MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  injresinj Structured version   Visualization version   GIF version

Theorem injresinj 13153
Description: A function whose restriction is injective and the values of the remaining arguments are different from all other values is injective itself. (Contributed by Alexander van der Vekens, 31-Oct-2017.)
Assertion
Ref Expression
injresinj (𝐾 ∈ ℕ0 → ((𝐹:(0...𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹‘0) ≠ (𝐹𝐾)) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))

Proof of Theorem injresinj
Dummy variables 𝑣 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzo0ss1 13062 . . . . . . . . 9 (1..^𝐾) ⊆ (0..^𝐾)
2 fzossfz 13051 . . . . . . . . 9 (0..^𝐾) ⊆ (0...𝐾)
31, 2sstri 3924 . . . . . . . 8 (1..^𝐾) ⊆ (0...𝐾)
4 fssres 6518 . . . . . . . 8 ((𝐹:(0...𝐾)⟶𝑉 ∧ (1..^𝐾) ⊆ (0...𝐾)) → (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉)
53, 4mpan2 690 . . . . . . 7 (𝐹:(0...𝐾)⟶𝑉 → (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉)
65biantrud 535 . . . . . 6 (𝐹:(0...𝐾)⟶𝑉 → (Fun (𝐹 ↾ (1..^𝐾)) ↔ (Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉)))
7 ancom 464 . . . . . . 7 ((Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉) ↔ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾))))
8 df-f1 6329 . . . . . . 7 ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 ↔ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾))))
97, 8bitr4i 281 . . . . . 6 ((Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉) ↔ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉)
106, 9syl6bb 290 . . . . 5 (𝐹:(0...𝐾)⟶𝑉 → (Fun (𝐹 ↾ (1..^𝐾)) ↔ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉))
11 simp-4r 783 . . . . . . . . 9 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → 𝐹:(0...𝐾)⟶𝑉)
12 dff13 6991 . . . . . . . . . . . . . . 15 ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 ↔ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉 ∧ ∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤)))
13 fveqeq2 6654 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = 𝑥 → (((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) ↔ ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤)))
14 equequ1 2032 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = 𝑥 → (𝑣 = 𝑤𝑥 = 𝑤))
1513, 14imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝑥 → ((((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) ↔ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑥 = 𝑤)))
16 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑦 → ((𝐹 ↾ (1..^𝐾))‘𝑤) = ((𝐹 ↾ (1..^𝐾))‘𝑦))
1716eqeq2d 2809 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑦 → (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤) ↔ ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦)))
18 equequ2 2033 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑦 → (𝑥 = 𝑤𝑥 = 𝑦))
1917, 18imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑦 → ((((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑥 = 𝑤) ↔ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)))
2015, 19rspc2va 3582 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ ∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤)) → (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦))
21 fvres 6664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ (1..^𝐾) → ((𝐹 ↾ (1..^𝐾))‘𝑥) = (𝐹𝑥))
2221eqcomd 2804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ (1..^𝐾) → (𝐹𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑥))
23 fvres 6664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (1..^𝐾) → ((𝐹 ↾ (1..^𝐾))‘𝑦) = (𝐹𝑦))
2423eqcomd 2804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (1..^𝐾) → (𝐹𝑦) = ((𝐹 ↾ (1..^𝐾))‘𝑦))
2522, 24eqeqan12d 2815 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦)))
2625biimpd 232 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦)))
2726imim1d 82 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
2827imp 410 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
29282a1d 26 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
30292a1d 26 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
3130expcom 417 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦) → ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
3220, 31syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ ∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤)) → ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
3332ex 416 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))))
3433pm2.43a 54 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
35 ianor 979 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ↔ (¬ 𝑥 ∈ (1..^𝐾) ∨ ¬ 𝑦 ∈ (1..^𝐾)))
36 eqcom 2805 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐹𝑥) = (𝐹𝑦) ↔ (𝐹𝑦) = (𝐹𝑥))
37 injresinjlem 13152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑥 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾)) → ((𝐹𝑦) = (𝐹𝑥) → 𝑦 = 𝑥))))))
3837imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾)) → ((𝐹𝑦) = (𝐹𝑥) → 𝑦 = 𝑥)))))
3938imp41 429 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) ∧ (𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾))) → ((𝐹𝑦) = (𝐹𝑥) → 𝑦 = 𝑥))
40 eqcom 2805 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = 𝑥𝑥 = 𝑦)
4139, 40syl6ib 254 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) ∧ (𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾))) → ((𝐹𝑦) = (𝐹𝑥) → 𝑥 = 𝑦))
4236, 41syl5bi 245 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) ∧ (𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
4342ex 416 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ((𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
4443ancomsd 469 . . . . . . . . . . . . . . . . . . . . . . 23 ((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
4544exp41 438 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
46 injresinjlem 13152 . . . . . . . . . . . . . . . . . . . . . 22 𝑦 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
4745, 46jaoi 854 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝑥 ∈ (1..^𝐾) ∨ ¬ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
4847a1d 25 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝑥 ∈ (1..^𝐾) ∨ ¬ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
4935, 48sylbi 220 . . . . . . . . . . . . . . . . . . 19 (¬ (𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
5034, 49pm2.61i 185 . . . . . . . . . . . . . . . . . 18 (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
5150imp41 429 . . . . . . . . . . . . . . . . 17 ((((∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
5251ralrimivv 3155 . . . . . . . . . . . . . . . 16 ((((∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
5352exp41 438 . . . . . . . . . . . . . . 15 (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
5412, 53simplbiim 508 . . . . . . . . . . . . . 14 ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
5554com13 88 . . . . . . . . . . . . 13 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
5655ex 416 . . . . . . . . . . . 12 (𝐹:(0...𝐾)⟶𝑉 → (𝐾 ∈ ℕ0 → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
5756com24 95 . . . . . . . . . . 11 (𝐹:(0...𝐾)⟶𝑉 → ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
5857impcom 411 . . . . . . . . . 10 (((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
5958imp41 429 . . . . . . . . 9 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
60 dff13 6991 . . . . . . . . 9 (𝐹:(0...𝐾)–1-1𝑉 ↔ (𝐹:(0...𝐾)⟶𝑉 ∧ ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6111, 59, 60sylanbrc 586 . . . . . . . 8 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → 𝐹:(0...𝐾)–1-1𝑉)
6211biantrurd 536 . . . . . . . . 9 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → (Fun 𝐹 ↔ (𝐹:(0...𝐾)⟶𝑉 ∧ Fun 𝐹)))
63 df-f1 6329 . . . . . . . . 9 (𝐹:(0...𝐾)–1-1𝑉 ↔ (𝐹:(0...𝐾)⟶𝑉 ∧ Fun 𝐹))
6462, 63syl6bbr 292 . . . . . . . 8 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → (Fun 𝐹𝐹:(0...𝐾)–1-1𝑉))
6561, 64mpbird 260 . . . . . . 7 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → Fun 𝐹)
6665ex 416 . . . . . 6 (((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹))
6766exp41 438 . . . . 5 ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → (𝐹:(0...𝐾)⟶𝑉 → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))))
6810, 67syl6bi 256 . . . 4 (𝐹:(0...𝐾)⟶𝑉 → (Fun (𝐹 ↾ (1..^𝐾)) → (𝐹:(0...𝐾)⟶𝑉 → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹))))))
6968pm2.43a 54 . . 3 (𝐹:(0...𝐾)⟶𝑉 → (Fun (𝐹 ↾ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))))
70693imp 1108 . 2 ((𝐹:(0...𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹‘0) ≠ (𝐹𝐾)) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))
7170com12 32 1 (𝐾 ∈ ℕ0 → ((𝐹:(0...𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹‘0) ≠ (𝐹𝐾)) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  cin 3880  wss 3881  c0 4243  {cpr 4527  ccnv 5518  cres 5521  cima 5522  Fun wfun 6318  wf 6320  1-1wf1 6321  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527  0cn0 11885  ...cfz 12885  ..^cfzo 13028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029
This theorem is referenced by:  pthdepisspth  27524
  Copyright terms: Public domain W3C validator