MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivcfil Structured version   Visualization version   GIF version

Theorem equivcfil 24663
Description: If the metric 𝐷 is "strongly finer" than 𝐶 (meaning that there is a positive real constant 𝑅 such that 𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), all the 𝐷-Cauchy filters are also 𝐶-Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivcau.1 (𝜑𝐶 ∈ (Met‘𝑋))
equivcau.2 (𝜑𝐷 ∈ (Met‘𝑋))
equivcau.3 (𝜑𝑅 ∈ ℝ+)
equivcau.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
equivcfil (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦

Proof of Theorem equivcfil
Dummy variables 𝑓 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . . 8 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
2 equivcau.3 . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
32ad2antrr 724 . . . . . . . 8 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑅 ∈ ℝ+)
41, 3rpdivcld 12974 . . . . . . 7 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 𝑅) ∈ ℝ+)
5 oveq2 7365 . . . . . . . . . 10 (𝑠 = (𝑟 / 𝑅) → (𝑥(ball‘𝐷)𝑠) = (𝑥(ball‘𝐷)(𝑟 / 𝑅)))
65eleq1d 2822 . . . . . . . . 9 (𝑠 = (𝑟 / 𝑅) → ((𝑥(ball‘𝐷)𝑠) ∈ 𝑓 ↔ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
76rexbidv 3175 . . . . . . . 8 (𝑠 = (𝑟 / 𝑅) → (∃𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 ↔ ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
87rspcv 3577 . . . . . . 7 ((𝑟 / 𝑅) ∈ ℝ+ → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
94, 8syl 17 . . . . . 6 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
10 simpllr 774 . . . . . . . 8 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑓 ∈ (Fil‘𝑋))
11 eqid 2736 . . . . . . . . . . . 12 (MetOpen‘𝐶) = (MetOpen‘𝐶)
12 eqid 2736 . . . . . . . . . . . 12 (MetOpen‘𝐷) = (MetOpen‘𝐷)
13 equivcau.1 . . . . . . . . . . . 12 (𝜑𝐶 ∈ (Met‘𝑋))
14 equivcau.2 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (Met‘𝑋))
15 equivcau.4 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
1611, 12, 13, 14, 2, 15metss2lem 23867 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑟 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
1716ancom2s 648 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑥𝑋)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
1817adantlr 713 . . . . . . . . 9 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ (𝑟 ∈ ℝ+𝑥𝑋)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
1918anassrs 468 . . . . . . . 8 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
2013ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝐶 ∈ (Met‘𝑋))
21 metxmet 23687 . . . . . . . . . 10 (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋))
2220, 21syl 17 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝐶 ∈ (∞Met‘𝑋))
23 simpr 485 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑥𝑋)
24 rpxr 12924 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
2524ad2antlr 725 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑟 ∈ ℝ*)
26 blssm 23771 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋)
2722, 23, 25, 26syl3anc 1371 . . . . . . . 8 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋)
28 filss 23204 . . . . . . . . . 10 ((𝑓 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))) → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)
29283exp2 1354 . . . . . . . . 9 (𝑓 ∈ (Fil‘𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟) → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))))
3029com24 95 . . . . . . . 8 (𝑓 ∈ (Fil‘𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟) → ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))))
3110, 19, 27, 30syl3c 66 . . . . . . 7 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
3231reximdva 3165 . . . . . 6 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
339, 32syld 47 . . . . 5 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
3433ralrimdva 3151 . . . 4 ((𝜑𝑓 ∈ (Fil‘𝑋)) → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
3534imdistanda 572 . . 3 (𝜑 → ((𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓) → (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))
36 metxmet 23687 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
37 iscfil3 24637 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓)))
3814, 36, 373syl 18 . . 3 (𝜑 → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓)))
39 iscfil3 24637 . . . 4 (𝐶 ∈ (∞Met‘𝑋) → (𝑓 ∈ (CauFil‘𝐶) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))
4013, 21, 393syl 18 . . 3 (𝜑 → (𝑓 ∈ (CauFil‘𝐶) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))
4135, 38, 403imtr4d 293 . 2 (𝜑 → (𝑓 ∈ (CauFil‘𝐷) → 𝑓 ∈ (CauFil‘𝐶)))
4241ssrdv 3950 1 (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  wss 3910   class class class wbr 5105  cfv 6496  (class class class)co 7357   · cmul 11056  *cxr 11188  cle 11190   / cdiv 11812  +crp 12915  ∞Metcxmet 20781  Metcmet 20782  ballcbl 20783  MetOpencmopn 20786  Filcfil 23196  CauFilccfil 24616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-2 12216  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ico 13270  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-fbas 20793  df-fil 23197  df-cfil 24619
This theorem is referenced by:  equivcmet  24681
  Copyright terms: Public domain W3C validator