Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1mulgsumlem2 Structured version   Visualization version   GIF version

Theorem ply1mulgsumlem2 44795
Description: Lemma 2 for ply1mulgsum 44798. (Contributed by AV, 19-Oct-2019.)
Hypotheses
Ref Expression
ply1mulgsum.p 𝑃 = (Poly1𝑅)
ply1mulgsum.b 𝐵 = (Base‘𝑃)
ply1mulgsum.a 𝐴 = (coe1𝐾)
ply1mulgsum.c 𝐶 = (coe1𝐿)
ply1mulgsum.x 𝑋 = (var1𝑅)
ply1mulgsum.pm × = (.r𝑃)
ply1mulgsum.sm · = ( ·𝑠𝑃)
ply1mulgsum.rm = (.r𝑅)
ply1mulgsum.m 𝑀 = (mulGrp‘𝑃)
ply1mulgsum.e = (.g𝑀)
Assertion
Ref Expression
ply1mulgsumlem2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
Distinct variable groups:   𝐴,𝑛,𝑠   𝐵,𝑛,𝑠   𝐶,𝑛,𝑠   𝑛,𝐾,𝑠   𝑛,𝐿,𝑠   𝑅,𝑛,𝑠   𝐴,𝑙,𝑛   𝐵,𝑙   𝐶,𝑙   𝐾,𝑙   𝐿,𝑙   𝑅,𝑙,𝑠   ,𝑠
Allowed substitution hints:   𝑃(𝑛,𝑠,𝑙)   · (𝑛,𝑠,𝑙)   × (𝑛,𝑠,𝑙)   (𝑛,𝑠,𝑙)   (𝑛,𝑙)   𝑀(𝑛,𝑠,𝑙)   𝑋(𝑛,𝑠,𝑙)

Proof of Theorem ply1mulgsumlem2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1mulgsum.p . . 3 𝑃 = (Poly1𝑅)
2 ply1mulgsum.b . . 3 𝐵 = (Base‘𝑃)
3 ply1mulgsum.a . . 3 𝐴 = (coe1𝐾)
4 ply1mulgsum.c . . 3 𝐶 = (coe1𝐿)
5 ply1mulgsum.x . . 3 𝑋 = (var1𝑅)
6 ply1mulgsum.pm . . 3 × = (.r𝑃)
7 ply1mulgsum.sm . . 3 · = ( ·𝑠𝑃)
8 ply1mulgsum.rm . . 3 = (.r𝑅)
9 ply1mulgsum.m . . 3 𝑀 = (mulGrp‘𝑃)
10 ply1mulgsum.e . . 3 = (.g𝑀)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ply1mulgsumlem1 44794 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑧 ∈ ℕ0𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))))
12 2nn0 11902 . . . . . . . 8 2 ∈ ℕ0
1312a1i 11 . . . . . . 7 (𝑧 ∈ ℕ0 → 2 ∈ ℕ0)
14 id 22 . . . . . . 7 (𝑧 ∈ ℕ0𝑧 ∈ ℕ0)
1513, 14nn0mulcld 11948 . . . . . 6 (𝑧 ∈ ℕ0 → (2 · 𝑧) ∈ ℕ0)
1615ad2antrr 725 . . . . 5 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (2 · 𝑧) ∈ ℕ0)
17 breq1 5033 . . . . . . . 8 (𝑠 = (2 · 𝑧) → (𝑠 < 𝑛 ↔ (2 · 𝑧) < 𝑛))
1817imbi1d 345 . . . . . . 7 (𝑠 = (2 · 𝑧) → ((𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) ↔ ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
1918ralbidv 3162 . . . . . 6 (𝑠 = (2 · 𝑧) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) ↔ ∀𝑛 ∈ ℕ0 ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
2019adantl 485 . . . . 5 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑠 = (2 · 𝑧)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) ↔ ∀𝑛 ∈ ℕ0 ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
21 2re 11699 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ
2221a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℕ0 → 2 ∈ ℝ)
23 nn0re 11894 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℕ0𝑧 ∈ ℝ)
2422, 23remulcld 10660 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℕ0 → (2 · 𝑧) ∈ ℝ)
2524ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (2 · 𝑧) ∈ ℝ)
26 nn0re 11894 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
2726adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℝ)
2827adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑛 ∈ ℝ)
29 elfznn0 12995 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 ∈ (0...𝑛) → 𝑙 ∈ ℕ0)
30 nn0re 11894 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 ∈ ℕ0𝑙 ∈ ℝ)
3129, 30syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 ∈ (0...𝑛) → 𝑙 ∈ ℝ)
3231adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑙 ∈ ℝ)
3325, 28, 32ltsub1d 11238 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) < 𝑛 ↔ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)))
3423ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑧 ∈ ℝ)
3532, 34, 25lesub2d 11237 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑙𝑧 ↔ ((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙)))
3635adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → (𝑙𝑧 ↔ ((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙)))
3724, 23resubcld 11057 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ ℕ0 → ((2 · 𝑧) − 𝑧) ∈ ℝ)
3837ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) − 𝑧) ∈ ℝ)
3924adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑧) ∈ ℝ)
40 resubcl 10939 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((2 · 𝑧) ∈ ℝ ∧ 𝑙 ∈ ℝ) → ((2 · 𝑧) − 𝑙) ∈ ℝ)
4139, 31, 40syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) − 𝑙) ∈ ℝ)
42 resubcl 10939 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 ∈ ℝ ∧ 𝑙 ∈ ℝ) → (𝑛𝑙) ∈ ℝ)
4327, 31, 42syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) ∈ ℝ)
44 lelttr 10720 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((2 · 𝑧) − 𝑧) ∈ ℝ ∧ ((2 · 𝑧) − 𝑙) ∈ ℝ ∧ (𝑛𝑙) ∈ ℝ) → ((((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → ((2 · 𝑧) − 𝑧) < (𝑛𝑙)))
4538, 41, 43, 44syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → ((2 · 𝑧) − 𝑧) < (𝑛𝑙)))
46 nn0cn 11895 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ ℕ0𝑧 ∈ ℂ)
47 2txmxeqx 11765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ ℂ → ((2 · 𝑧) − 𝑧) = 𝑧)
4846, 47syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ ℕ0 → ((2 · 𝑧) − 𝑧) = 𝑧)
4948ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) − 𝑧) = 𝑧)
5049breq1d 5040 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (((2 · 𝑧) − 𝑧) < (𝑛𝑙) ↔ 𝑧 < (𝑛𝑙)))
5145, 50sylibd 242 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → 𝑧 < (𝑛𝑙)))
5251expcomd 420 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (((2 · 𝑧) − 𝑙) < (𝑛𝑙) → (((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) → 𝑧 < (𝑛𝑙))))
5352imp 410 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → (((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) → 𝑧 < (𝑛𝑙)))
5436, 53sylbid 243 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → (𝑙𝑧𝑧 < (𝑛𝑙)))
5554ex 416 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (((2 · 𝑧) − 𝑙) < (𝑛𝑙) → (𝑙𝑧𝑧 < (𝑛𝑙))))
5633, 55sylbid 243 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) < 𝑛 → (𝑙𝑧𝑧 < (𝑛𝑙))))
5756ex 416 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑙 ∈ (0...𝑛) → ((2 · 𝑧) < 𝑛 → (𝑙𝑧𝑧 < (𝑛𝑙)))))
5857com23 86 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → ((2 · 𝑧) < 𝑛 → (𝑙 ∈ (0...𝑛) → (𝑙𝑧𝑧 < (𝑛𝑙)))))
5958ex 416 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ0 → (𝑛 ∈ ℕ0 → ((2 · 𝑧) < 𝑛 → (𝑙 ∈ (0...𝑛) → (𝑙𝑧𝑧 < (𝑛𝑙))))))
6059ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (𝑛 ∈ ℕ0 → ((2 · 𝑧) < 𝑛 → (𝑙 ∈ (0...𝑛) → (𝑙𝑧𝑧 < (𝑛𝑙))))))
6160imp41 429 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝑙𝑧𝑧 < (𝑛𝑙)))
6261impcom 411 . . . . . . . . . . . . . 14 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → 𝑧 < (𝑛𝑙))
63 fznn0sub2 13009 . . . . . . . . . . . . . . . . . . 19 (𝑙 ∈ (0...𝑛) → (𝑛𝑙) ∈ (0...𝑛))
64 elfznn0 12995 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑙) ∈ (0...𝑛) → (𝑛𝑙) ∈ ℕ0)
65 breq2 5034 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑛𝑙) → (𝑧 < 𝑥𝑧 < (𝑛𝑙)))
66 fveqeq2 6654 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑛𝑙) → ((𝐴𝑥) = (0g𝑅) ↔ (𝐴‘(𝑛𝑙)) = (0g𝑅)))
67 fveqeq2 6654 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑛𝑙) → ((𝐶𝑥) = (0g𝑅) ↔ (𝐶‘(𝑛𝑙)) = (0g𝑅)))
6866, 67anbi12d 633 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑛𝑙) → (((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)) ↔ ((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅))))
6965, 68imbi12d 348 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑛𝑙) → ((𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) ↔ (𝑧 < (𝑛𝑙) → ((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅)))))
7069rspcva 3569 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛𝑙) ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < (𝑛𝑙) → ((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅))))
71 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅)) → (𝐶‘(𝑛𝑙)) = (0g𝑅))
7270, 71syl6 35 . . . . . . . . . . . . . . . . . . . 20 (((𝑛𝑙) ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅)))
7372ex 416 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑙) ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7463, 64, 733syl 18 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ (0...𝑛) → (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7574com12 32 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑙 ∈ (0...𝑛) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7675ad4antlr 732 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7776imp 410 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅)))
7877adantl 485 . . . . . . . . . . . . . 14 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅)))
7962, 78mpd 15 . . . . . . . . . . . . 13 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐶‘(𝑛𝑙)) = (0g𝑅))
8079oveq2d 7151 . . . . . . . . . . . 12 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = ((𝐴𝑙) (0g𝑅)))
81 simplr1 1212 . . . . . . . . . . . . . . 15 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
8281ad2antrr 725 . . . . . . . . . . . . . 14 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → 𝑅 ∈ Ring)
8382adantl 485 . . . . . . . . . . . . 13 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → 𝑅 ∈ Ring)
84 simplr2 1213 . . . . . . . . . . . . . . . . 17 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝐾𝐵)
8584adantr 484 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → 𝐾𝐵)
8685, 29anim12i 615 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝐾𝐵𝑙 ∈ ℕ0))
8786adantl 485 . . . . . . . . . . . . . 14 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐾𝐵𝑙 ∈ ℕ0))
88 eqid 2798 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
893, 2, 1, 88coe1fvalcl 20841 . . . . . . . . . . . . . 14 ((𝐾𝐵𝑙 ∈ ℕ0) → (𝐴𝑙) ∈ (Base‘𝑅))
9087, 89syl 17 . . . . . . . . . . . . 13 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐴𝑙) ∈ (Base‘𝑅))
91 eqid 2798 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
9288, 8, 91ringrz 19334 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐴𝑙) ∈ (Base‘𝑅)) → ((𝐴𝑙) (0g𝑅)) = (0g𝑅))
9383, 90, 92syl2anc 587 . . . . . . . . . . . 12 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (0g𝑅)) = (0g𝑅))
9480, 93eqtrd 2833 . . . . . . . . . . 11 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (0g𝑅))
95 ltnle 10709 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ ∧ 𝑙 ∈ ℝ) → (𝑧 < 𝑙 ↔ ¬ 𝑙𝑧))
9623, 30, 95syl2an 598 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℕ0𝑙 ∈ ℕ0) → (𝑧 < 𝑙 ↔ ¬ 𝑙𝑧))
9796bicomd 226 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℕ0𝑙 ∈ ℕ0) → (¬ 𝑙𝑧𝑧 < 𝑙))
9897expcom 417 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ ℕ0 → (𝑧 ∈ ℕ0 → (¬ 𝑙𝑧𝑧 < 𝑙)))
9998, 29syl11 33 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ0 → (𝑙 ∈ (0...𝑛) → (¬ 𝑙𝑧𝑧 < 𝑙)))
10099ad4antr 731 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) → (¬ 𝑙𝑧𝑧 < 𝑙)))
101100imp 410 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (¬ 𝑙𝑧𝑧 < 𝑙))
102 breq2 5034 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑙 → (𝑧 < 𝑥𝑧 < 𝑙))
103 fveqeq2 6654 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑙 → ((𝐴𝑥) = (0g𝑅) ↔ (𝐴𝑙) = (0g𝑅)))
104 fveqeq2 6654 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑙 → ((𝐶𝑥) = (0g𝑅) ↔ (𝐶𝑙) = (0g𝑅)))
105103, 104anbi12d 633 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑙 → (((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)) ↔ ((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅))))
106102, 105imbi12d 348 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑙 → ((𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) ↔ (𝑧 < 𝑙 → ((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅)))))
107106rspcva 3569 . . . . . . . . . . . . . . . . . . . 20 ((𝑙 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < 𝑙 → ((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅))))
108 simpl 486 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅)) → (𝐴𝑙) = (0g𝑅))
109107, 108syl6 35 . . . . . . . . . . . . . . . . . . 19 ((𝑙 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅)))
110109ex 416 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅))))
111110, 29syl11 33 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑙 ∈ (0...𝑛) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅))))
112111ad4antlr 732 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅))))
113112imp 410 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅)))
114101, 113sylbid 243 . . . . . . . . . . . . . 14 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (¬ 𝑙𝑧 → (𝐴𝑙) = (0g𝑅)))
115114impcom 411 . . . . . . . . . . . . 13 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐴𝑙) = (0g𝑅))
116115oveq1d 7150 . . . . . . . . . . . 12 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = ((0g𝑅) (𝐶‘(𝑛𝑙))))
11782adantl 485 . . . . . . . . . . . . 13 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → 𝑅 ∈ Ring)
118 simplr3 1214 . . . . . . . . . . . . . . . . 17 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝐿𝐵)
119118adantr 484 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → 𝐿𝐵)
120 fznn0sub 12934 . . . . . . . . . . . . . . . 16 (𝑙 ∈ (0...𝑛) → (𝑛𝑙) ∈ ℕ0)
121119, 120anim12i 615 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝐿𝐵 ∧ (𝑛𝑙) ∈ ℕ0))
122121adantl 485 . . . . . . . . . . . . . 14 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐿𝐵 ∧ (𝑛𝑙) ∈ ℕ0))
1234, 2, 1, 88coe1fvalcl 20841 . . . . . . . . . . . . . 14 ((𝐿𝐵 ∧ (𝑛𝑙) ∈ ℕ0) → (𝐶‘(𝑛𝑙)) ∈ (Base‘𝑅))
124122, 123syl 17 . . . . . . . . . . . . 13 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐶‘(𝑛𝑙)) ∈ (Base‘𝑅))
12588, 8, 91ringlz 19333 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐶‘(𝑛𝑙)) ∈ (Base‘𝑅)) → ((0g𝑅) (𝐶‘(𝑛𝑙))) = (0g𝑅))
126117, 124, 125syl2anc 587 . . . . . . . . . . . 12 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((0g𝑅) (𝐶‘(𝑛𝑙))) = (0g𝑅))
127116, 126eqtrd 2833 . . . . . . . . . . 11 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (0g𝑅))
12894, 127pm2.61ian 811 . . . . . . . . . 10 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (0g𝑅))
129128mpteq2dva 5125 . . . . . . . . 9 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ (0g𝑅)))
130129oveq2d 7151 . . . . . . . 8 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ (0g𝑅))))
131 ringmnd 19300 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1321313ad2ant1 1130 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑅 ∈ Mnd)
133 ovex 7168 . . . . . . . . . . 11 (0...𝑛) ∈ V
134132, 133jctir 524 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V))
135134ad3antlr 730 . . . . . . . . 9 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V))
13691gsumz 17992 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ (0g𝑅))) = (0g𝑅))
137135, 136syl 17 . . . . . . . 8 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ (0g𝑅))) = (0g𝑅))
138130, 137eqtrd 2833 . . . . . . 7 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))
139138ex 416 . . . . . 6 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
140139ralrimiva 3149 . . . . 5 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → ∀𝑛 ∈ ℕ0 ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
14116, 20, 140rspcedvd 3574 . . . 4 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
142141ex 416 . . 3 ((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
143142rexlimiva 3240 . 2 (∃𝑧 ∈ ℕ0𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
14411, 143mpcom 38 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  Vcvv 3441   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526   · cmul 10531   < clt 10664  cle 10665  cmin 10859  2c2 11680  0cn0 11885  ...cfz 12885  Basecbs 16475  .rcmulr 16558   ·𝑠 cvsca 16561  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17903  .gcmg 18216  mulGrpcmgp 19232  Ringcrg 19290  var1cv1 20805  Poly1cpl1 20806  coe1cco1 20807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-seq 13365  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-ple 16577  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-mgp 19233  df-ring 19292  df-psr 20594  df-mpl 20596  df-opsr 20598  df-psr1 20809  df-ply1 20811  df-coe1 20812
This theorem is referenced by:  ply1mulgsumlem3  44796  ply1mulgsumlem4  44797
  Copyright terms: Public domain W3C validator