MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivcfil Structured version   Visualization version   GIF version

Theorem equivcfil 25333
Description: If the metric 𝐷 is "strongly finer" than 𝐶 (meaning that there is a positive real constant 𝑅 such that 𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), all the 𝐷-Cauchy filters are also 𝐶-Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivcau.1 (𝜑𝐶 ∈ (Met‘𝑋))
equivcau.2 (𝜑𝐷 ∈ (Met‘𝑋))
equivcau.3 (𝜑𝑅 ∈ ℝ+)
equivcau.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
equivcfil (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦

Proof of Theorem equivcfil
Dummy variables 𝑓 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
2 equivcau.3 . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
32ad2antrr 726 . . . . . . . 8 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑅 ∈ ℝ+)
41, 3rpdivcld 13094 . . . . . . 7 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 𝑅) ∈ ℝ+)
5 oveq2 7439 . . . . . . . . . 10 (𝑠 = (𝑟 / 𝑅) → (𝑥(ball‘𝐷)𝑠) = (𝑥(ball‘𝐷)(𝑟 / 𝑅)))
65eleq1d 2826 . . . . . . . . 9 (𝑠 = (𝑟 / 𝑅) → ((𝑥(ball‘𝐷)𝑠) ∈ 𝑓 ↔ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
76rexbidv 3179 . . . . . . . 8 (𝑠 = (𝑟 / 𝑅) → (∃𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 ↔ ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
87rspcv 3618 . . . . . . 7 ((𝑟 / 𝑅) ∈ ℝ+ → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
94, 8syl 17 . . . . . 6 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
10 simpllr 776 . . . . . . . 8 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑓 ∈ (Fil‘𝑋))
11 eqid 2737 . . . . . . . . . . . 12 (MetOpen‘𝐶) = (MetOpen‘𝐶)
12 eqid 2737 . . . . . . . . . . . 12 (MetOpen‘𝐷) = (MetOpen‘𝐷)
13 equivcau.1 . . . . . . . . . . . 12 (𝜑𝐶 ∈ (Met‘𝑋))
14 equivcau.2 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (Met‘𝑋))
15 equivcau.4 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
1611, 12, 13, 14, 2, 15metss2lem 24524 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑟 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
1716ancom2s 650 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑥𝑋)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
1817adantlr 715 . . . . . . . . 9 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ (𝑟 ∈ ℝ+𝑥𝑋)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
1918anassrs 467 . . . . . . . 8 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
2013ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝐶 ∈ (Met‘𝑋))
21 metxmet 24344 . . . . . . . . . 10 (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋))
2220, 21syl 17 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝐶 ∈ (∞Met‘𝑋))
23 simpr 484 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑥𝑋)
24 rpxr 13044 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
2524ad2antlr 727 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑟 ∈ ℝ*)
26 blssm 24428 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋)
2722, 23, 25, 26syl3anc 1373 . . . . . . . 8 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋)
28 filss 23861 . . . . . . . . . 10 ((𝑓 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))) → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)
29283exp2 1355 . . . . . . . . 9 (𝑓 ∈ (Fil‘𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟) → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))))
3029com24 95 . . . . . . . 8 (𝑓 ∈ (Fil‘𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟) → ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))))
3110, 19, 27, 30syl3c 66 . . . . . . 7 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
3231reximdva 3168 . . . . . 6 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
339, 32syld 47 . . . . 5 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
3433ralrimdva 3154 . . . 4 ((𝜑𝑓 ∈ (Fil‘𝑋)) → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
3534imdistanda 571 . . 3 (𝜑 → ((𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓) → (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))
36 metxmet 24344 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
37 iscfil3 25307 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓)))
3814, 36, 373syl 18 . . 3 (𝜑 → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓)))
39 iscfil3 25307 . . . 4 (𝐶 ∈ (∞Met‘𝑋) → (𝑓 ∈ (CauFil‘𝐶) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))
4013, 21, 393syl 18 . . 3 (𝜑 → (𝑓 ∈ (CauFil‘𝐶) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))
4135, 38, 403imtr4d 294 . 2 (𝜑 → (𝑓 ∈ (CauFil‘𝐷) → 𝑓 ∈ (CauFil‘𝐶)))
4241ssrdv 3989 1 (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  wss 3951   class class class wbr 5143  cfv 6561  (class class class)co 7431   · cmul 11160  *cxr 11294  cle 11296   / cdiv 11920  +crp 13034  ∞Metcxmet 21349  Metcmet 21350  ballcbl 21351  MetOpencmopn 21354  Filcfil 23853  CauFilccfil 25286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-2 12329  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ico 13393  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-fbas 21361  df-fil 23854  df-cfil 25289
This theorem is referenced by:  equivcmet  25351
  Copyright terms: Public domain W3C validator