MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdswrd Structured version   Visualization version   GIF version

Theorem swrdswrd 14670
Description: A subword of a subword is a subword. (Contributed by Alexander van der Vekens, 4-Apr-2018.)
Assertion
Ref Expression
swrdswrd ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)))

Proof of Theorem swrdswrd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 swrdcl 14610 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
213ad2ant1 1133 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
32adantr 480 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
4 elfz0ubfz0 13593 . . . . 5 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → 𝐾 ∈ (0...𝐿))
54adantl 481 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → 𝐾 ∈ (0...𝐿))
6 elfzuz 13481 . . . . . . . . 9 (𝐾 ∈ (0...(𝑁𝑀)) → 𝐾 ∈ (ℤ‘0))
76adantl 481 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐾 ∈ (0...(𝑁𝑀))) → 𝐾 ∈ (ℤ‘0))
8 fzss1 13524 . . . . . . . 8 (𝐾 ∈ (ℤ‘0) → (𝐾...(𝑁𝑀)) ⊆ (0...(𝑁𝑀)))
97, 8syl 17 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐾 ∈ (0...(𝑁𝑀))) → (𝐾...(𝑁𝑀)) ⊆ (0...(𝑁𝑀)))
109sseld 3945 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐾 ∈ (0...(𝑁𝑀))) → (𝐿 ∈ (𝐾...(𝑁𝑀)) → 𝐿 ∈ (0...(𝑁𝑀))))
1110impr 454 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → 𝐿 ∈ (0...(𝑁𝑀)))
12 3ancomb 1098 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ↔ (𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
1312biimpi 216 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
1413adantr 480 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
15 swrdlen 14612 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (𝑁𝑀))
1614, 15syl 17 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (𝑁𝑀))
1716oveq2d 7403 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (0...(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩))) = (0...(𝑁𝑀)))
1811, 17eleqtrrd 2831 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → 𝐿 ∈ (0...(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩))))
19 swrdval2 14611 . . . 4 (((𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉𝐾 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))))
203, 5, 18, 19syl3anc 1373 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))))
21 fvex 6871 . . . . . 6 ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)) ∈ V
22 eqid 2729 . . . . . 6 (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)))
2321, 22fnmpti 6661 . . . . 5 (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) Fn (0..^(𝐿𝐾))
2423a1i 11 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) Fn (0..^(𝐿𝐾)))
25 swrdswrdlem 14669 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))))
26 swrdvalfn 14616 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
2725, 26syl 17 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
28 elfzelz 13485 . . . . . . . . . 10 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ)
29 elfzelz 13485 . . . . . . . . . . 11 (𝐿 ∈ (𝐾...(𝑁𝑀)) → 𝐿 ∈ ℤ)
30 elfzelz 13485 . . . . . . . . . . 11 (𝐾 ∈ (0...(𝑁𝑀)) → 𝐾 ∈ ℤ)
31 zcn 12534 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
3231adantr 480 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝑀 ∈ ℂ)
33 zcn 12534 . . . . . . . . . . . . . 14 (𝐿 ∈ ℤ → 𝐿 ∈ ℂ)
3433ad2antrl 728 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝐿 ∈ ℂ)
35 zcn 12534 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
3635ad2antll 729 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℂ)
37 pnpcan 11461 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑀 + 𝐿) − (𝑀 + 𝐾)) = (𝐿𝐾))
3837eqcomd 2735 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
3932, 34, 36, 38syl3anc 1373 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
4039expcom 413 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
4129, 30, 40syl2anr 597 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
4228, 41syl5com 31 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
43423ad2ant3 1135 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
4443imp 406 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
4544oveq2d 7403 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (0..^(𝐿𝐾)) = (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
4645fneq2d 6612 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → ((𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^(𝐿𝐾)) ↔ (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
4727, 46mpbird 257 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^(𝐿𝐾)))
48 simpr 484 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → 𝑦 ∈ (0..^(𝐿𝐾)))
49 fvex 6871 . . . . . . 7 (𝑊‘((𝑦 + 𝐾) + 𝑀)) ∈ V
50 oveq1 7394 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 + 𝐾) = (𝑦 + 𝐾))
5150fvoveq1d 7409 . . . . . . . 8 (𝑥 = 𝑦 → (𝑊‘((𝑥 + 𝐾) + 𝑀)) = (𝑊‘((𝑦 + 𝐾) + 𝑀)))
52 eqid 2729 . . . . . . . 8 (𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀))) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))
5351, 52fvmptg 6966 . . . . . . 7 ((𝑦 ∈ (0..^(𝐿𝐾)) ∧ (𝑊‘((𝑦 + 𝐾) + 𝑀)) ∈ V) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦) = (𝑊‘((𝑦 + 𝐾) + 𝑀)))
5448, 49, 53sylancl 586 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦) = (𝑊‘((𝑦 + 𝐾) + 𝑀)))
55 zcn 12534 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
5655, 31, 353anim123i 1151 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ))
57563expa 1118 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ))
58 add32r 11394 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑦 + (𝑀 + 𝐾)) = ((𝑦 + 𝐾) + 𝑀))
5958eqcomd 2735 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))
6057, 59syl 17 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))
6160exp31 419 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → (𝑀 ∈ ℤ → (𝐾 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
6261com13 88 . . . . . . . . . . . . 13 (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
6330, 62syl 17 . . . . . . . . . . . 12 (𝐾 ∈ (0...(𝑁𝑀)) → (𝑀 ∈ ℤ → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
6463adantr 480 . . . . . . . . . . 11 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑀 ∈ ℤ → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
6528, 64syl5com 31 . . . . . . . . . 10 (𝑀 ∈ (0...𝑁) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
66653ad2ant3 1135 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
6766imp 406 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾))))
68 elfzoelz 13620 . . . . . . . 8 (𝑦 ∈ (0..^(𝐿𝐾)) → 𝑦 ∈ ℤ)
6967, 68impel 505 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))
7069fveq2d 6862 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → (𝑊‘((𝑦 + 𝐾) + 𝑀)) = (𝑊‘(𝑦 + (𝑀 + 𝐾))))
7154, 70eqtrd 2764 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦) = (𝑊‘(𝑦 + (𝑀 + 𝐾))))
7213ad3antrrr 730 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → (𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
73 elfz2nn0 13579 . . . . . . . . . . . . 13 (𝐾 ∈ (0...(𝑁𝑀)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0𝐾 ≤ (𝑁𝑀)))
74 elfz2 13475 . . . . . . . . . . . . . . . 16 (𝐿 ∈ (𝐾...(𝑁𝑀)) ↔ ((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))))
75 elfzo0 13661 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (0..^(𝐿𝐾)) ↔ (𝑥 ∈ ℕ0 ∧ (𝐿𝐾) ∈ ℕ ∧ 𝑥 < (𝐿𝐾)))
76 nn0re 12451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
7776ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → 𝑥 ∈ ℝ)
78 nn0re 12451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
7978adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → 𝐾 ∈ ℝ)
80 zre 12533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
8180ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → 𝐿 ∈ ℝ)
82 ltaddsub 11652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝑥 + 𝐾) < 𝐿𝑥 < (𝐿𝐾)))
8382bicomd 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑥 < (𝐿𝐾) ↔ (𝑥 + 𝐾) < 𝐿))
8477, 79, 81, 83syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑥 < (𝐿𝐾) ↔ (𝑥 + 𝐾) < 𝐿))
85 nn0addcl 12477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑥 + 𝐾) ∈ ℕ0)
8685ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑥 + 𝐾) ∈ ℕ0))
8786adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐾 ∈ ℕ0 → (𝑥 + 𝐾) ∈ ℕ0))
8887impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑥 + 𝐾) ∈ ℕ0)
8988ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) ∈ ℕ0)
90 elnn0z 12542 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥 + 𝐾) ∈ ℕ0 ↔ ((𝑥 + 𝐾) ∈ ℤ ∧ 0 ≤ (𝑥 + 𝐾)))
91 0red 11177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → 0 ∈ ℝ)
92 zre 12533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑥 + 𝐾) ∈ ℤ → (𝑥 + 𝐾) ∈ ℝ)
9392adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑥 + 𝐾) ∈ ℝ)
9480adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
95 lelttr 11264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((0 ∈ ℝ ∧ (𝑥 + 𝐾) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((0 ≤ (𝑥 + 𝐾) ∧ (𝑥 + 𝐾) < 𝐿) → 0 < 𝐿))
9691, 93, 94, 95syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ (𝑥 + 𝐾) ∧ (𝑥 + 𝐾) < 𝐿) → 0 < 𝐿))
97 0red 11177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → 0 ∈ ℝ)
9880adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → 𝐿 ∈ ℝ)
99 nn0re 12451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑁𝑀) ∈ ℕ0 → (𝑁𝑀) ∈ ℝ)
10099adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → (𝑁𝑀) ∈ ℝ)
101 ltletr 11266 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((0 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (𝑁𝑀) ∈ ℝ) → ((0 < 𝐿𝐿 ≤ (𝑁𝑀)) → 0 < (𝑁𝑀)))
10297, 98, 100, 101syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → ((0 < 𝐿𝐿 ≤ (𝑁𝑀)) → 0 < (𝑁𝑀)))
103 elnnnn0b 12486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑁𝑀) ∈ ℕ ↔ ((𝑁𝑀) ∈ ℕ0 ∧ 0 < (𝑁𝑀)))
104103simplbi2 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑁𝑀) ∈ ℕ0 → (0 < (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))
105104adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → (0 < (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))
106102, 105syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → ((0 < 𝐿𝐿 ≤ (𝑁𝑀)) → (𝑁𝑀) ∈ ℕ))
107106exp4b 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐿 ∈ ℤ → ((𝑁𝑀) ∈ ℕ0 → (0 < 𝐿 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
108107com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐿 ∈ ℤ → (0 < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
109108adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
11096, 109syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ (𝑥 + 𝐾) ∧ (𝑥 + 𝐾) < 𝐿) → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
111110expd 415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ (𝑥 + 𝐾) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))
112111a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (0 ≤ (𝑥 + 𝐾) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))))
113112ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑥 + 𝐾) ∈ ℤ → (𝐿 ∈ ℤ → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (0 ≤ (𝑥 + 𝐾) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))))
114113com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑥 + 𝐾) ∈ ℤ → (0 ≤ (𝑥 + 𝐾) → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐿 ∈ ℤ → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))))
115114imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑥 + 𝐾) ∈ ℤ ∧ 0 ≤ (𝑥 + 𝐾)) → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐿 ∈ ℤ → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))))
11690, 115sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥 + 𝐾) ∈ ℕ0 → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐿 ∈ ℤ → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))))
11785, 116mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐿 ∈ ℤ → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))
118117impancom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐾 ∈ ℕ0 → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))
119118impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
120119imp41 425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁𝑀)) → (𝑁𝑀) ∈ ℕ)
121 nn0readdcl 12509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑥 + 𝐾) ∈ ℝ)
122121ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑥 + 𝐾) ∈ ℝ))
123122adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐾 ∈ ℕ0 → (𝑥 + 𝐾) ∈ ℝ))
124123impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑥 + 𝐾) ∈ ℝ)
125 ltletr 11266 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑥 + 𝐾) ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (𝑁𝑀) ∈ ℝ) → (((𝑥 + 𝐾) < 𝐿𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) < (𝑁𝑀)))
126124, 81, 99, 125syl2an3an 1424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑁𝑀) ∈ ℕ0) → (((𝑥 + 𝐾) < 𝐿𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) < (𝑁𝑀)))
127126exp4b 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝑁𝑀) ∈ ℕ0 → ((𝑥 + 𝐾) < 𝐿 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) < (𝑁𝑀)))))
128127com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) < (𝑁𝑀)))))
129128imp41 425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) < (𝑁𝑀))
130 elfzo0 13661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)) ↔ ((𝑥 + 𝐾) ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ (𝑥 + 𝐾) < (𝑁𝑀)))
13189, 120, 129, 130syl3anbrc 1344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))
132131exp41 434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
13384, 132sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑥 < (𝐿𝐾) → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
134133ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐾 ∈ ℕ0 → ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝑥 < (𝐿𝐾) → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))))
135134com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐾 ∈ ℕ0 → ((𝑁𝑀) ∈ ℕ0 → (𝑥 < (𝐿𝐾) → ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))))
136135imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 < (𝐿𝐾) → ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
137136com13 88 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝑥 < (𝐿𝐾) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
138137impancom 451 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ0𝑥 < (𝐿𝐾)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
1391383adant2 1131 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℕ0 ∧ (𝐿𝐾) ∈ ℕ ∧ 𝑥 < (𝐿𝐾)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
14075, 139sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (0..^(𝐿𝐾)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
141140com14 96 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ≤ (𝑁𝑀) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
142141adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
143142com12 32 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℤ → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
1441433ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
145144imp 406 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
14674, 145sylbi 217 . . . . . . . . . . . . . . 15 (𝐿 ∈ (𝐾...(𝑁𝑀)) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
147146com12 32 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
1481473adant3 1132 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0𝐾 ≤ (𝑁𝑀)) → (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
14973, 148sylbi 217 . . . . . . . . . . . 12 (𝐾 ∈ (0...(𝑁𝑀)) → (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
150149imp 406 . . . . . . . . . . 11 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))
151150adantl 481 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))
152151adantr 480 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))
153152imp 406 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))
154 swrdfv 14613 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)) = (𝑊‘((𝑥 + 𝐾) + 𝑀)))
15572, 153, 154syl2anc 584 . . . . . . 7 (((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)) = (𝑊‘((𝑥 + 𝐾) + 𝑀)))
156155mpteq2dva 5200 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀))))
157156fveq1d 6860 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)))‘𝑦) = ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦))
15825adantr 480 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))))
15931, 33, 353anim123i 1151 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈ ℂ))
1601593expa 1118 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈ ℂ))
161160, 38syl 17 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
162161exp31 419 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (𝐿 ∈ ℤ → (𝐾 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
163162com3l 89 . . . . . . . . . . . . . 14 (𝐿 ∈ ℤ → (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
16429, 163syl 17 . . . . . . . . . . . . 13 (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
16530, 164mpan9 506 . . . . . . . . . . . 12 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
16628, 165syl5com 31 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
1671663ad2ant3 1135 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
168167imp 406 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
169168oveq2d 7403 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (0..^(𝐿𝐾)) = (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
170169eleq2d 2814 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑦 ∈ (0..^(𝐿𝐾)) ↔ 𝑦 ∈ (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
171170biimpa 476 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → 𝑦 ∈ (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
172 swrdfv 14613 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))) ∧ 𝑦 ∈ (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾)))) → ((𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)‘𝑦) = (𝑊‘(𝑦 + (𝑀 + 𝐾))))
173158, 171, 172syl2anc 584 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)‘𝑦) = (𝑊‘(𝑦 + (𝑀 + 𝐾))))
17471, 157, 1733eqtr4d 2774 . . . 4 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)))‘𝑦) = ((𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)‘𝑦))
17524, 47, 174eqfnfvd 7006 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩))
17620, 175eqtrd 2764 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩))
177176ex 412 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  cop 4595   class class class wbr 5107  cmpt 5188   Fn wfn 6506  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   + caddc 11071   < clt 11208  cle 11209  cmin 11405  cn 12186  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478   substr csubstr 14605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-substr 14606
This theorem is referenced by:  pfxswrd  14671  swrdpfx  14672
  Copyright terms: Public domain W3C validator