Step | Hyp | Ref
| Expression |
1 | | swrdcl 14047 |
. . . . . 6
⊢ (𝑊 ∈ Word 𝑉 → (𝑊 substr 〈𝑀, 𝑁〉) ∈ Word 𝑉) |
2 | 1 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑊 substr 〈𝑀, 𝑁〉) ∈ Word 𝑉) |
3 | 2 | adantr 485 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → (𝑊 substr 〈𝑀, 𝑁〉) ∈ Word 𝑉) |
4 | | elfz0ubfz0 13053 |
. . . . 5
⊢ ((𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀))) → 𝐾 ∈ (0...𝐿)) |
5 | 4 | adantl 486 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → 𝐾 ∈ (0...𝐿)) |
6 | | elfzuz 12945 |
. . . . . . . . 9
⊢ (𝐾 ∈ (0...(𝑁 − 𝑀)) → 𝐾 ∈
(ℤ≥‘0)) |
7 | 6 | adantl 486 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐾 ∈ (0...(𝑁 − 𝑀))) → 𝐾 ∈
(ℤ≥‘0)) |
8 | | fzss1 12988 |
. . . . . . . 8
⊢ (𝐾 ∈
(ℤ≥‘0) → (𝐾...(𝑁 − 𝑀)) ⊆ (0...(𝑁 − 𝑀))) |
9 | 7, 8 | syl 17 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐾 ∈ (0...(𝑁 − 𝑀))) → (𝐾...(𝑁 − 𝑀)) ⊆ (0...(𝑁 − 𝑀))) |
10 | 9 | sseld 3892 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐾 ∈ (0...(𝑁 − 𝑀))) → (𝐿 ∈ (𝐾...(𝑁 − 𝑀)) → 𝐿 ∈ (0...(𝑁 − 𝑀)))) |
11 | 10 | impr 459 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → 𝐿 ∈ (0...(𝑁 − 𝑀))) |
12 | | 3ancomb 1097 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ↔ (𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) |
13 | 12 | biimpi 219 |
. . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) |
14 | 13 | adantr 485 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → (𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) |
15 | | swrdlen 14049 |
. . . . . . 7
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr 〈𝑀, 𝑁〉)) = (𝑁 − 𝑀)) |
16 | 14, 15 | syl 17 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → (♯‘(𝑊 substr 〈𝑀, 𝑁〉)) = (𝑁 − 𝑀)) |
17 | 16 | oveq2d 7167 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → (0...(♯‘(𝑊 substr 〈𝑀, 𝑁〉))) = (0...(𝑁 − 𝑀))) |
18 | 11, 17 | eleqtrrd 2856 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → 𝐿 ∈ (0...(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))) |
19 | | swrdval2 14048 |
. . . 4
⊢ (((𝑊 substr 〈𝑀, 𝑁〉) ∈ Word 𝑉 ∧ 𝐾 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))) → ((𝑊 substr 〈𝑀, 𝑁〉) substr 〈𝐾, 𝐿〉) = (𝑥 ∈ (0..^(𝐿 − 𝐾)) ↦ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑥 + 𝐾)))) |
20 | 3, 5, 18, 19 | syl3anc 1369 |
. . 3
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → ((𝑊 substr 〈𝑀, 𝑁〉) substr 〈𝐾, 𝐿〉) = (𝑥 ∈ (0..^(𝐿 − 𝐾)) ↦ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑥 + 𝐾)))) |
21 | | fvex 6672 |
. . . . . 6
⊢ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑥 + 𝐾)) ∈ V |
22 | | eqid 2759 |
. . . . . 6
⊢ (𝑥 ∈ (0..^(𝐿 − 𝐾)) ↦ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑥 + 𝐾))) = (𝑥 ∈ (0..^(𝐿 − 𝐾)) ↦ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑥 + 𝐾))) |
23 | 21, 22 | fnmpti 6475 |
. . . . 5
⊢ (𝑥 ∈ (0..^(𝐿 − 𝐾)) ↦ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑥 + 𝐾))) Fn (0..^(𝐿 − 𝐾)) |
24 | 23 | a1i 11 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → (𝑥 ∈ (0..^(𝐿 − 𝐾)) ↦ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑥 + 𝐾))) Fn (0..^(𝐿 − 𝐾))) |
25 | | swrdswrdlem 14106 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊)))) |
26 | | swrdvalfn 14053 |
. . . . . 6
⊢ ((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))) → (𝑊 substr 〈(𝑀 + 𝐾), (𝑀 + 𝐿)〉) Fn (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾)))) |
27 | 25, 26 | syl 17 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → (𝑊 substr 〈(𝑀 + 𝐾), (𝑀 + 𝐿)〉) Fn (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾)))) |
28 | | elfzelz 12949 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ) |
29 | | elfzelz 12949 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ (𝐾...(𝑁 − 𝑀)) → 𝐿 ∈ ℤ) |
30 | | elfzelz 12949 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ (0...(𝑁 − 𝑀)) → 𝐾 ∈ ℤ) |
31 | | zcn 12018 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
32 | 31 | adantr 485 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝑀 ∈
ℂ) |
33 | | zcn 12018 |
. . . . . . . . . . . . . 14
⊢ (𝐿 ∈ ℤ → 𝐿 ∈
ℂ) |
34 | 33 | ad2antrl 728 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝐿 ∈
ℂ) |
35 | | zcn 12018 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℂ) |
36 | 35 | ad2antll 729 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈
ℂ) |
37 | | pnpcan 10956 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑀 + 𝐿) − (𝑀 + 𝐾)) = (𝐿 − 𝐾)) |
38 | 37 | eqcomd 2765 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐿 − 𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))) |
39 | 32, 34, 36, 38 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐿 − 𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))) |
40 | 39 | expcom 418 |
. . . . . . . . . . 11
⊢ ((𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℤ → (𝐿 − 𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))) |
41 | 29, 30, 40 | syl2anr 600 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀))) → (𝑀 ∈ ℤ → (𝐿 − 𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))) |
42 | 28, 41 | syl5com 31 |
. . . . . . . . 9
⊢ (𝑀 ∈ (0...𝑁) → ((𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀))) → (𝐿 − 𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))) |
43 | 42 | 3ad2ant3 1133 |
. . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀))) → (𝐿 − 𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))) |
44 | 43 | imp 411 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → (𝐿 − 𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))) |
45 | 44 | oveq2d 7167 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → (0..^(𝐿 − 𝐾)) = (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾)))) |
46 | 45 | fneq2d 6429 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → ((𝑊 substr 〈(𝑀 + 𝐾), (𝑀 + 𝐿)〉) Fn (0..^(𝐿 − 𝐾)) ↔ (𝑊 substr 〈(𝑀 + 𝐾), (𝑀 + 𝐿)〉) Fn (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))) |
47 | 27, 46 | mpbird 260 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → (𝑊 substr 〈(𝑀 + 𝐾), (𝑀 + 𝐿)〉) Fn (0..^(𝐿 − 𝐾))) |
48 | | simpr 489 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿 − 𝐾))) → 𝑦 ∈ (0..^(𝐿 − 𝐾))) |
49 | | fvex 6672 |
. . . . . . 7
⊢ (𝑊‘((𝑦 + 𝐾) + 𝑀)) ∈ V |
50 | | oveq1 7158 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 + 𝐾) = (𝑦 + 𝐾)) |
51 | 50 | fvoveq1d 7173 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑊‘((𝑥 + 𝐾) + 𝑀)) = (𝑊‘((𝑦 + 𝐾) + 𝑀))) |
52 | | eqid 2759 |
. . . . . . . 8
⊢ (𝑥 ∈ (0..^(𝐿 − 𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀))) = (𝑥 ∈ (0..^(𝐿 − 𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀))) |
53 | 51, 52 | fvmptg 6758 |
. . . . . . 7
⊢ ((𝑦 ∈ (0..^(𝐿 − 𝐾)) ∧ (𝑊‘((𝑦 + 𝐾) + 𝑀)) ∈ V) → ((𝑥 ∈ (0..^(𝐿 − 𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦) = (𝑊‘((𝑦 + 𝐾) + 𝑀))) |
54 | 48, 49, 53 | sylancl 590 |
. . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿 − 𝐾))) → ((𝑥 ∈ (0..^(𝐿 − 𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦) = (𝑊‘((𝑦 + 𝐾) + 𝑀))) |
55 | | zcn 12018 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℂ) |
56 | 55, 31, 35 | 3anim123i 1149 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈
ℂ)) |
57 | 56 | 3expa 1116 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈
ℂ)) |
58 | | add32r 10890 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑦 + (𝑀 + 𝐾)) = ((𝑦 + 𝐾) + 𝑀)) |
59 | 58 | eqcomd 2765 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾))) |
60 | 57, 59 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾))) |
61 | 60 | exp31 424 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℤ → (𝑀 ∈ ℤ → (𝐾 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾))))) |
62 | 61 | com13 88 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾))))) |
63 | 30, 62 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (0...(𝑁 − 𝑀)) → (𝑀 ∈ ℤ → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾))))) |
64 | 63 | adantr 485 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀))) → (𝑀 ∈ ℤ → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾))))) |
65 | 28, 64 | syl5com 31 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (0...𝑁) → ((𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀))) → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾))))) |
66 | 65 | 3ad2ant3 1133 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀))) → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾))))) |
67 | 66 | imp 411 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))) |
68 | | elfzoelz 13080 |
. . . . . . . 8
⊢ (𝑦 ∈ (0..^(𝐿 − 𝐾)) → 𝑦 ∈ ℤ) |
69 | 67, 68 | impel 510 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿 − 𝐾))) → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾))) |
70 | 69 | fveq2d 6663 |
. . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿 − 𝐾))) → (𝑊‘((𝑦 + 𝐾) + 𝑀)) = (𝑊‘(𝑦 + (𝑀 + 𝐾)))) |
71 | 54, 70 | eqtrd 2794 |
. . . . 5
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿 − 𝐾))) → ((𝑥 ∈ (0..^(𝐿 − 𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦) = (𝑊‘(𝑦 + (𝑀 + 𝐾)))) |
72 | 13 | ad3antrrr 730 |
. . . . . . . 8
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿 − 𝐾))) ∧ 𝑥 ∈ (0..^(𝐿 − 𝐾))) → (𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) |
73 | | elfz2nn0 13040 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (0...(𝑁 − 𝑀)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ0 ∧ 𝐾 ≤ (𝑁 − 𝑀))) |
74 | | elfz2 12939 |
. . . . . . . . . . . . . . . 16
⊢ (𝐿 ∈ (𝐾...(𝑁 − 𝑀)) ↔ ((𝐾 ∈ ℤ ∧ (𝑁 − 𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾 ≤ 𝐿 ∧ 𝐿 ≤ (𝑁 − 𝑀)))) |
75 | | elfzo0 13120 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ (0..^(𝐿 − 𝐾)) ↔ (𝑥 ∈ ℕ0 ∧ (𝐿 − 𝐾) ∈ ℕ ∧ 𝑥 < (𝐿 − 𝐾))) |
76 | | nn0re 11936 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 ∈ ℕ0
→ 𝑥 ∈
ℝ) |
77 | 76 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐾 ∈ ℕ0
∧ (𝑥 ∈
ℕ0 ∧ 𝐿
∈ ℤ)) → 𝑥
∈ ℝ) |
78 | | nn0re 11936 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝐾 ∈ ℕ0
→ 𝐾 ∈
ℝ) |
79 | 78 | adantr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐾 ∈ ℕ0
∧ (𝑥 ∈
ℕ0 ∧ 𝐿
∈ ℤ)) → 𝐾
∈ ℝ) |
80 | | zre 12017 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝐿 ∈ ℤ → 𝐿 ∈
ℝ) |
81 | 80 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐾 ∈ ℕ0
∧ (𝑥 ∈
ℕ0 ∧ 𝐿
∈ ℤ)) → 𝐿
∈ ℝ) |
82 | | ltaddsub 11145 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝑥 + 𝐾) < 𝐿 ↔ 𝑥 < (𝐿 − 𝐾))) |
83 | 82 | bicomd 226 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑥 < (𝐿 − 𝐾) ↔ (𝑥 + 𝐾) < 𝐿)) |
84 | 77, 79, 81, 83 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐾 ∈ ℕ0
∧ (𝑥 ∈
ℕ0 ∧ 𝐿
∈ ℤ)) → (𝑥
< (𝐿 − 𝐾) ↔ (𝑥 + 𝐾) < 𝐿)) |
85 | | nn0addcl 11962 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑥 ∈ ℕ0
∧ 𝐾 ∈
ℕ0) → (𝑥 + 𝐾) ∈
ℕ0) |
86 | 85 | ex 417 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑥 ∈ ℕ0
→ (𝐾 ∈
ℕ0 → (𝑥 + 𝐾) ∈
ℕ0)) |
87 | 86 | adantr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑥 ∈ ℕ0
∧ 𝐿 ∈ ℤ)
→ (𝐾 ∈
ℕ0 → (𝑥 + 𝐾) ∈
ℕ0)) |
88 | 87 | impcom 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝐾 ∈ ℕ0
∧ (𝑥 ∈
ℕ0 ∧ 𝐿
∈ ℤ)) → (𝑥
+ 𝐾) ∈
ℕ0) |
89 | 88 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝐾 ∈
ℕ0 ∧ (𝑥 ∈ ℕ0 ∧ 𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁 − 𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁 − 𝑀)) → (𝑥 + 𝐾) ∈
ℕ0) |
90 | | elnn0z 12026 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑥 + 𝐾) ∈ ℕ0 ↔ ((𝑥 + 𝐾) ∈ ℤ ∧ 0 ≤ (𝑥 + 𝐾))) |
91 | | 0red 10675 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → 0 ∈
ℝ) |
92 | | zre 12017 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((𝑥 + 𝐾) ∈ ℤ → (𝑥 + 𝐾) ∈ ℝ) |
93 | 92 | adantr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑥 + 𝐾) ∈ ℝ) |
94 | 80 | adantl 486 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ) |
95 | | lelttr 10762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ ((0
∈ ℝ ∧ (𝑥 +
𝐾) ∈ ℝ ∧
𝐿 ∈ ℝ) →
((0 ≤ (𝑥 + 𝐾) ∧ (𝑥 + 𝐾) < 𝐿) → 0 < 𝐿)) |
96 | 91, 93, 94, 95 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ (𝑥 + 𝐾) ∧ (𝑥 + 𝐾) < 𝐿) → 0 < 𝐿)) |
97 | | 0red 10675 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ ((𝐿 ∈ ℤ ∧ (𝑁 − 𝑀) ∈ ℕ0) → 0
∈ ℝ) |
98 | 80 | adantr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ ((𝐿 ∈ ℤ ∧ (𝑁 − 𝑀) ∈ ℕ0) → 𝐿 ∈
ℝ) |
99 | | nn0re 11936 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ ((𝑁 − 𝑀) ∈ ℕ0 → (𝑁 − 𝑀) ∈ ℝ) |
100 | 99 | adantl 486 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ ((𝐿 ∈ ℤ ∧ (𝑁 − 𝑀) ∈ ℕ0) → (𝑁 − 𝑀) ∈ ℝ) |
101 | | ltletr 10763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ ((0
∈ ℝ ∧ 𝐿
∈ ℝ ∧ (𝑁
− 𝑀) ∈ ℝ)
→ ((0 < 𝐿 ∧
𝐿 ≤ (𝑁 − 𝑀)) → 0 < (𝑁 − 𝑀))) |
102 | 97, 98, 100, 101 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((𝐿 ∈ ℤ ∧ (𝑁 − 𝑀) ∈ ℕ0) → ((0
< 𝐿 ∧ 𝐿 ≤ (𝑁 − 𝑀)) → 0 < (𝑁 − 𝑀))) |
103 | | elnnnn0b 11971 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ ((𝑁 − 𝑀) ∈ ℕ ↔ ((𝑁 − 𝑀) ∈ ℕ0 ∧ 0 <
(𝑁 − 𝑀))) |
104 | 103 | simplbi2 505 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ ((𝑁 − 𝑀) ∈ ℕ0 → (0 <
(𝑁 − 𝑀) → (𝑁 − 𝑀) ∈ ℕ)) |
105 | 104 | adantl 486 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((𝐿 ∈ ℤ ∧ (𝑁 − 𝑀) ∈ ℕ0) → (0 <
(𝑁 − 𝑀) → (𝑁 − 𝑀) ∈ ℕ)) |
106 | 102, 105 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ((𝐿 ∈ ℤ ∧ (𝑁 − 𝑀) ∈ ℕ0) → ((0
< 𝐿 ∧ 𝐿 ≤ (𝑁 − 𝑀)) → (𝑁 − 𝑀) ∈ ℕ)) |
107 | 106 | exp4b 435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝐿 ∈ ℤ → ((𝑁 − 𝑀) ∈ ℕ0 → (0 <
𝐿 → (𝐿 ≤ (𝑁 − 𝑀) → (𝑁 − 𝑀) ∈ ℕ)))) |
108 | 107 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝐿 ∈ ℤ → (0 <
𝐿 → ((𝑁 − 𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁 − 𝑀) → (𝑁 − 𝑀) ∈ ℕ)))) |
109 | 108 | adantl 486 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 < 𝐿 → ((𝑁 − 𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁 − 𝑀) → (𝑁 − 𝑀) ∈ ℕ)))) |
110 | 96, 109 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ (𝑥 + 𝐾) ∧ (𝑥 + 𝐾) < 𝐿) → ((𝑁 − 𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁 − 𝑀) → (𝑁 − 𝑀) ∈ ℕ)))) |
111 | 110 | expd 420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ (𝑥 + 𝐾) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁 − 𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁 − 𝑀) → (𝑁 − 𝑀) ∈ ℕ))))) |
112 | 111 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝑥 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0)
→ (0 ≤ (𝑥 + 𝐾) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁 − 𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁 − 𝑀) → (𝑁 − 𝑀) ∈ ℕ)))))) |
113 | 112 | ex 417 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑥 + 𝐾) ∈ ℤ → (𝐿 ∈ ℤ → ((𝑥 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0)
→ (0 ≤ (𝑥 + 𝐾) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁 − 𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁 − 𝑀) → (𝑁 − 𝑀) ∈ ℕ))))))) |
114 | 113 | com24 95 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑥 + 𝐾) ∈ ℤ → (0 ≤ (𝑥 + 𝐾) → ((𝑥 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0)
→ (𝐿 ∈ ℤ
→ ((𝑥 + 𝐾) < 𝐿 → ((𝑁 − 𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁 − 𝑀) → (𝑁 − 𝑀) ∈ ℕ))))))) |
115 | 114 | imp 411 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑥 + 𝐾) ∈ ℤ ∧ 0 ≤ (𝑥 + 𝐾)) → ((𝑥 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0)
→ (𝐿 ∈ ℤ
→ ((𝑥 + 𝐾) < 𝐿 → ((𝑁 − 𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁 − 𝑀) → (𝑁 − 𝑀) ∈ ℕ)))))) |
116 | 90, 115 | sylbi 220 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑥 + 𝐾) ∈ ℕ0 → ((𝑥 ∈ ℕ0
∧ 𝐾 ∈
ℕ0) → (𝐿 ∈ ℤ → ((𝑥 + 𝐾) < 𝐿 → ((𝑁 − 𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁 − 𝑀) → (𝑁 − 𝑀) ∈ ℕ)))))) |
117 | 85, 116 | mpcom 38 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑥 ∈ ℕ0
∧ 𝐾 ∈
ℕ0) → (𝐿 ∈ ℤ → ((𝑥 + 𝐾) < 𝐿 → ((𝑁 − 𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁 − 𝑀) → (𝑁 − 𝑀) ∈ ℕ))))) |
118 | 117 | impancom 456 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑥 ∈ ℕ0
∧ 𝐿 ∈ ℤ)
→ (𝐾 ∈
ℕ0 → ((𝑥 + 𝐾) < 𝐿 → ((𝑁 − 𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁 − 𝑀) → (𝑁 − 𝑀) ∈ ℕ))))) |
119 | 118 | impcom 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝐾 ∈ ℕ0
∧ (𝑥 ∈
ℕ0 ∧ 𝐿
∈ ℤ)) → ((𝑥
+ 𝐾) < 𝐿 → ((𝑁 − 𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁 − 𝑀) → (𝑁 − 𝑀) ∈ ℕ)))) |
120 | 119 | imp41 430 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝐾 ∈
ℕ0 ∧ (𝑥 ∈ ℕ0 ∧ 𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁 − 𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁 − 𝑀)) → (𝑁 − 𝑀) ∈ ℕ) |
121 | | nn0readdcl 11993 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑥 ∈ ℕ0
∧ 𝐾 ∈
ℕ0) → (𝑥 + 𝐾) ∈ ℝ) |
122 | 121 | ex 417 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑥 ∈ ℕ0
→ (𝐾 ∈
ℕ0 → (𝑥 + 𝐾) ∈ ℝ)) |
123 | 122 | adantr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑥 ∈ ℕ0
∧ 𝐿 ∈ ℤ)
→ (𝐾 ∈
ℕ0 → (𝑥 + 𝐾) ∈ ℝ)) |
124 | 123 | impcom 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝐾 ∈ ℕ0
∧ (𝑥 ∈
ℕ0 ∧ 𝐿
∈ ℤ)) → (𝑥
+ 𝐾) ∈
ℝ) |
125 | | ltletr 10763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑥 + 𝐾) ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (𝑁 − 𝑀) ∈ ℝ) → (((𝑥 + 𝐾) < 𝐿 ∧ 𝐿 ≤ (𝑁 − 𝑀)) → (𝑥 + 𝐾) < (𝑁 − 𝑀))) |
126 | 124, 81, 99, 125 | syl2an3an 1420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝐾 ∈ ℕ0
∧ (𝑥 ∈
ℕ0 ∧ 𝐿
∈ ℤ)) ∧ (𝑁
− 𝑀) ∈
ℕ0) → (((𝑥 + 𝐾) < 𝐿 ∧ 𝐿 ≤ (𝑁 − 𝑀)) → (𝑥 + 𝐾) < (𝑁 − 𝑀))) |
127 | 126 | exp4b 435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝐾 ∈ ℕ0
∧ (𝑥 ∈
ℕ0 ∧ 𝐿
∈ ℤ)) → ((𝑁
− 𝑀) ∈
ℕ0 → ((𝑥 + 𝐾) < 𝐿 → (𝐿 ≤ (𝑁 − 𝑀) → (𝑥 + 𝐾) < (𝑁 − 𝑀))))) |
128 | 127 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝐾 ∈ ℕ0
∧ (𝑥 ∈
ℕ0 ∧ 𝐿
∈ ℤ)) → ((𝑥
+ 𝐾) < 𝐿 → ((𝑁 − 𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁 − 𝑀) → (𝑥 + 𝐾) < (𝑁 − 𝑀))))) |
129 | 128 | imp41 430 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝐾 ∈
ℕ0 ∧ (𝑥 ∈ ℕ0 ∧ 𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁 − 𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁 − 𝑀)) → (𝑥 + 𝐾) < (𝑁 − 𝑀)) |
130 | | elfzo0 13120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀)) ↔ ((𝑥 + 𝐾) ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ ∧ (𝑥 + 𝐾) < (𝑁 − 𝑀))) |
131 | 89, 120, 129, 130 | syl3anbrc 1341 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝐾 ∈
ℕ0 ∧ (𝑥 ∈ ℕ0 ∧ 𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁 − 𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁 − 𝑀)) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀))) |
132 | 131 | exp41 439 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐾 ∈ ℕ0
∧ (𝑥 ∈
ℕ0 ∧ 𝐿
∈ ℤ)) → ((𝑥
+ 𝐾) < 𝐿 → ((𝑁 − 𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁 − 𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀)))))) |
133 | 84, 132 | sylbid 243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐾 ∈ ℕ0
∧ (𝑥 ∈
ℕ0 ∧ 𝐿
∈ ℤ)) → (𝑥
< (𝐿 − 𝐾) → ((𝑁 − 𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁 − 𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀)))))) |
134 | 133 | ex 417 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐾 ∈ ℕ0
→ ((𝑥 ∈
ℕ0 ∧ 𝐿
∈ ℤ) → (𝑥
< (𝐿 − 𝐾) → ((𝑁 − 𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁 − 𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀))))))) |
135 | 134 | com24 95 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐾 ∈ ℕ0
→ ((𝑁 − 𝑀) ∈ ℕ0
→ (𝑥 < (𝐿 − 𝐾) → ((𝑥 ∈ ℕ0 ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ (𝑁 − 𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀))))))) |
136 | 135 | imp 411 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐾 ∈ ℕ0
∧ (𝑁 − 𝑀) ∈ ℕ0)
→ (𝑥 < (𝐿 − 𝐾) → ((𝑥 ∈ ℕ0 ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ (𝑁 − 𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀)))))) |
137 | 136 | com13 88 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∈ ℕ0
∧ 𝐿 ∈ ℤ)
→ (𝑥 < (𝐿 − 𝐾) → ((𝐾 ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁 − 𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀)))))) |
138 | 137 | impancom 456 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ ℕ0
∧ 𝑥 < (𝐿 − 𝐾)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁 − 𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀)))))) |
139 | 138 | 3adant2 1129 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ ℕ0
∧ (𝐿 − 𝐾) ∈ ℕ ∧ 𝑥 < (𝐿 − 𝐾)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁 − 𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀)))))) |
140 | 75, 139 | sylbi 220 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (0..^(𝐿 − 𝐾)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁 − 𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀)))))) |
141 | 140 | com14 96 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐿 ≤ (𝑁 − 𝑀) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿 − 𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀)))))) |
142 | 141 | adantl 486 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ≤ 𝐿 ∧ 𝐿 ≤ (𝑁 − 𝑀)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿 − 𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀)))))) |
143 | 142 | com12 32 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐿 ∈ ℤ → ((𝐾 ≤ 𝐿 ∧ 𝐿 ≤ (𝑁 − 𝑀)) → ((𝐾 ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿 − 𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀)))))) |
144 | 143 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ ℤ ∧ (𝑁 − 𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐾 ≤ 𝐿 ∧ 𝐿 ≤ (𝑁 − 𝑀)) → ((𝐾 ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿 − 𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀)))))) |
145 | 144 | imp 411 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ ℤ ∧ (𝑁 − 𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾 ≤ 𝐿 ∧ 𝐿 ≤ (𝑁 − 𝑀))) → ((𝐾 ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿 − 𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀))))) |
146 | 74, 145 | sylbi 220 |
. . . . . . . . . . . . . . 15
⊢ (𝐿 ∈ (𝐾...(𝑁 − 𝑀)) → ((𝐾 ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿 − 𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀))))) |
147 | 146 | com12 32 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ ℕ0
∧ (𝑁 − 𝑀) ∈ ℕ0)
→ (𝐿 ∈ (𝐾...(𝑁 − 𝑀)) → (𝑥 ∈ (0..^(𝐿 − 𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀))))) |
148 | 147 | 3adant3 1130 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ0
∧ (𝑁 − 𝑀) ∈ ℕ0
∧ 𝐾 ≤ (𝑁 − 𝑀)) → (𝐿 ∈ (𝐾...(𝑁 − 𝑀)) → (𝑥 ∈ (0..^(𝐿 − 𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀))))) |
149 | 73, 148 | sylbi 220 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (0...(𝑁 − 𝑀)) → (𝐿 ∈ (𝐾...(𝑁 − 𝑀)) → (𝑥 ∈ (0..^(𝐿 − 𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀))))) |
150 | 149 | imp 411 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀))) → (𝑥 ∈ (0..^(𝐿 − 𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀)))) |
151 | 150 | adantl 486 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → (𝑥 ∈ (0..^(𝐿 − 𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀)))) |
152 | 151 | adantr 485 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿 − 𝐾))) → (𝑥 ∈ (0..^(𝐿 − 𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀)))) |
153 | 152 | imp 411 |
. . . . . . . 8
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿 − 𝐾))) ∧ 𝑥 ∈ (0..^(𝐿 − 𝐾))) → (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀))) |
154 | | swrdfv 14050 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝑥 + 𝐾) ∈ (0..^(𝑁 − 𝑀))) → ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑥 + 𝐾)) = (𝑊‘((𝑥 + 𝐾) + 𝑀))) |
155 | 72, 153, 154 | syl2anc 588 |
. . . . . . 7
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿 − 𝐾))) ∧ 𝑥 ∈ (0..^(𝐿 − 𝐾))) → ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑥 + 𝐾)) = (𝑊‘((𝑥 + 𝐾) + 𝑀))) |
156 | 155 | mpteq2dva 5128 |
. . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿 − 𝐾))) → (𝑥 ∈ (0..^(𝐿 − 𝐾)) ↦ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑥 + 𝐾))) = (𝑥 ∈ (0..^(𝐿 − 𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))) |
157 | 156 | fveq1d 6661 |
. . . . 5
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿 − 𝐾))) → ((𝑥 ∈ (0..^(𝐿 − 𝐾)) ↦ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑥 + 𝐾)))‘𝑦) = ((𝑥 ∈ (0..^(𝐿 − 𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦)) |
158 | 25 | adantr 485 |
. . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿 − 𝐾))) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊)))) |
159 | 31, 33, 35 | 3anim123i 1149 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈
ℂ)) |
160 | 159 | 3expa 1116 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈
ℂ)) |
161 | 160, 38 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝐿 − 𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))) |
162 | 161 | exp31 424 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℤ → (𝐿 ∈ ℤ → (𝐾 ∈ ℤ → (𝐿 − 𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))) |
163 | 162 | com3l 89 |
. . . . . . . . . . . . . 14
⊢ (𝐿 ∈ ℤ → (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝐿 − 𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))) |
164 | 29, 163 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐿 ∈ (𝐾...(𝑁 − 𝑀)) → (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝐿 − 𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))) |
165 | 30, 164 | mpan9 511 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀))) → (𝑀 ∈ ℤ → (𝐿 − 𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))) |
166 | 28, 165 | syl5com 31 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (0...𝑁) → ((𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀))) → (𝐿 − 𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))) |
167 | 166 | 3ad2ant3 1133 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀))) → (𝐿 − 𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))) |
168 | 167 | imp 411 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → (𝐿 − 𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))) |
169 | 168 | oveq2d 7167 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → (0..^(𝐿 − 𝐾)) = (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾)))) |
170 | 169 | eleq2d 2838 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → (𝑦 ∈ (0..^(𝐿 − 𝐾)) ↔ 𝑦 ∈ (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))) |
171 | 170 | biimpa 481 |
. . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿 − 𝐾))) → 𝑦 ∈ (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾)))) |
172 | | swrdfv 14050 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))) ∧ 𝑦 ∈ (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾)))) → ((𝑊 substr 〈(𝑀 + 𝐾), (𝑀 + 𝐿)〉)‘𝑦) = (𝑊‘(𝑦 + (𝑀 + 𝐾)))) |
173 | 158, 171,
172 | syl2anc 588 |
. . . . 5
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿 − 𝐾))) → ((𝑊 substr 〈(𝑀 + 𝐾), (𝑀 + 𝐿)〉)‘𝑦) = (𝑊‘(𝑦 + (𝑀 + 𝐾)))) |
174 | 71, 157, 173 | 3eqtr4d 2804 |
. . . 4
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿 − 𝐾))) → ((𝑥 ∈ (0..^(𝐿 − 𝐾)) ↦ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑥 + 𝐾)))‘𝑦) = ((𝑊 substr 〈(𝑀 + 𝐾), (𝑀 + 𝐿)〉)‘𝑦)) |
175 | 24, 47, 174 | eqfnfvd 6797 |
. . 3
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → (𝑥 ∈ (0..^(𝐿 − 𝐾)) ↦ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑥 + 𝐾))) = (𝑊 substr 〈(𝑀 + 𝐾), (𝑀 + 𝐿)〉)) |
176 | 20, 175 | eqtrd 2794 |
. 2
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀)))) → ((𝑊 substr 〈𝑀, 𝑁〉) substr 〈𝐾, 𝐿〉) = (𝑊 substr 〈(𝑀 + 𝐾), (𝑀 + 𝐿)〉)) |
177 | 176 | ex 417 |
1
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁 − 𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 𝑀))) → ((𝑊 substr 〈𝑀, 𝑁〉) substr 〈𝐾, 𝐿〉) = (𝑊 substr 〈(𝑀 + 𝐾), (𝑀 + 𝐿)〉))) |