MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdswrd Structured version   Visualization version   GIF version

Theorem swrdswrd 14607
Description: A subword of a subword is a subword. (Contributed by Alexander van der Vekens, 4-Apr-2018.)
Assertion
Ref Expression
swrdswrd ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)))

Proof of Theorem swrdswrd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 swrdcl 14548 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
213ad2ant1 1133 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
32adantr 480 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
4 elfz0ubfz0 13527 . . . . 5 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → 𝐾 ∈ (0...𝐿))
54adantl 481 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → 𝐾 ∈ (0...𝐿))
6 elfzuz 13415 . . . . . . . . 9 (𝐾 ∈ (0...(𝑁𝑀)) → 𝐾 ∈ (ℤ‘0))
76adantl 481 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐾 ∈ (0...(𝑁𝑀))) → 𝐾 ∈ (ℤ‘0))
8 fzss1 13458 . . . . . . . 8 (𝐾 ∈ (ℤ‘0) → (𝐾...(𝑁𝑀)) ⊆ (0...(𝑁𝑀)))
97, 8syl 17 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐾 ∈ (0...(𝑁𝑀))) → (𝐾...(𝑁𝑀)) ⊆ (0...(𝑁𝑀)))
109sseld 3928 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐾 ∈ (0...(𝑁𝑀))) → (𝐿 ∈ (𝐾...(𝑁𝑀)) → 𝐿 ∈ (0...(𝑁𝑀))))
1110impr 454 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → 𝐿 ∈ (0...(𝑁𝑀)))
12 3ancomb 1098 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ↔ (𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
1312biimpi 216 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
1413adantr 480 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
15 swrdlen 14550 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (𝑁𝑀))
1614, 15syl 17 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (𝑁𝑀))
1716oveq2d 7357 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (0...(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩))) = (0...(𝑁𝑀)))
1811, 17eleqtrrd 2834 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → 𝐿 ∈ (0...(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩))))
19 swrdval2 14549 . . . 4 (((𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉𝐾 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))))
203, 5, 18, 19syl3anc 1373 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))))
21 fvex 6830 . . . . . 6 ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)) ∈ V
22 eqid 2731 . . . . . 6 (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)))
2321, 22fnmpti 6619 . . . . 5 (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) Fn (0..^(𝐿𝐾))
2423a1i 11 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) Fn (0..^(𝐿𝐾)))
25 swrdswrdlem 14606 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))))
26 swrdvalfn 14554 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
2725, 26syl 17 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
28 elfzelz 13419 . . . . . . . . . 10 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ)
29 elfzelz 13419 . . . . . . . . . . 11 (𝐿 ∈ (𝐾...(𝑁𝑀)) → 𝐿 ∈ ℤ)
30 elfzelz 13419 . . . . . . . . . . 11 (𝐾 ∈ (0...(𝑁𝑀)) → 𝐾 ∈ ℤ)
31 zcn 12468 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
3231adantr 480 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝑀 ∈ ℂ)
33 zcn 12468 . . . . . . . . . . . . . 14 (𝐿 ∈ ℤ → 𝐿 ∈ ℂ)
3433ad2antrl 728 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝐿 ∈ ℂ)
35 zcn 12468 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
3635ad2antll 729 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℂ)
37 pnpcan 11395 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑀 + 𝐿) − (𝑀 + 𝐾)) = (𝐿𝐾))
3837eqcomd 2737 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
3932, 34, 36, 38syl3anc 1373 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
4039expcom 413 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
4129, 30, 40syl2anr 597 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
4228, 41syl5com 31 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
43423ad2ant3 1135 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
4443imp 406 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
4544oveq2d 7357 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (0..^(𝐿𝐾)) = (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
4645fneq2d 6570 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → ((𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^(𝐿𝐾)) ↔ (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
4727, 46mpbird 257 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^(𝐿𝐾)))
48 simpr 484 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → 𝑦 ∈ (0..^(𝐿𝐾)))
49 fvex 6830 . . . . . . 7 (𝑊‘((𝑦 + 𝐾) + 𝑀)) ∈ V
50 oveq1 7348 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 + 𝐾) = (𝑦 + 𝐾))
5150fvoveq1d 7363 . . . . . . . 8 (𝑥 = 𝑦 → (𝑊‘((𝑥 + 𝐾) + 𝑀)) = (𝑊‘((𝑦 + 𝐾) + 𝑀)))
52 eqid 2731 . . . . . . . 8 (𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀))) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))
5351, 52fvmptg 6922 . . . . . . 7 ((𝑦 ∈ (0..^(𝐿𝐾)) ∧ (𝑊‘((𝑦 + 𝐾) + 𝑀)) ∈ V) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦) = (𝑊‘((𝑦 + 𝐾) + 𝑀)))
5448, 49, 53sylancl 586 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦) = (𝑊‘((𝑦 + 𝐾) + 𝑀)))
55 zcn 12468 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
5655, 31, 353anim123i 1151 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ))
57563expa 1118 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ))
58 add32r 11328 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑦 + (𝑀 + 𝐾)) = ((𝑦 + 𝐾) + 𝑀))
5958eqcomd 2737 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))
6057, 59syl 17 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))
6160exp31 419 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → (𝑀 ∈ ℤ → (𝐾 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
6261com13 88 . . . . . . . . . . . . 13 (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
6330, 62syl 17 . . . . . . . . . . . 12 (𝐾 ∈ (0...(𝑁𝑀)) → (𝑀 ∈ ℤ → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
6463adantr 480 . . . . . . . . . . 11 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑀 ∈ ℤ → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
6528, 64syl5com 31 . . . . . . . . . 10 (𝑀 ∈ (0...𝑁) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
66653ad2ant3 1135 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
6766imp 406 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾))))
68 elfzoelz 13554 . . . . . . . 8 (𝑦 ∈ (0..^(𝐿𝐾)) → 𝑦 ∈ ℤ)
6967, 68impel 505 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))
7069fveq2d 6821 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → (𝑊‘((𝑦 + 𝐾) + 𝑀)) = (𝑊‘(𝑦 + (𝑀 + 𝐾))))
7154, 70eqtrd 2766 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦) = (𝑊‘(𝑦 + (𝑀 + 𝐾))))
7213ad3antrrr 730 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → (𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
73 elfz2nn0 13513 . . . . . . . . . . . . 13 (𝐾 ∈ (0...(𝑁𝑀)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0𝐾 ≤ (𝑁𝑀)))
74 elfz2 13409 . . . . . . . . . . . . . . . 16 (𝐿 ∈ (𝐾...(𝑁𝑀)) ↔ ((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))))
75 elfzo0 13595 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (0..^(𝐿𝐾)) ↔ (𝑥 ∈ ℕ0 ∧ (𝐿𝐾) ∈ ℕ ∧ 𝑥 < (𝐿𝐾)))
76 nn0re 12385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
7776ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → 𝑥 ∈ ℝ)
78 nn0re 12385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
7978adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → 𝐾 ∈ ℝ)
80 zre 12467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
8180ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → 𝐿 ∈ ℝ)
82 ltaddsub 11586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝑥 + 𝐾) < 𝐿𝑥 < (𝐿𝐾)))
8382bicomd 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑥 < (𝐿𝐾) ↔ (𝑥 + 𝐾) < 𝐿))
8477, 79, 81, 83syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑥 < (𝐿𝐾) ↔ (𝑥 + 𝐾) < 𝐿))
85 nn0addcl 12411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑥 + 𝐾) ∈ ℕ0)
8685ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑥 + 𝐾) ∈ ℕ0))
8786adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐾 ∈ ℕ0 → (𝑥 + 𝐾) ∈ ℕ0))
8887impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑥 + 𝐾) ∈ ℕ0)
8988ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) ∈ ℕ0)
90 elnn0z 12476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥 + 𝐾) ∈ ℕ0 ↔ ((𝑥 + 𝐾) ∈ ℤ ∧ 0 ≤ (𝑥 + 𝐾)))
91 0red 11110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → 0 ∈ ℝ)
92 zre 12467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑥 + 𝐾) ∈ ℤ → (𝑥 + 𝐾) ∈ ℝ)
9392adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑥 + 𝐾) ∈ ℝ)
9480adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
95 lelttr 11198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((0 ∈ ℝ ∧ (𝑥 + 𝐾) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((0 ≤ (𝑥 + 𝐾) ∧ (𝑥 + 𝐾) < 𝐿) → 0 < 𝐿))
9691, 93, 94, 95syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ (𝑥 + 𝐾) ∧ (𝑥 + 𝐾) < 𝐿) → 0 < 𝐿))
97 0red 11110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → 0 ∈ ℝ)
9880adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → 𝐿 ∈ ℝ)
99 nn0re 12385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑁𝑀) ∈ ℕ0 → (𝑁𝑀) ∈ ℝ)
10099adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → (𝑁𝑀) ∈ ℝ)
101 ltletr 11200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((0 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (𝑁𝑀) ∈ ℝ) → ((0 < 𝐿𝐿 ≤ (𝑁𝑀)) → 0 < (𝑁𝑀)))
10297, 98, 100, 101syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → ((0 < 𝐿𝐿 ≤ (𝑁𝑀)) → 0 < (𝑁𝑀)))
103 elnnnn0b 12420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑁𝑀) ∈ ℕ ↔ ((𝑁𝑀) ∈ ℕ0 ∧ 0 < (𝑁𝑀)))
104103simplbi2 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑁𝑀) ∈ ℕ0 → (0 < (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))
105104adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → (0 < (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))
106102, 105syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → ((0 < 𝐿𝐿 ≤ (𝑁𝑀)) → (𝑁𝑀) ∈ ℕ))
107106exp4b 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐿 ∈ ℤ → ((𝑁𝑀) ∈ ℕ0 → (0 < 𝐿 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
108107com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐿 ∈ ℤ → (0 < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
109108adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
11096, 109syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ (𝑥 + 𝐾) ∧ (𝑥 + 𝐾) < 𝐿) → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
111110expd 415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ (𝑥 + 𝐾) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))
112111a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (0 ≤ (𝑥 + 𝐾) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))))
113112ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑥 + 𝐾) ∈ ℤ → (𝐿 ∈ ℤ → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (0 ≤ (𝑥 + 𝐾) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))))
114113com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑥 + 𝐾) ∈ ℤ → (0 ≤ (𝑥 + 𝐾) → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐿 ∈ ℤ → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))))
115114imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑥 + 𝐾) ∈ ℤ ∧ 0 ≤ (𝑥 + 𝐾)) → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐿 ∈ ℤ → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))))
11690, 115sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥 + 𝐾) ∈ ℕ0 → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐿 ∈ ℤ → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))))
11785, 116mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐿 ∈ ℤ → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))
118117impancom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐾 ∈ ℕ0 → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))
119118impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
120119imp41 425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁𝑀)) → (𝑁𝑀) ∈ ℕ)
121 nn0readdcl 12443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑥 + 𝐾) ∈ ℝ)
122121ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑥 + 𝐾) ∈ ℝ))
123122adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐾 ∈ ℕ0 → (𝑥 + 𝐾) ∈ ℝ))
124123impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑥 + 𝐾) ∈ ℝ)
125 ltletr 11200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑥 + 𝐾) ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (𝑁𝑀) ∈ ℝ) → (((𝑥 + 𝐾) < 𝐿𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) < (𝑁𝑀)))
126124, 81, 99, 125syl2an3an 1424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑁𝑀) ∈ ℕ0) → (((𝑥 + 𝐾) < 𝐿𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) < (𝑁𝑀)))
127126exp4b 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝑁𝑀) ∈ ℕ0 → ((𝑥 + 𝐾) < 𝐿 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) < (𝑁𝑀)))))
128127com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) < (𝑁𝑀)))))
129128imp41 425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) < (𝑁𝑀))
130 elfzo0 13595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)) ↔ ((𝑥 + 𝐾) ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ (𝑥 + 𝐾) < (𝑁𝑀)))
13189, 120, 129, 130syl3anbrc 1344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))
132131exp41 434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
13384, 132sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑥 < (𝐿𝐾) → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
134133ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐾 ∈ ℕ0 → ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝑥 < (𝐿𝐾) → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))))
135134com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐾 ∈ ℕ0 → ((𝑁𝑀) ∈ ℕ0 → (𝑥 < (𝐿𝐾) → ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))))
136135imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 < (𝐿𝐾) → ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
137136com13 88 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝑥 < (𝐿𝐾) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
138137impancom 451 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ0𝑥 < (𝐿𝐾)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
1391383adant2 1131 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℕ0 ∧ (𝐿𝐾) ∈ ℕ ∧ 𝑥 < (𝐿𝐾)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
14075, 139sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (0..^(𝐿𝐾)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
141140com14 96 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ≤ (𝑁𝑀) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
142141adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
143142com12 32 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℤ → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
1441433ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
145144imp 406 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
14674, 145sylbi 217 . . . . . . . . . . . . . . 15 (𝐿 ∈ (𝐾...(𝑁𝑀)) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
147146com12 32 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
1481473adant3 1132 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0𝐾 ≤ (𝑁𝑀)) → (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
14973, 148sylbi 217 . . . . . . . . . . . 12 (𝐾 ∈ (0...(𝑁𝑀)) → (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
150149imp 406 . . . . . . . . . . 11 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))
151150adantl 481 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))
152151adantr 480 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))
153152imp 406 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))
154 swrdfv 14551 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)) = (𝑊‘((𝑥 + 𝐾) + 𝑀)))
15572, 153, 154syl2anc 584 . . . . . . 7 (((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)) = (𝑊‘((𝑥 + 𝐾) + 𝑀)))
156155mpteq2dva 5179 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀))))
157156fveq1d 6819 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)))‘𝑦) = ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦))
15825adantr 480 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))))
15931, 33, 353anim123i 1151 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈ ℂ))
1601593expa 1118 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈ ℂ))
161160, 38syl 17 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
162161exp31 419 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (𝐿 ∈ ℤ → (𝐾 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
163162com3l 89 . . . . . . . . . . . . . 14 (𝐿 ∈ ℤ → (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
16429, 163syl 17 . . . . . . . . . . . . 13 (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
16530, 164mpan9 506 . . . . . . . . . . . 12 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
16628, 165syl5com 31 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
1671663ad2ant3 1135 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
168167imp 406 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
169168oveq2d 7357 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (0..^(𝐿𝐾)) = (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
170169eleq2d 2817 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑦 ∈ (0..^(𝐿𝐾)) ↔ 𝑦 ∈ (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
171170biimpa 476 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → 𝑦 ∈ (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
172 swrdfv 14551 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))) ∧ 𝑦 ∈ (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾)))) → ((𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)‘𝑦) = (𝑊‘(𝑦 + (𝑀 + 𝐾))))
173158, 171, 172syl2anc 584 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)‘𝑦) = (𝑊‘(𝑦 + (𝑀 + 𝐾))))
17471, 157, 1733eqtr4d 2776 . . . 4 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)))‘𝑦) = ((𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)‘𝑦))
17524, 47, 174eqfnfvd 6962 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩))
17620, 175eqtrd 2766 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩))
177176ex 412 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  cop 4577   class class class wbr 5086  cmpt 5167   Fn wfn 6471  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001   + caddc 11004   < clt 11141  cle 11142  cmin 11339  cn 12120  0cn0 12376  cz 12463  cuz 12727  ...cfz 13402  ..^cfzo 13549  chash 14232  Word cword 14415   substr csubstr 14543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-fzo 13550  df-hash 14233  df-word 14416  df-substr 14544
This theorem is referenced by:  pfxswrd  14608  swrdpfx  14609
  Copyright terms: Public domain W3C validator