| Step | Hyp | Ref
| Expression |
| 1 | | cnpf2 23258 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶𝑌) |
| 2 | 1 | 3expa 1119 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶𝑌) |
| 3 | 2 | 3adantl3 1169 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶𝑌) |
| 4 | | topontop 22919 |
. . . . . . 7
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
| 5 | | cnpfcfi 24048 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝑓) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) |
| 6 | 5 | 3com23 1127 |
. . . . . . . 8
⊢ ((𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝐴 ∈ (𝐽 fClus 𝑓)) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) |
| 7 | 6 | 3expia 1122 |
. . . . . . 7
⊢ ((𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))) |
| 8 | 4, 7 | sylan 580 |
. . . . . 6
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))) |
| 9 | 8 | ralrimivw 3150 |
. . . . 5
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))) |
| 10 | 9 | 3ad2antl2 1187 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))) |
| 11 | 3, 10 | jca 511 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))) |
| 12 | 11 | ex 412 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))) |
| 13 | | simplrl 777 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) → 𝑔 ∈ (Fil‘𝑋)) |
| 14 | | filfbas 23856 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ (Fil‘𝑋) → 𝑔 ∈ (fBas‘𝑋)) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) → 𝑔 ∈ (fBas‘𝑋)) |
| 16 | | simprl 771 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) → ℎ ∈ (Fil‘𝑌)) |
| 17 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) → 𝐹:𝑋⟶𝑌) |
| 18 | | simprr 773 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) → ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ) |
| 19 | 15, 16, 17, 18 | fmfnfm 23966 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) → ∃𝑓 ∈ (Fil‘𝑋)(𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓))) |
| 20 | | r19.29 3114 |
. . . . . . . . . . . . 13
⊢
((∀𝑓 ∈
(Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ∧ ∃𝑓 ∈ (Fil‘𝑋)(𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓))) → ∃𝑓 ∈ (Fil‘𝑋)((𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓)))) |
| 21 | | flimfcls 24034 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐽 fLim 𝑓) ⊆ (𝐽 fClus 𝑓) |
| 22 | | simpll1 1213 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 23 | 22 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 24 | | simprl 771 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝑓 ∈ (Fil‘𝑋)) |
| 25 | | simprrl 781 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝑔 ⊆ 𝑓) |
| 26 | | flimss2 23980 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝑔 ⊆ 𝑓) → (𝐽 fLim 𝑔) ⊆ (𝐽 fLim 𝑓)) |
| 27 | 23, 24, 25, 26 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓)))) → (𝐽 fLim 𝑔) ⊆ (𝐽 fLim 𝑓)) |
| 28 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝐴 ∈ (𝐽 fLim 𝑔)) |
| 29 | 28 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝐴 ∈ (𝐽 fLim 𝑔)) |
| 30 | 27, 29 | sseldd 3984 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝐴 ∈ (𝐽 fLim 𝑓)) |
| 31 | 21, 30 | sselid 3981 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝐴 ∈ (𝐽 fClus 𝑓)) |
| 32 | | simpll2 1214 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝐾 ∈ (TopOn‘𝑌)) |
| 33 | 32 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝐾 ∈ (TopOn‘𝑌)) |
| 34 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝐹:𝑋⟶𝑌) |
| 35 | 34 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝐹:𝑋⟶𝑌) |
| 36 | | fcfval 24041 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝐾 fClusf 𝑓)‘𝐹) = (𝐾 fClus ((𝑌 FilMap 𝐹)‘𝑓))) |
| 37 | 33, 24, 35, 36 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓)))) → ((𝐾 fClusf 𝑓)‘𝐹) = (𝐾 fClus ((𝑌 FilMap 𝐹)‘𝑓))) |
| 38 | | simprrr 782 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓)))) → ℎ = ((𝑌 FilMap 𝐹)‘𝑓)) |
| 39 | 38 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓)))) → (𝐾 fClus ℎ) = (𝐾 fClus ((𝑌 FilMap 𝐹)‘𝑓))) |
| 40 | 37, 39 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓)))) → ((𝐾 fClusf 𝑓)‘𝐹) = (𝐾 fClus ℎ)) |
| 41 | 40 | eleq2d 2827 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓)))) → ((𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹) ↔ (𝐹‘𝐴) ∈ (𝐾 fClus ℎ))) |
| 42 | 41 | biimpd 229 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓)))) → ((𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹) → (𝐹‘𝐴) ∈ (𝐾 fClus ℎ))) |
| 43 | 31, 42 | embantd 59 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓)))) → ((𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐹‘𝐴) ∈ (𝐾 fClus ℎ))) |
| 44 | 43 | expr 456 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) ∧ 𝑓 ∈ (Fil‘𝑋)) → ((𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓)) → ((𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐹‘𝐴) ∈ (𝐾 fClus ℎ)))) |
| 45 | 44 | impcomd 411 |
. . . . . . . . . . . . . 14
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) ∧ 𝑓 ∈ (Fil‘𝑋)) → (((𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓))) → (𝐹‘𝐴) ∈ (𝐾 fClus ℎ))) |
| 46 | 45 | rexlimdva 3155 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) → (∃𝑓 ∈ (Fil‘𝑋)((𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ∧ (𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓))) → (𝐹‘𝐴) ∈ (𝐾 fClus ℎ))) |
| 47 | 20, 46 | syl5 34 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) → ((∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ∧ ∃𝑓 ∈ (Fil‘𝑋)(𝑔 ⊆ 𝑓 ∧ ℎ = ((𝑌 FilMap 𝐹)‘𝑓))) → (𝐹‘𝐴) ∈ (𝐾 fClus ℎ))) |
| 48 | 19, 47 | mpan2d 694 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ (ℎ ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ)) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐹‘𝐴) ∈ (𝐾 fClus ℎ))) |
| 49 | 48 | expr 456 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ℎ ∈ (Fil‘𝑌)) → (((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐹‘𝐴) ∈ (𝐾 fClus ℎ)))) |
| 50 | 49 | com23 86 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ℎ ∈ (Fil‘𝑌)) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ → (𝐹‘𝐴) ∈ (𝐾 fClus ℎ)))) |
| 51 | 50 | ralrimdva 3154 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → ∀ℎ ∈ (Fil‘𝑌)(((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ → (𝐹‘𝐴) ∈ (𝐾 fClus ℎ)))) |
| 52 | | toponmax 22932 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝐾) |
| 53 | 32, 52 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝑌 ∈ 𝐾) |
| 54 | | simprl 771 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝑔 ∈ (Fil‘𝑋)) |
| 55 | 54, 14 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝑔 ∈ (fBas‘𝑋)) |
| 56 | | fmfil 23952 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ 𝐾 ∧ 𝑔 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝑌 FilMap 𝐹)‘𝑔) ∈ (Fil‘𝑌)) |
| 57 | 53, 55, 34, 56 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → ((𝑌 FilMap 𝐹)‘𝑔) ∈ (Fil‘𝑌)) |
| 58 | | toponuni 22920 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
| 59 | 32, 58 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝑌 = ∪ 𝐾) |
| 60 | 59 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → (Fil‘𝑌) = (Fil‘∪
𝐾)) |
| 61 | 57, 60 | eleqtrd 2843 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → ((𝑌 FilMap 𝐹)‘𝑔) ∈ (Fil‘∪ 𝐾)) |
| 62 | | eqid 2737 |
. . . . . . . . . . 11
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 63 | 62 | flimfnfcls 24036 |
. . . . . . . . . 10
⊢ (((𝑌 FilMap 𝐹)‘𝑔) ∈ (Fil‘∪ 𝐾)
→ ((𝐹‘𝐴) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝑔)) ↔ ∀ℎ ∈ (Fil‘∪ 𝐾)(((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ → (𝐹‘𝐴) ∈ (𝐾 fClus ℎ)))) |
| 64 | 61, 63 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → ((𝐹‘𝐴) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝑔)) ↔ ∀ℎ ∈ (Fil‘∪ 𝐾)(((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ → (𝐹‘𝐴) ∈ (𝐾 fClus ℎ)))) |
| 65 | | flfval 23998 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑔 ∈ (Fil‘𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝐾 fLimf 𝑔)‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝑔))) |
| 66 | 32, 54, 34, 65 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → ((𝐾 fLimf 𝑔)‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝑔))) |
| 67 | 66 | eleq2d 2827 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → ((𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹) ↔ (𝐹‘𝐴) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝑔)))) |
| 68 | 60 | raleqdv 3326 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → (∀ℎ ∈ (Fil‘𝑌)(((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ → (𝐹‘𝐴) ∈ (𝐾 fClus ℎ)) ↔ ∀ℎ ∈ (Fil‘∪ 𝐾)(((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ → (𝐹‘𝐴) ∈ (𝐾 fClus ℎ)))) |
| 69 | 64, 67, 68 | 3bitr4d 311 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → ((𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹) ↔ ∀ℎ ∈ (Fil‘𝑌)(((𝑌 FilMap 𝐹)‘𝑔) ⊆ ℎ → (𝐹‘𝐴) ∈ (𝐾 fClus ℎ)))) |
| 70 | 51, 69 | sylibrd 259 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹))) |
| 71 | 70 | expr 456 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑔 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝑔) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹)))) |
| 72 | 71 | com23 86 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑔 ∈ (Fil‘𝑋)) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐴 ∈ (𝐽 fLim 𝑔) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹)))) |
| 73 | 72 | ralrimdva 3154 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → ∀𝑔 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑔) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹)))) |
| 74 | 73 | imdistanda 571 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑔 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑔) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹))))) |
| 75 | | cnpflf 24009 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑔 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑔) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹))))) |
| 76 | 74, 75 | sylibrd 259 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))) |
| 77 | 12, 76 | impbid 212 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))) |