MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpfcf Structured version   Visualization version   GIF version

Theorem cnpfcf 22892
Description: A function 𝐹 is continuous at point 𝐴 iff 𝐹 respects cluster points there. (Contributed by Jeff Hankins, 14-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
cnpfcf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐹   𝑓,𝐽   𝑓,𝐾   𝑓,𝑋   𝑓,𝑌

Proof of Theorem cnpfcf
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnpf2 22101 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
213expa 1120 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
323adantl3 1170 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
4 topontop 21764 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
5 cnpfcfi 22891 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝑓) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))
653com23 1128 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝐴 ∈ (𝐽 fClus 𝑓)) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))
763expia 1123 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))
84, 7sylan 583 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))
98ralrimivw 3096 . . . . 5 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))
1093ad2antl2 1188 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))
113, 10jca 515 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
1211ex 416 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))))
13 simplrl 777 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) → 𝑔 ∈ (Fil‘𝑋))
14 filfbas 22699 . . . . . . . . . . . . . 14 (𝑔 ∈ (Fil‘𝑋) → 𝑔 ∈ (fBas‘𝑋))
1513, 14syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) → 𝑔 ∈ (fBas‘𝑋))
16 simprl 771 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) → ∈ (Fil‘𝑌))
17 simpllr 776 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) → 𝐹:𝑋𝑌)
18 simprr 773 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) → ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )
1915, 16, 17, 18fmfnfm 22809 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) → ∃𝑓 ∈ (Fil‘𝑋)(𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))
20 r19.29 3166 . . . . . . . . . . . . 13 ((∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ∧ ∃𝑓 ∈ (Fil‘𝑋)(𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓))) → ∃𝑓 ∈ (Fil‘𝑋)((𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓))))
21 flimfcls 22877 . . . . . . . . . . . . . . . . . 18 (𝐽 fLim 𝑓) ⊆ (𝐽 fClus 𝑓)
22 simpll1 1214 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝐽 ∈ (TopOn‘𝑋))
2322ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝐽 ∈ (TopOn‘𝑋))
24 simprl 771 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝑓 ∈ (Fil‘𝑋))
25 simprrl 781 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝑔𝑓)
26 flimss2 22823 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝑔𝑓) → (𝐽 fLim 𝑔) ⊆ (𝐽 fLim 𝑓))
2723, 24, 25, 26syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → (𝐽 fLim 𝑔) ⊆ (𝐽 fLim 𝑓))
28 simprr 773 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝐴 ∈ (𝐽 fLim 𝑔))
2928ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝐴 ∈ (𝐽 fLim 𝑔))
3027, 29sseldd 3888 . . . . . . . . . . . . . . . . . 18 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝐴 ∈ (𝐽 fLim 𝑓))
3121, 30sseldi 3885 . . . . . . . . . . . . . . . . 17 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝐴 ∈ (𝐽 fClus 𝑓))
32 simpll2 1215 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝐾 ∈ (TopOn‘𝑌))
3332ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝐾 ∈ (TopOn‘𝑌))
34 simplr 769 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝐹:𝑋𝑌)
3534ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝐹:𝑋𝑌)
36 fcfval 22884 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐹:𝑋𝑌) → ((𝐾 fClusf 𝑓)‘𝐹) = (𝐾 fClus ((𝑌 FilMap 𝐹)‘𝑓)))
3733, 24, 35, 36syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → ((𝐾 fClusf 𝑓)‘𝐹) = (𝐾 fClus ((𝑌 FilMap 𝐹)‘𝑓)))
38 simprrr 782 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → = ((𝑌 FilMap 𝐹)‘𝑓))
3938oveq2d 7207 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → (𝐾 fClus ) = (𝐾 fClus ((𝑌 FilMap 𝐹)‘𝑓)))
4037, 39eqtr4d 2774 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → ((𝐾 fClusf 𝑓)‘𝐹) = (𝐾 fClus ))
4140eleq2d 2816 . . . . . . . . . . . . . . . . . 18 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → ((𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹) ↔ (𝐹𝐴) ∈ (𝐾 fClus )))
4241biimpd 232 . . . . . . . . . . . . . . . . 17 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → ((𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹) → (𝐹𝐴) ∈ (𝐾 fClus )))
4331, 42embantd 59 . . . . . . . . . . . . . . . 16 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → ((𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐹𝐴) ∈ (𝐾 fClus )))
4443expr 460 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ 𝑓 ∈ (Fil‘𝑋)) → ((𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)) → ((𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐹𝐴) ∈ (𝐾 fClus ))))
4544impcomd 415 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ 𝑓 ∈ (Fil‘𝑋)) → (((𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓))) → (𝐹𝐴) ∈ (𝐾 fClus )))
4645rexlimdva 3193 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) → (∃𝑓 ∈ (Fil‘𝑋)((𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓))) → (𝐹𝐴) ∈ (𝐾 fClus )))
4720, 46syl5 34 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) → ((∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ∧ ∃𝑓 ∈ (Fil‘𝑋)(𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓))) → (𝐹𝐴) ∈ (𝐾 fClus )))
4819, 47mpan2d 694 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐹𝐴) ∈ (𝐾 fClus )))
4948expr 460 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ∈ (Fil‘𝑌)) → (((𝑌 FilMap 𝐹)‘𝑔) ⊆ → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐹𝐴) ∈ (𝐾 fClus ))))
5049com23 86 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ∈ (Fil‘𝑌)) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (((𝑌 FilMap 𝐹)‘𝑔) ⊆ → (𝐹𝐴) ∈ (𝐾 fClus ))))
5150ralrimdva 3100 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → ∀ ∈ (Fil‘𝑌)(((𝑌 FilMap 𝐹)‘𝑔) ⊆ → (𝐹𝐴) ∈ (𝐾 fClus ))))
52 toponmax 21777 . . . . . . . . . . . . 13 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
5332, 52syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝑌𝐾)
54 simprl 771 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝑔 ∈ (Fil‘𝑋))
5554, 14syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝑔 ∈ (fBas‘𝑋))
56 fmfil 22795 . . . . . . . . . . . 12 ((𝑌𝐾𝑔 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋𝑌) → ((𝑌 FilMap 𝐹)‘𝑔) ∈ (Fil‘𝑌))
5753, 55, 34, 56syl3anc 1373 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → ((𝑌 FilMap 𝐹)‘𝑔) ∈ (Fil‘𝑌))
58 toponuni 21765 . . . . . . . . . . . . 13 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
5932, 58syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝑌 = 𝐾)
6059fveq2d 6699 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → (Fil‘𝑌) = (Fil‘ 𝐾))
6157, 60eleqtrd 2833 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → ((𝑌 FilMap 𝐹)‘𝑔) ∈ (Fil‘ 𝐾))
62 eqid 2736 . . . . . . . . . . 11 𝐾 = 𝐾
6362flimfnfcls 22879 . . . . . . . . . 10 (((𝑌 FilMap 𝐹)‘𝑔) ∈ (Fil‘ 𝐾) → ((𝐹𝐴) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝑔)) ↔ ∀ ∈ (Fil‘ 𝐾)(((𝑌 FilMap 𝐹)‘𝑔) ⊆ → (𝐹𝐴) ∈ (𝐾 fClus ))))
6461, 63syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → ((𝐹𝐴) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝑔)) ↔ ∀ ∈ (Fil‘ 𝐾)(((𝑌 FilMap 𝐹)‘𝑔) ⊆ → (𝐹𝐴) ∈ (𝐾 fClus ))))
65 flfval 22841 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑔 ∈ (Fil‘𝑋) ∧ 𝐹:𝑋𝑌) → ((𝐾 fLimf 𝑔)‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝑔)))
6632, 54, 34, 65syl3anc 1373 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → ((𝐾 fLimf 𝑔)‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝑔)))
6766eleq2d 2816 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹) ↔ (𝐹𝐴) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝑔))))
6860raleqdv 3315 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → (∀ ∈ (Fil‘𝑌)(((𝑌 FilMap 𝐹)‘𝑔) ⊆ → (𝐹𝐴) ∈ (𝐾 fClus )) ↔ ∀ ∈ (Fil‘ 𝐾)(((𝑌 FilMap 𝐹)‘𝑔) ⊆ → (𝐹𝐴) ∈ (𝐾 fClus ))))
6964, 67, 683bitr4d 314 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹) ↔ ∀ ∈ (Fil‘𝑌)(((𝑌 FilMap 𝐹)‘𝑔) ⊆ → (𝐹𝐴) ∈ (𝐾 fClus ))))
7051, 69sylibrd 262 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹)))
7170expr 460 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑔 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝑔) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹))))
7271com23 86 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑔 ∈ (Fil‘𝑋)) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐴 ∈ (𝐽 fLim 𝑔) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹))))
7372ralrimdva 3100 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → ∀𝑔 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑔) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹))))
7473imdistanda 575 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))) → (𝐹:𝑋𝑌 ∧ ∀𝑔 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑔) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹)))))
75 cnpflf 22852 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑔 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑔) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹)))))
7674, 75sylibrd 262 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)))
7712, 76impbid 215 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  wrex 3052  wss 3853   cuni 4805  wf 6354  cfv 6358  (class class class)co 7191  fBascfbas 20305  Topctop 21744  TopOnctopon 21761   CnP ccnp 22076  Filcfil 22696   FilMap cfm 22784   fLim cflim 22785   fLimf cflf 22786   fClus cfcls 22787   fClusf cfcf 22788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-1o 8180  df-er 8369  df-map 8488  df-en 8605  df-fin 8608  df-fi 9005  df-fbas 20314  df-fg 20315  df-top 21745  df-topon 21762  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-cnp 22079  df-fil 22697  df-fm 22789  df-flim 22790  df-flf 22791  df-fcls 22792  df-fcf 22793
This theorem is referenced by:  cnfcf  22893
  Copyright terms: Public domain W3C validator