MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivcfil Structured version   Visualization version   GIF version

Theorem equivcfil 24013
Description: If the metric 𝐷 is "strongly finer" than 𝐶 (meaning that there is a positive real constant 𝑅 such that 𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), all the 𝐷-Cauchy filters are also 𝐶-Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivcau.1 (𝜑𝐶 ∈ (Met‘𝑋))
equivcau.2 (𝜑𝐷 ∈ (Met‘𝑋))
equivcau.3 (𝜑𝑅 ∈ ℝ+)
equivcau.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
equivcfil (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦

Proof of Theorem equivcfil
Dummy variables 𝑓 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . . 8 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
2 equivcau.3 . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
32ad2antrr 725 . . . . . . . 8 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑅 ∈ ℝ+)
41, 3rpdivcld 12502 . . . . . . 7 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 𝑅) ∈ ℝ+)
5 oveq2 7164 . . . . . . . . . 10 (𝑠 = (𝑟 / 𝑅) → (𝑥(ball‘𝐷)𝑠) = (𝑥(ball‘𝐷)(𝑟 / 𝑅)))
65eleq1d 2836 . . . . . . . . 9 (𝑠 = (𝑟 / 𝑅) → ((𝑥(ball‘𝐷)𝑠) ∈ 𝑓 ↔ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
76rexbidv 3221 . . . . . . . 8 (𝑠 = (𝑟 / 𝑅) → (∃𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 ↔ ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
87rspcv 3538 . . . . . . 7 ((𝑟 / 𝑅) ∈ ℝ+ → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
94, 8syl 17 . . . . . 6 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
10 simpllr 775 . . . . . . . 8 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑓 ∈ (Fil‘𝑋))
11 eqid 2758 . . . . . . . . . . . 12 (MetOpen‘𝐶) = (MetOpen‘𝐶)
12 eqid 2758 . . . . . . . . . . . 12 (MetOpen‘𝐷) = (MetOpen‘𝐷)
13 equivcau.1 . . . . . . . . . . . 12 (𝜑𝐶 ∈ (Met‘𝑋))
14 equivcau.2 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (Met‘𝑋))
15 equivcau.4 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
1611, 12, 13, 14, 2, 15metss2lem 23227 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑟 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
1716ancom2s 649 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑥𝑋)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
1817adantlr 714 . . . . . . . . 9 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ (𝑟 ∈ ℝ+𝑥𝑋)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
1918anassrs 471 . . . . . . . 8 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
2013ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝐶 ∈ (Met‘𝑋))
21 metxmet 23050 . . . . . . . . . 10 (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋))
2220, 21syl 17 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝐶 ∈ (∞Met‘𝑋))
23 simpr 488 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑥𝑋)
24 rpxr 12452 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
2524ad2antlr 726 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑟 ∈ ℝ*)
26 blssm 23134 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋)
2722, 23, 25, 26syl3anc 1368 . . . . . . . 8 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋)
28 filss 22567 . . . . . . . . . 10 ((𝑓 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))) → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)
29283exp2 1351 . . . . . . . . 9 (𝑓 ∈ (Fil‘𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟) → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))))
3029com24 95 . . . . . . . 8 (𝑓 ∈ (Fil‘𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟) → ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))))
3110, 19, 27, 30syl3c 66 . . . . . . 7 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
3231reximdva 3198 . . . . . 6 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
339, 32syld 47 . . . . 5 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
3433ralrimdva 3118 . . . 4 ((𝜑𝑓 ∈ (Fil‘𝑋)) → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
3534imdistanda 575 . . 3 (𝜑 → ((𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓) → (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))
36 metxmet 23050 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
37 iscfil3 23987 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓)))
3814, 36, 373syl 18 . . 3 (𝜑 → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓)))
39 iscfil3 23987 . . . 4 (𝐶 ∈ (∞Met‘𝑋) → (𝑓 ∈ (CauFil‘𝐶) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))
4013, 21, 393syl 18 . . 3 (𝜑 → (𝑓 ∈ (CauFil‘𝐶) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))
4135, 38, 403imtr4d 297 . 2 (𝜑 → (𝑓 ∈ (CauFil‘𝐷) → 𝑓 ∈ (CauFil‘𝐶)))
4241ssrdv 3900 1 (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070  wrex 3071  wss 3860   class class class wbr 5036  cfv 6340  (class class class)co 7156   · cmul 10593  *cxr 10725  cle 10727   / cdiv 11348  +crp 12443  ∞Metcxmet 20165  Metcmet 20166  ballcbl 20167  MetOpencmopn 20170  Filcfil 22559  CauFilccfil 23966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7699  df-2nd 7700  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-2 11750  df-rp 12444  df-xneg 12561  df-xadd 12562  df-xmul 12563  df-ico 12798  df-psmet 20172  df-xmet 20173  df-met 20174  df-bl 20175  df-fbas 20177  df-fil 22560  df-cfil 23969
This theorem is referenced by:  equivcmet  24031
  Copyright terms: Public domain W3C validator