MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivcfil Structured version   Visualization version   GIF version

Theorem equivcfil 23901
Description: If the metric 𝐷 is "strongly finer" than 𝐶 (meaning that there is a positive real constant 𝑅 such that 𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), all the 𝐷-Cauchy filters are also 𝐶-Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivcau.1 (𝜑𝐶 ∈ (Met‘𝑋))
equivcau.2 (𝜑𝐷 ∈ (Met‘𝑋))
equivcau.3 (𝜑𝑅 ∈ ℝ+)
equivcau.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
equivcfil (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦

Proof of Theorem equivcfil
Dummy variables 𝑓 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . . . . . 8 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
2 equivcau.3 . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
32ad2antrr 724 . . . . . . . 8 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑅 ∈ ℝ+)
41, 3rpdivcld 12447 . . . . . . 7 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 𝑅) ∈ ℝ+)
5 oveq2 7163 . . . . . . . . . 10 (𝑠 = (𝑟 / 𝑅) → (𝑥(ball‘𝐷)𝑠) = (𝑥(ball‘𝐷)(𝑟 / 𝑅)))
65eleq1d 2897 . . . . . . . . 9 (𝑠 = (𝑟 / 𝑅) → ((𝑥(ball‘𝐷)𝑠) ∈ 𝑓 ↔ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
76rexbidv 3297 . . . . . . . 8 (𝑠 = (𝑟 / 𝑅) → (∃𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 ↔ ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
87rspcv 3617 . . . . . . 7 ((𝑟 / 𝑅) ∈ ℝ+ → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
94, 8syl 17 . . . . . 6 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
10 simpllr 774 . . . . . . . 8 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑓 ∈ (Fil‘𝑋))
11 eqid 2821 . . . . . . . . . . . 12 (MetOpen‘𝐶) = (MetOpen‘𝐶)
12 eqid 2821 . . . . . . . . . . . 12 (MetOpen‘𝐷) = (MetOpen‘𝐷)
13 equivcau.1 . . . . . . . . . . . 12 (𝜑𝐶 ∈ (Met‘𝑋))
14 equivcau.2 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (Met‘𝑋))
15 equivcau.4 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
1611, 12, 13, 14, 2, 15metss2lem 23120 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑟 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
1716ancom2s 648 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑥𝑋)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
1817adantlr 713 . . . . . . . . 9 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ (𝑟 ∈ ℝ+𝑥𝑋)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
1918anassrs 470 . . . . . . . 8 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
2013ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝐶 ∈ (Met‘𝑋))
21 metxmet 22943 . . . . . . . . . 10 (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋))
2220, 21syl 17 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝐶 ∈ (∞Met‘𝑋))
23 simpr 487 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑥𝑋)
24 rpxr 12397 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
2524ad2antlr 725 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑟 ∈ ℝ*)
26 blssm 23027 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋)
2722, 23, 25, 26syl3anc 1367 . . . . . . . 8 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋)
28 filss 22460 . . . . . . . . . 10 ((𝑓 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))) → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)
29283exp2 1350 . . . . . . . . 9 (𝑓 ∈ (Fil‘𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟) → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))))
3029com24 95 . . . . . . . 8 (𝑓 ∈ (Fil‘𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟) → ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))))
3110, 19, 27, 30syl3c 66 . . . . . . 7 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
3231reximdva 3274 . . . . . 6 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
339, 32syld 47 . . . . 5 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
3433ralrimdva 3189 . . . 4 ((𝜑𝑓 ∈ (Fil‘𝑋)) → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
3534imdistanda 574 . . 3 (𝜑 → ((𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓) → (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))
36 metxmet 22943 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
37 iscfil3 23875 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓)))
3814, 36, 373syl 18 . . 3 (𝜑 → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓)))
39 iscfil3 23875 . . . 4 (𝐶 ∈ (∞Met‘𝑋) → (𝑓 ∈ (CauFil‘𝐶) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))
4013, 21, 393syl 18 . . 3 (𝜑 → (𝑓 ∈ (CauFil‘𝐶) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))
4135, 38, 403imtr4d 296 . 2 (𝜑 → (𝑓 ∈ (CauFil‘𝐷) → 𝑓 ∈ (CauFil‘𝐶)))
4241ssrdv 3972 1 (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  wss 3935   class class class wbr 5065  cfv 6354  (class class class)co 7155   · cmul 10541  *cxr 10673  cle 10675   / cdiv 11296  +crp 12388  ∞Metcxmet 20529  Metcmet 20530  ballcbl 20531  MetOpencmopn 20534  Filcfil 22452  CauFilccfil 23854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-2 11699  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ico 12743  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-fbas 20541  df-fil 22453  df-cfil 23857
This theorem is referenced by:  equivcmet  23919
  Copyright terms: Public domain W3C validator