝐷})) → ((𝑆𝑡) = { 0 } ↔ (𝑆 ∩ (𝑊 (𝐾‘{𝐷}))) = { 0 }))
245 oveq2 7354 . . . . 5 (𝑡 = (𝑊 (𝐾‘{𝐷})) → (𝑆 𝑡) = (𝑆 (𝑊 (𝐾‘{𝐷}))))
246245eqeq1d 2733 . . . 4 (𝑡 = (𝑊 (𝐾‘{𝐷})) → ((𝑆 𝑡) = 𝑈 ↔ (𝑆 (𝑊 (𝐾‘{𝐷}))) = 𝑈))
247244, 246anbi12d 632 . . 3 (𝑡 = (𝑊 (𝐾‘{𝐷})) → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈) ↔ ((𝑆 ∩ (𝑊 (𝐾‘{𝐷}))) = { 0 } ∧ (𝑆 (𝑊 (𝐾‘{𝐷}))) = 𝑈)))
248247rspcev 3577 . 2 (((𝑊 (𝐾‘{𝐷})) ∈ (SubGrp‘𝐺) ∧ ((𝑆 ∩ (𝑊 (𝐾‘{𝐷}))) = { 0 } ∧ (𝑆 (𝑊 (𝐾‘{𝐷}))) = 𝑈)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
24967, 236, 242, 248syl12anc 836 1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cdif 3899  cin 3901  wss 3902  wpss 3903  {csn 4576   class class class wbr 5091  cmpt 5172  ran crn 5617  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11001  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008   / cdiv 11771  cn 12122  cz 12465  cdvds 16160   gcd cgcd 16402  cprime 16579  Basecbs 17117  +gcplusg 17158  0gc0g 17340  Moorecmre 17481  mrClscmrc 17482  ACScacs 17484  Grpcgrp 18843  -gcsg 18845  .gcmg 18977  SubGrpcsubg 19030  odcod 19434  gExcgex 19435   pGrp cpgp 19436  LSSumclsm 19544  Abelcabl 19691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-disj 5059  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9791  df-card 9829  df-acn 9832  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-q 12844  df-rp 12888  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-sum 15591  df-dvds 16161  df-gcd 16403  df-prm 16580  df-pc 16746  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-0g 17342  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mulg 18978  df-subg 19033  df-eqg 19035  df-ga 19200  df-cntz 19227  df-od 19438  df-gex 19439  df-pgp 19440  df-lsm 19546  df-cmn 19692  df-abl 19693
This theorem is referenced by:  pgpfac1lem4  19990
  Copyright terms: Public domain W3C validator