Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈
ℝ+) |
2 | | equivcau.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
3 | 2 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑅 ∈
ℝ+) |
4 | 1, 3 | rpdivcld 12718 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 𝑅) ∈
ℝ+) |
5 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑟 / 𝑅) → (𝑥(ball‘𝐷)𝑠) = (𝑥(ball‘𝐷)(𝑟 / 𝑅))) |
6 | 5 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑠 = (𝑟 / 𝑅) → ((𝑥(ball‘𝐷)𝑠) ∈ 𝑓 ↔ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓)) |
7 | 6 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑠 = (𝑟 / 𝑅) → (∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 ↔ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓)) |
8 | 7 | rspcv 3547 |
. . . . . . 7
⊢ ((𝑟 / 𝑅) ∈ ℝ+ →
(∀𝑠 ∈
ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓)) |
9 | 4, 8 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) →
(∀𝑠 ∈
ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓)) |
10 | | simpllr 772 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → 𝑓 ∈ (Fil‘𝑋)) |
11 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(MetOpen‘𝐶) =
(MetOpen‘𝐶) |
12 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(MetOpen‘𝐷) =
(MetOpen‘𝐷) |
13 | | equivcau.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) |
14 | | equivcau.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
15 | | equivcau.4 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) |
16 | 11, 12, 13, 14, 2, 15 | metss2lem 23573 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) |
17 | 16 | ancom2s 646 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑥 ∈ 𝑋)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) |
18 | 17 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ 𝑥 ∈ 𝑋)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) |
19 | 18 | anassrs 467 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) |
20 | 13 | ad3antrrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ (Met‘𝑋)) |
21 | | metxmet 23395 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋)) |
22 | 20, 21 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ (∞Met‘𝑋)) |
23 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
24 | | rpxr 12668 |
. . . . . . . . . 10
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
25 | 24 | ad2antlr 723 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → 𝑟 ∈ ℝ*) |
26 | | blssm 23479 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋) |
27 | 22, 23, 25, 26 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋) |
28 | | filss 22912 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))) → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓) |
29 | 28 | 3exp2 1352 |
. . . . . . . . 9
⊢ (𝑓 ∈ (Fil‘𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟) → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))) |
30 | 29 | com24 95 |
. . . . . . . 8
⊢ (𝑓 ∈ (Fil‘𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟) → ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))) |
31 | 10, 19, 27, 30 | syl3c 66 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)) |
32 | 31 | reximdva 3202 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) →
(∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)) |
33 | 9, 32 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) →
(∀𝑠 ∈
ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)) |
34 | 33 | ralrimdva 3112 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) → (∀𝑠 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)) |
35 | 34 | imdistanda 571 |
. . 3
⊢ (𝜑 → ((𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓) → (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))) |
36 | | metxmet 23395 |
. . . 4
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
37 | | iscfil3 24342 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓))) |
38 | 14, 36, 37 | 3syl 18 |
. . 3
⊢ (𝜑 → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓))) |
39 | | iscfil3 24342 |
. . . 4
⊢ (𝐶 ∈ (∞Met‘𝑋) → (𝑓 ∈ (CauFil‘𝐶) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))) |
40 | 13, 21, 39 | 3syl 18 |
. . 3
⊢ (𝜑 → (𝑓 ∈ (CauFil‘𝐶) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))) |
41 | 35, 38, 40 | 3imtr4d 293 |
. 2
⊢ (𝜑 → (𝑓 ∈ (CauFil‘𝐷) → 𝑓 ∈ (CauFil‘𝐶))) |
42 | 41 | ssrdv 3923 |
1
⊢ (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶)) |