MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  injresinj Structured version   Visualization version   GIF version

Theorem injresinj 13506
Description: A function whose restriction is injective and the values of the remaining arguments are different from all other values is injective itself. (Contributed by Alexander van der Vekens, 31-Oct-2017.)
Assertion
Ref Expression
injresinj (𝐾 ∈ ℕ0 → ((𝐹:(0...𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹‘0) ≠ (𝐹𝐾)) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))

Proof of Theorem injresinj
Dummy variables 𝑣 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzo0ss1 13415 . . . . . . . . 9 (1..^𝐾) ⊆ (0..^𝐾)
2 fzossfz 13404 . . . . . . . . 9 (0..^𝐾) ⊆ (0...𝐾)
31, 2sstri 3935 . . . . . . . 8 (1..^𝐾) ⊆ (0...𝐾)
4 fssres 6638 . . . . . . . 8 ((𝐹:(0...𝐾)⟶𝑉 ∧ (1..^𝐾) ⊆ (0...𝐾)) → (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉)
53, 4mpan2 688 . . . . . . 7 (𝐹:(0...𝐾)⟶𝑉 → (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉)
65biantrud 532 . . . . . 6 (𝐹:(0...𝐾)⟶𝑉 → (Fun (𝐹 ↾ (1..^𝐾)) ↔ (Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉)))
7 ancom 461 . . . . . . 7 ((Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉) ↔ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾))))
8 df-f1 6437 . . . . . . 7 ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 ↔ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾))))
97, 8bitr4i 277 . . . . . 6 ((Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉) ↔ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉)
106, 9bitrdi 287 . . . . 5 (𝐹:(0...𝐾)⟶𝑉 → (Fun (𝐹 ↾ (1..^𝐾)) ↔ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉))
11 simp-4r 781 . . . . . . . . 9 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → 𝐹:(0...𝐾)⟶𝑉)
12 dff13 7125 . . . . . . . . . . . . . . 15 ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 ↔ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉 ∧ ∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤)))
13 fveqeq2 6780 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = 𝑥 → (((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) ↔ ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤)))
14 equequ1 2032 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = 𝑥 → (𝑣 = 𝑤𝑥 = 𝑤))
1513, 14imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝑥 → ((((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) ↔ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑥 = 𝑤)))
16 fveq2 6771 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑦 → ((𝐹 ↾ (1..^𝐾))‘𝑤) = ((𝐹 ↾ (1..^𝐾))‘𝑦))
1716eqeq2d 2751 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑦 → (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤) ↔ ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦)))
18 equequ2 2033 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑦 → (𝑥 = 𝑤𝑥 = 𝑦))
1917, 18imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑦 → ((((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑥 = 𝑤) ↔ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)))
2015, 19rspc2va 3572 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ ∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤)) → (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦))
21 fvres 6790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ (1..^𝐾) → ((𝐹 ↾ (1..^𝐾))‘𝑥) = (𝐹𝑥))
2221eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ (1..^𝐾) → (𝐹𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑥))
23 fvres 6790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (1..^𝐾) → ((𝐹 ↾ (1..^𝐾))‘𝑦) = (𝐹𝑦))
2423eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (1..^𝐾) → (𝐹𝑦) = ((𝐹 ↾ (1..^𝐾))‘𝑦))
2522, 24eqeqan12d 2754 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦)))
2625biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦)))
2726imim1d 82 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
2827imp 407 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
29282a1d 26 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
30292a1d 26 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
3130expcom 414 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦) → ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
3220, 31syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ ∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤)) → ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
3332ex 413 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))))
3433pm2.43a 54 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
35 ianor 979 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ↔ (¬ 𝑥 ∈ (1..^𝐾) ∨ ¬ 𝑦 ∈ (1..^𝐾)))
36 eqcom 2747 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐹𝑥) = (𝐹𝑦) ↔ (𝐹𝑦) = (𝐹𝑥))
37 injresinjlem 13505 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑥 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾)) → ((𝐹𝑦) = (𝐹𝑥) → 𝑦 = 𝑥))))))
3837imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾)) → ((𝐹𝑦) = (𝐹𝑥) → 𝑦 = 𝑥)))))
3938imp41 426 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) ∧ (𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾))) → ((𝐹𝑦) = (𝐹𝑥) → 𝑦 = 𝑥))
40 eqcom 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = 𝑥𝑥 = 𝑦)
4139, 40syl6ib 250 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) ∧ (𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾))) → ((𝐹𝑦) = (𝐹𝑥) → 𝑥 = 𝑦))
4236, 41syl5bi 241 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) ∧ (𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
4342ex 413 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ((𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
4443ancomsd 466 . . . . . . . . . . . . . . . . . . . . . . 23 ((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
4544exp41 435 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
46 injresinjlem 13505 . . . . . . . . . . . . . . . . . . . . . 22 𝑦 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
4745, 46jaoi 854 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝑥 ∈ (1..^𝐾) ∨ ¬ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
4847a1d 25 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝑥 ∈ (1..^𝐾) ∨ ¬ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
4935, 48sylbi 216 . . . . . . . . . . . . . . . . . . 19 (¬ (𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
5034, 49pm2.61i 182 . . . . . . . . . . . . . . . . . 18 (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
5150imp41 426 . . . . . . . . . . . . . . . . 17 ((((∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
5251ralrimivv 3116 . . . . . . . . . . . . . . . 16 ((((∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
5352exp41 435 . . . . . . . . . . . . . . 15 (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
5412, 53simplbiim 505 . . . . . . . . . . . . . 14 ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
5554com13 88 . . . . . . . . . . . . 13 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
5655ex 413 . . . . . . . . . . . 12 (𝐹:(0...𝐾)⟶𝑉 → (𝐾 ∈ ℕ0 → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
5756com24 95 . . . . . . . . . . 11 (𝐹:(0...𝐾)⟶𝑉 → ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
5857impcom 408 . . . . . . . . . 10 (((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
5958imp41 426 . . . . . . . . 9 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
60 dff13 7125 . . . . . . . . 9 (𝐹:(0...𝐾)–1-1𝑉 ↔ (𝐹:(0...𝐾)⟶𝑉 ∧ ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6111, 59, 60sylanbrc 583 . . . . . . . 8 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → 𝐹:(0...𝐾)–1-1𝑉)
6211biantrurd 533 . . . . . . . . 9 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → (Fun 𝐹 ↔ (𝐹:(0...𝐾)⟶𝑉 ∧ Fun 𝐹)))
63 df-f1 6437 . . . . . . . . 9 (𝐹:(0...𝐾)–1-1𝑉 ↔ (𝐹:(0...𝐾)⟶𝑉 ∧ Fun 𝐹))
6462, 63bitr4di 289 . . . . . . . 8 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → (Fun 𝐹𝐹:(0...𝐾)–1-1𝑉))
6561, 64mpbird 256 . . . . . . 7 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → Fun 𝐹)
6665ex 413 . . . . . 6 (((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹))
6766exp41 435 . . . . 5 ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → (𝐹:(0...𝐾)⟶𝑉 → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))))
6810, 67syl6bi 252 . . . 4 (𝐹:(0...𝐾)⟶𝑉 → (Fun (𝐹 ↾ (1..^𝐾)) → (𝐹:(0...𝐾)⟶𝑉 → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹))))))
6968pm2.43a 54 . . 3 (𝐹:(0...𝐾)⟶𝑉 → (Fun (𝐹 ↾ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))))
70693imp 1110 . 2 ((𝐹:(0...𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹‘0) ≠ (𝐹𝐾)) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))
7170com12 32 1 (𝐾 ∈ ℕ0 → ((𝐹:(0...𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹‘0) ≠ (𝐹𝐾)) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wral 3066  cin 3891  wss 3892  c0 4262  {cpr 4569  ccnv 5589  cres 5592  cima 5593  Fun wfun 6426  wf 6428  1-1wf1 6429  cfv 6432  (class class class)co 7271  0cc0 10872  1c1 10873  0cn0 12233  ...cfz 13238  ..^cfzo 13381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12582  df-fz 13239  df-fzo 13382
This theorem is referenced by:  pthdepisspth  28099
  Copyright terms: Public domain W3C validator