MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  injresinj Structured version   Visualization version   GIF version

Theorem injresinj 13823
Description: A function whose restriction is injective and the values of the remaining arguments are different from all other values is injective itself. (Contributed by Alexander van der Vekens, 31-Oct-2017.)
Assertion
Ref Expression
injresinj (𝐾 ∈ ℕ0 → ((𝐹:(0...𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹‘0) ≠ (𝐹𝐾)) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))

Proof of Theorem injresinj
Dummy variables 𝑣 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzo0ss1 13725 . . . . . . . . 9 (1..^𝐾) ⊆ (0..^𝐾)
2 fzossfz 13714 . . . . . . . . 9 (0..^𝐾) ⊆ (0...𝐾)
31, 2sstri 4004 . . . . . . . 8 (1..^𝐾) ⊆ (0...𝐾)
4 fssres 6774 . . . . . . . 8 ((𝐹:(0...𝐾)⟶𝑉 ∧ (1..^𝐾) ⊆ (0...𝐾)) → (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉)
53, 4mpan2 691 . . . . . . 7 (𝐹:(0...𝐾)⟶𝑉 → (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉)
65biantrud 531 . . . . . 6 (𝐹:(0...𝐾)⟶𝑉 → (Fun (𝐹 ↾ (1..^𝐾)) ↔ (Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉)))
7 ancom 460 . . . . . . 7 ((Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉) ↔ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾))))
8 df-f1 6567 . . . . . . 7 ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 ↔ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾))))
97, 8bitr4i 278 . . . . . 6 ((Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉) ↔ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉)
106, 9bitrdi 287 . . . . 5 (𝐹:(0...𝐾)⟶𝑉 → (Fun (𝐹 ↾ (1..^𝐾)) ↔ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉))
11 simp-4r 784 . . . . . . . . 9 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → 𝐹:(0...𝐾)⟶𝑉)
12 dff13 7274 . . . . . . . . . . . . . . 15 ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 ↔ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉 ∧ ∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤)))
13 fveqeq2 6915 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = 𝑥 → (((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) ↔ ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤)))
14 equequ1 2021 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = 𝑥 → (𝑣 = 𝑤𝑥 = 𝑤))
1513, 14imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝑥 → ((((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) ↔ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑥 = 𝑤)))
16 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑦 → ((𝐹 ↾ (1..^𝐾))‘𝑤) = ((𝐹 ↾ (1..^𝐾))‘𝑦))
1716eqeq2d 2745 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑦 → (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤) ↔ ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦)))
18 equequ2 2022 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑦 → (𝑥 = 𝑤𝑥 = 𝑦))
1917, 18imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑦 → ((((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑥 = 𝑤) ↔ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)))
2015, 19rspc2va 3633 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ ∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤)) → (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦))
21 fvres 6925 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ (1..^𝐾) → ((𝐹 ↾ (1..^𝐾))‘𝑥) = (𝐹𝑥))
2221eqcomd 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ (1..^𝐾) → (𝐹𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑥))
23 fvres 6925 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (1..^𝐾) → ((𝐹 ↾ (1..^𝐾))‘𝑦) = (𝐹𝑦))
2423eqcomd 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (1..^𝐾) → (𝐹𝑦) = ((𝐹 ↾ (1..^𝐾))‘𝑦))
2522, 24eqeqan12d 2748 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦)))
2625biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦)))
2726imim1d 82 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
2827imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
29282a1d 26 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
30292a1d 26 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
3130expcom 413 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦) → ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
3220, 31syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ ∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤)) → ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
3332ex 412 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))))
3433pm2.43a 54 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
35 ianor 983 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ↔ (¬ 𝑥 ∈ (1..^𝐾) ∨ ¬ 𝑦 ∈ (1..^𝐾)))
36 eqcom 2741 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐹𝑥) = (𝐹𝑦) ↔ (𝐹𝑦) = (𝐹𝑥))
37 injresinjlem 13822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑥 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾)) → ((𝐹𝑦) = (𝐹𝑥) → 𝑦 = 𝑥))))))
3837imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾)) → ((𝐹𝑦) = (𝐹𝑥) → 𝑦 = 𝑥)))))
3938imp41 425 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) ∧ (𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾))) → ((𝐹𝑦) = (𝐹𝑥) → 𝑦 = 𝑥))
40 eqcom 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = 𝑥𝑥 = 𝑦)
4139, 40imbitrdi 251 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) ∧ (𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾))) → ((𝐹𝑦) = (𝐹𝑥) → 𝑥 = 𝑦))
4236, 41biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) ∧ (𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
4342ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ((𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
4443ancomsd 465 . . . . . . . . . . . . . . . . . . . . . . 23 ((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
4544exp41 434 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
46 injresinjlem 13822 . . . . . . . . . . . . . . . . . . . . . 22 𝑦 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
4745, 46jaoi 857 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝑥 ∈ (1..^𝐾) ∨ ¬ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
4847a1d 25 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝑥 ∈ (1..^𝐾) ∨ ¬ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
4935, 48sylbi 217 . . . . . . . . . . . . . . . . . . 19 (¬ (𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
5034, 49pm2.61i 182 . . . . . . . . . . . . . . . . . 18 (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
5150imp41 425 . . . . . . . . . . . . . . . . 17 ((((∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
5251ralrimivv 3197 . . . . . . . . . . . . . . . 16 ((((∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
5352exp41 434 . . . . . . . . . . . . . . 15 (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
5412, 53simplbiim 504 . . . . . . . . . . . . . 14 ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
5554com13 88 . . . . . . . . . . . . 13 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
5655ex 412 . . . . . . . . . . . 12 (𝐹:(0...𝐾)⟶𝑉 → (𝐾 ∈ ℕ0 → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
5756com24 95 . . . . . . . . . . 11 (𝐹:(0...𝐾)⟶𝑉 → ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
5857impcom 407 . . . . . . . . . 10 (((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
5958imp41 425 . . . . . . . . 9 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
60 dff13 7274 . . . . . . . . 9 (𝐹:(0...𝐾)–1-1𝑉 ↔ (𝐹:(0...𝐾)⟶𝑉 ∧ ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6111, 59, 60sylanbrc 583 . . . . . . . 8 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → 𝐹:(0...𝐾)–1-1𝑉)
6211biantrurd 532 . . . . . . . . 9 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → (Fun 𝐹 ↔ (𝐹:(0...𝐾)⟶𝑉 ∧ Fun 𝐹)))
63 df-f1 6567 . . . . . . . . 9 (𝐹:(0...𝐾)–1-1𝑉 ↔ (𝐹:(0...𝐾)⟶𝑉 ∧ Fun 𝐹))
6462, 63bitr4di 289 . . . . . . . 8 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → (Fun 𝐹𝐹:(0...𝐾)–1-1𝑉))
6561, 64mpbird 257 . . . . . . 7 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → Fun 𝐹)
6665ex 412 . . . . . 6 (((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹))
6766exp41 434 . . . . 5 ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → (𝐹:(0...𝐾)⟶𝑉 → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))))
6810, 67biimtrdi 253 . . . 4 (𝐹:(0...𝐾)⟶𝑉 → (Fun (𝐹 ↾ (1..^𝐾)) → (𝐹:(0...𝐾)⟶𝑉 → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹))))))
6968pm2.43a 54 . . 3 (𝐹:(0...𝐾)⟶𝑉 → (Fun (𝐹 ↾ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))))
70693imp 1110 . 2 ((𝐹:(0...𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹‘0) ≠ (𝐹𝐾)) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))
7170com12 32 1 (𝐾 ∈ ℕ0 → ((𝐹:(0...𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹‘0) ≠ (𝐹𝐾)) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  cin 3961  wss 3962  c0 4338  {cpr 4632  ccnv 5687  cres 5690  cima 5691  Fun wfun 6556  wf 6558  1-1wf1 6559  cfv 6562  (class class class)co 7430  0cc0 11152  1c1 11153  0cn0 12523  ...cfz 13543  ..^cfzo 13690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691
This theorem is referenced by:  pthdepisspth  29767
  Copyright terms: Public domain W3C validator