Step | Hyp | Ref
| Expression |
1 | | fzo0ss1 13345 |
. . . . . . . . 9
⊢
(1..^𝐾) ⊆
(0..^𝐾) |
2 | | fzossfz 13334 |
. . . . . . . . 9
⊢
(0..^𝐾) ⊆
(0...𝐾) |
3 | 1, 2 | sstri 3926 |
. . . . . . . 8
⊢
(1..^𝐾) ⊆
(0...𝐾) |
4 | | fssres 6624 |
. . . . . . . 8
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ (1..^𝐾) ⊆ (0...𝐾)) → (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉) |
5 | 3, 4 | mpan2 687 |
. . . . . . 7
⊢ (𝐹:(0...𝐾)⟶𝑉 → (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉) |
6 | 5 | biantrud 531 |
. . . . . 6
⊢ (𝐹:(0...𝐾)⟶𝑉 → (Fun ◡(𝐹 ↾ (1..^𝐾)) ↔ (Fun ◡(𝐹 ↾ (1..^𝐾)) ∧ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉))) |
7 | | ancom 460 |
. . . . . . 7
⊢ ((Fun
◡(𝐹 ↾ (1..^𝐾)) ∧ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉) ↔ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉 ∧ Fun ◡(𝐹 ↾ (1..^𝐾)))) |
8 | | df-f1 6423 |
. . . . . . 7
⊢ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1→𝑉 ↔ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉 ∧ Fun ◡(𝐹 ↾ (1..^𝐾)))) |
9 | 7, 8 | bitr4i 277 |
. . . . . 6
⊢ ((Fun
◡(𝐹 ↾ (1..^𝐾)) ∧ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉) ↔ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1→𝑉) |
10 | 6, 9 | bitrdi 286 |
. . . . 5
⊢ (𝐹:(0...𝐾)⟶𝑉 → (Fun ◡(𝐹 ↾ (1..^𝐾)) ↔ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1→𝑉)) |
11 | | simp-4r 780 |
. . . . . . . . 9
⊢
((((((𝐹 ↾
(1..^𝐾)):(1..^𝐾)–1-1→𝑉 ∧ 𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → 𝐹:(0...𝐾)⟶𝑉) |
12 | | dff13 7109 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1→𝑉 ↔ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉 ∧ ∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤))) |
13 | | fveqeq2 6765 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 = 𝑥 → (((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) ↔ ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤))) |
14 | | equequ1 2029 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 = 𝑥 → (𝑣 = 𝑤 ↔ 𝑥 = 𝑤)) |
15 | 13, 14 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 = 𝑥 → ((((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) ↔ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑥 = 𝑤))) |
16 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = 𝑦 → ((𝐹 ↾ (1..^𝐾))‘𝑤) = ((𝐹 ↾ (1..^𝐾))‘𝑦)) |
17 | 16 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 𝑦 → (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤) ↔ ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦))) |
18 | | equequ2 2030 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 𝑦 → (𝑥 = 𝑤 ↔ 𝑥 = 𝑦)) |
19 | 17, 18 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑦 → ((((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑥 = 𝑤) ↔ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦))) |
20 | 15, 19 | rspc2va 3563 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ ∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤)) → (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)) |
21 | | fvres 6775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 ∈ (1..^𝐾) → ((𝐹 ↾ (1..^𝐾))‘𝑥) = (𝐹‘𝑥)) |
22 | 21 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 ∈ (1..^𝐾) → (𝐹‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑥)) |
23 | | fvres 6775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 ∈ (1..^𝐾) → ((𝐹 ↾ (1..^𝐾))‘𝑦) = (𝐹‘𝑦)) |
24 | 23 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ (1..^𝐾) → (𝐹‘𝑦) = ((𝐹 ↾ (1..^𝐾))‘𝑦)) |
25 | 22, 24 | eqeqan12d 2752 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦))) |
26 | 25 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦))) |
27 | 26 | imim1d 82 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
28 | 27 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
29 | 28 | 2a1d 26 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)))) |
30 | 29 | 2a1d 26 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)))))) |
31 | 30 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦) → ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))))))) |
32 | 20, 31 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ ∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤)) → ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))))))) |
33 | 32 | ex 412 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)))))))) |
34 | 33 | pm2.43a 54 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))))))) |
35 | | ianor 978 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
(𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ↔ (¬ 𝑥 ∈ (1..^𝐾) ∨ ¬ 𝑦 ∈ (1..^𝐾))) |
36 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝐹‘𝑦) = (𝐹‘𝑥)) |
37 | | injresinjlem 13435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (¬
𝑥 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾)) → ((𝐹‘𝑦) = (𝐹‘𝑥) → 𝑦 = 𝑥)))))) |
38 | 37 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((¬
𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾)) → ((𝐹‘𝑦) = (𝐹‘𝑥) → 𝑦 = 𝑥))))) |
39 | 38 | imp41 425 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((¬ 𝑥 ∈
(1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) ∧ (𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾))) → ((𝐹‘𝑦) = (𝐹‘𝑥) → 𝑦 = 𝑥)) |
40 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) |
41 | 39, 40 | syl6ib 250 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((¬ 𝑥 ∈
(1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) ∧ (𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾))) → ((𝐹‘𝑦) = (𝐹‘𝑥) → 𝑥 = 𝑦)) |
42 | 36, 41 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((¬ 𝑥 ∈
(1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) ∧ (𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
43 | 42 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((¬
𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ((𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
44 | 43 | ancomsd 465 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((¬
𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
45 | 44 | exp41 434 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝑥 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)))))) |
46 | | injresinjlem 13435 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝑦 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)))))) |
47 | 45, 46 | jaoi 853 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((¬
𝑥 ∈ (1..^𝐾) ∨ ¬ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)))))) |
48 | 47 | a1d 25 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((¬
𝑥 ∈ (1..^𝐾) ∨ ¬ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))))))) |
49 | 35, 48 | sylbi 216 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
(𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))))))) |
50 | 34, 49 | pm2.61i 182 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑣 ∈
(1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)))))) |
51 | 50 | imp41 425 |
. . . . . . . . . . . . . . . . 17
⊢
((((∀𝑣 ∈
(1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
52 | 51 | ralrimivv 3113 |
. . . . . . . . . . . . . . . 16
⊢
((((∀𝑣 ∈
(1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
53 | 52 | exp41 434 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑣 ∈
(1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))))) |
54 | 12, 53 | simplbiim 504 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1→𝑉 → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))))) |
55 | 54 | com13 88 |
. . . . . . . . . . . . 13
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1→𝑉 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))))) |
56 | 55 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝐹:(0...𝐾)⟶𝑉 → (𝐾 ∈ ℕ0 → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1→𝑉 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)))))) |
57 | 56 | com24 95 |
. . . . . . . . . . 11
⊢ (𝐹:(0...𝐾)⟶𝑉 → ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1→𝑉 → ((𝐹‘0) ≠ (𝐹‘𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)))))) |
58 | 57 | impcom 407 |
. . . . . . . . . 10
⊢ (((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1→𝑉 ∧ 𝐹:(0...𝐾)⟶𝑉) → ((𝐹‘0) ≠ (𝐹‘𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))))) |
59 | 58 | imp41 425 |
. . . . . . . . 9
⊢
((((((𝐹 ↾
(1..^𝐾)):(1..^𝐾)–1-1→𝑉 ∧ 𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
60 | | dff13 7109 |
. . . . . . . . 9
⊢ (𝐹:(0...𝐾)–1-1→𝑉 ↔ (𝐹:(0...𝐾)⟶𝑉 ∧ ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
61 | 11, 59, 60 | sylanbrc 582 |
. . . . . . . 8
⊢
((((((𝐹 ↾
(1..^𝐾)):(1..^𝐾)–1-1→𝑉 ∧ 𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → 𝐹:(0...𝐾)–1-1→𝑉) |
62 | 11 | biantrurd 532 |
. . . . . . . . 9
⊢
((((((𝐹 ↾
(1..^𝐾)):(1..^𝐾)–1-1→𝑉 ∧ 𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → (Fun ◡𝐹 ↔ (𝐹:(0...𝐾)⟶𝑉 ∧ Fun ◡𝐹))) |
63 | | df-f1 6423 |
. . . . . . . . 9
⊢ (𝐹:(0...𝐾)–1-1→𝑉 ↔ (𝐹:(0...𝐾)⟶𝑉 ∧ Fun ◡𝐹)) |
64 | 62, 63 | bitr4di 288 |
. . . . . . . 8
⊢
((((((𝐹 ↾
(1..^𝐾)):(1..^𝐾)–1-1→𝑉 ∧ 𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → (Fun ◡𝐹 ↔ 𝐹:(0...𝐾)–1-1→𝑉)) |
65 | 61, 64 | mpbird 256 |
. . . . . . 7
⊢
((((((𝐹 ↾
(1..^𝐾)):(1..^𝐾)–1-1→𝑉 ∧ 𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → Fun ◡𝐹) |
66 | 65 | ex 412 |
. . . . . 6
⊢
(((((𝐹 ↾
(1..^𝐾)):(1..^𝐾)–1-1→𝑉 ∧ 𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun ◡𝐹)) |
67 | 66 | exp41 434 |
. . . . 5
⊢ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1→𝑉 → (𝐹:(0...𝐾)⟶𝑉 → ((𝐹‘0) ≠ (𝐹‘𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun ◡𝐹))))) |
68 | 10, 67 | syl6bi 252 |
. . . 4
⊢ (𝐹:(0...𝐾)⟶𝑉 → (Fun ◡(𝐹 ↾ (1..^𝐾)) → (𝐹:(0...𝐾)⟶𝑉 → ((𝐹‘0) ≠ (𝐹‘𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun ◡𝐹)))))) |
69 | 68 | pm2.43a 54 |
. . 3
⊢ (𝐹:(0...𝐾)⟶𝑉 → (Fun ◡(𝐹 ↾ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹‘𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun ◡𝐹))))) |
70 | 69 | 3imp 1109 |
. 2
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ Fun ◡(𝐹 ↾ (1..^𝐾)) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun ◡𝐹))) |
71 | 70 | com12 32 |
1
⊢ (𝐾 ∈ ℕ0
→ ((𝐹:(0...𝐾)⟶𝑉 ∧ Fun ◡(𝐹 ↾ (1..^𝐾)) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun ◡𝐹))) |