Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1mulgsumlem2 Structured version   Visualization version   GIF version

Theorem ply1mulgsumlem2 48380
Description: Lemma 2 for ply1mulgsum 48383. (Contributed by AV, 19-Oct-2019.)
Hypotheses
Ref Expression
ply1mulgsum.p 𝑃 = (Poly1𝑅)
ply1mulgsum.b 𝐵 = (Base‘𝑃)
ply1mulgsum.a 𝐴 = (coe1𝐾)
ply1mulgsum.c 𝐶 = (coe1𝐿)
ply1mulgsum.x 𝑋 = (var1𝑅)
ply1mulgsum.pm × = (.r𝑃)
ply1mulgsum.sm · = ( ·𝑠𝑃)
ply1mulgsum.rm = (.r𝑅)
ply1mulgsum.m 𝑀 = (mulGrp‘𝑃)
ply1mulgsum.e = (.g𝑀)
Assertion
Ref Expression
ply1mulgsumlem2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
Distinct variable groups:   𝐴,𝑛,𝑠   𝐵,𝑛,𝑠   𝐶,𝑛,𝑠   𝑛,𝐾,𝑠   𝑛,𝐿,𝑠   𝑅,𝑛,𝑠   𝐴,𝑙,𝑛   𝐵,𝑙   𝐶,𝑙   𝐾,𝑙   𝐿,𝑙   𝑅,𝑙,𝑠   ,𝑠
Allowed substitution hints:   𝑃(𝑛,𝑠,𝑙)   · (𝑛,𝑠,𝑙)   × (𝑛,𝑠,𝑙)   (𝑛,𝑠,𝑙)   (𝑛,𝑙)   𝑀(𝑛,𝑠,𝑙)   𝑋(𝑛,𝑠,𝑙)

Proof of Theorem ply1mulgsumlem2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1mulgsum.p . . 3 𝑃 = (Poly1𝑅)
2 ply1mulgsum.b . . 3 𝐵 = (Base‘𝑃)
3 ply1mulgsum.a . . 3 𝐴 = (coe1𝐾)
4 ply1mulgsum.c . . 3 𝐶 = (coe1𝐿)
5 ply1mulgsum.x . . 3 𝑋 = (var1𝑅)
6 ply1mulgsum.pm . . 3 × = (.r𝑃)
7 ply1mulgsum.sm . . 3 · = ( ·𝑠𝑃)
8 ply1mulgsum.rm . . 3 = (.r𝑅)
9 ply1mulgsum.m . . 3 𝑀 = (mulGrp‘𝑃)
10 ply1mulgsum.e . . 3 = (.g𝑀)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ply1mulgsumlem1 48379 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑧 ∈ ℕ0𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))))
12 2nn0 12466 . . . . . . . 8 2 ∈ ℕ0
1312a1i 11 . . . . . . 7 (𝑧 ∈ ℕ0 → 2 ∈ ℕ0)
14 id 22 . . . . . . 7 (𝑧 ∈ ℕ0𝑧 ∈ ℕ0)
1513, 14nn0mulcld 12515 . . . . . 6 (𝑧 ∈ ℕ0 → (2 · 𝑧) ∈ ℕ0)
1615ad2antrr 726 . . . . 5 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (2 · 𝑧) ∈ ℕ0)
17 breq1 5113 . . . . . . . 8 (𝑠 = (2 · 𝑧) → (𝑠 < 𝑛 ↔ (2 · 𝑧) < 𝑛))
1817imbi1d 341 . . . . . . 7 (𝑠 = (2 · 𝑧) → ((𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) ↔ ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
1918ralbidv 3157 . . . . . 6 (𝑠 = (2 · 𝑧) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) ↔ ∀𝑛 ∈ ℕ0 ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
2019adantl 481 . . . . 5 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑠 = (2 · 𝑧)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) ↔ ∀𝑛 ∈ ℕ0 ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
21 2re 12267 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ
2221a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℕ0 → 2 ∈ ℝ)
23 nn0re 12458 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℕ0𝑧 ∈ ℝ)
2422, 23remulcld 11211 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℕ0 → (2 · 𝑧) ∈ ℝ)
2524ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (2 · 𝑧) ∈ ℝ)
26 nn0re 12458 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
2726adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℝ)
2827adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑛 ∈ ℝ)
29 elfznn0 13588 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 ∈ (0...𝑛) → 𝑙 ∈ ℕ0)
30 nn0re 12458 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 ∈ ℕ0𝑙 ∈ ℝ)
3129, 30syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 ∈ (0...𝑛) → 𝑙 ∈ ℝ)
3231adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑙 ∈ ℝ)
3325, 28, 32ltsub1d 11794 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) < 𝑛 ↔ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)))
3423ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑧 ∈ ℝ)
3532, 34, 25lesub2d 11793 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑙𝑧 ↔ ((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙)))
3635adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → (𝑙𝑧 ↔ ((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙)))
3724, 23resubcld 11613 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ ℕ0 → ((2 · 𝑧) − 𝑧) ∈ ℝ)
3837ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) − 𝑧) ∈ ℝ)
3924adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑧) ∈ ℝ)
40 resubcl 11493 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((2 · 𝑧) ∈ ℝ ∧ 𝑙 ∈ ℝ) → ((2 · 𝑧) − 𝑙) ∈ ℝ)
4139, 31, 40syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) − 𝑙) ∈ ℝ)
42 resubcl 11493 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 ∈ ℝ ∧ 𝑙 ∈ ℝ) → (𝑛𝑙) ∈ ℝ)
4327, 31, 42syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) ∈ ℝ)
44 lelttr 11271 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((2 · 𝑧) − 𝑧) ∈ ℝ ∧ ((2 · 𝑧) − 𝑙) ∈ ℝ ∧ (𝑛𝑙) ∈ ℝ) → ((((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → ((2 · 𝑧) − 𝑧) < (𝑛𝑙)))
4538, 41, 43, 44syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → ((2 · 𝑧) − 𝑧) < (𝑛𝑙)))
46 nn0cn 12459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ ℕ0𝑧 ∈ ℂ)
47 2txmxeqx 12328 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ ℂ → ((2 · 𝑧) − 𝑧) = 𝑧)
4846, 47syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ ℕ0 → ((2 · 𝑧) − 𝑧) = 𝑧)
4948ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) − 𝑧) = 𝑧)
5049breq1d 5120 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (((2 · 𝑧) − 𝑧) < (𝑛𝑙) ↔ 𝑧 < (𝑛𝑙)))
5145, 50sylibd 239 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → 𝑧 < (𝑛𝑙)))
5251expcomd 416 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (((2 · 𝑧) − 𝑙) < (𝑛𝑙) → (((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) → 𝑧 < (𝑛𝑙))))
5352imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → (((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) → 𝑧 < (𝑛𝑙)))
5436, 53sylbid 240 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → (𝑙𝑧𝑧 < (𝑛𝑙)))
5554ex 412 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (((2 · 𝑧) − 𝑙) < (𝑛𝑙) → (𝑙𝑧𝑧 < (𝑛𝑙))))
5633, 55sylbid 240 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) < 𝑛 → (𝑙𝑧𝑧 < (𝑛𝑙))))
5756ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑙 ∈ (0...𝑛) → ((2 · 𝑧) < 𝑛 → (𝑙𝑧𝑧 < (𝑛𝑙)))))
5857com23 86 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → ((2 · 𝑧) < 𝑛 → (𝑙 ∈ (0...𝑛) → (𝑙𝑧𝑧 < (𝑛𝑙)))))
5958ex 412 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ0 → (𝑛 ∈ ℕ0 → ((2 · 𝑧) < 𝑛 → (𝑙 ∈ (0...𝑛) → (𝑙𝑧𝑧 < (𝑛𝑙))))))
6059ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (𝑛 ∈ ℕ0 → ((2 · 𝑧) < 𝑛 → (𝑙 ∈ (0...𝑛) → (𝑙𝑧𝑧 < (𝑛𝑙))))))
6160imp41 425 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝑙𝑧𝑧 < (𝑛𝑙)))
6261impcom 407 . . . . . . . . . . . . . 14 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → 𝑧 < (𝑛𝑙))
63 fznn0sub2 13603 . . . . . . . . . . . . . . . . . . 19 (𝑙 ∈ (0...𝑛) → (𝑛𝑙) ∈ (0...𝑛))
64 elfznn0 13588 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑙) ∈ (0...𝑛) → (𝑛𝑙) ∈ ℕ0)
65 breq2 5114 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑛𝑙) → (𝑧 < 𝑥𝑧 < (𝑛𝑙)))
66 fveqeq2 6870 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑛𝑙) → ((𝐴𝑥) = (0g𝑅) ↔ (𝐴‘(𝑛𝑙)) = (0g𝑅)))
67 fveqeq2 6870 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑛𝑙) → ((𝐶𝑥) = (0g𝑅) ↔ (𝐶‘(𝑛𝑙)) = (0g𝑅)))
6866, 67anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑛𝑙) → (((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)) ↔ ((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅))))
6965, 68imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑛𝑙) → ((𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) ↔ (𝑧 < (𝑛𝑙) → ((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅)))))
7069rspcva 3589 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛𝑙) ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < (𝑛𝑙) → ((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅))))
71 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅)) → (𝐶‘(𝑛𝑙)) = (0g𝑅))
7270, 71syl6 35 . . . . . . . . . . . . . . . . . . . 20 (((𝑛𝑙) ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅)))
7372ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑙) ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7463, 64, 733syl 18 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ (0...𝑛) → (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7574com12 32 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑙 ∈ (0...𝑛) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7675ad4antlr 733 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7776imp 406 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅)))
7877adantl 481 . . . . . . . . . . . . . 14 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅)))
7962, 78mpd 15 . . . . . . . . . . . . 13 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐶‘(𝑛𝑙)) = (0g𝑅))
8079oveq2d 7406 . . . . . . . . . . . 12 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = ((𝐴𝑙) (0g𝑅)))
81 simplr1 1216 . . . . . . . . . . . . . . 15 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
8281ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → 𝑅 ∈ Ring)
8382adantl 481 . . . . . . . . . . . . 13 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → 𝑅 ∈ Ring)
84 simplr2 1217 . . . . . . . . . . . . . . . . 17 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝐾𝐵)
8584adantr 480 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → 𝐾𝐵)
8685, 29anim12i 613 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝐾𝐵𝑙 ∈ ℕ0))
8786adantl 481 . . . . . . . . . . . . . 14 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐾𝐵𝑙 ∈ ℕ0))
88 eqid 2730 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
893, 2, 1, 88coe1fvalcl 22104 . . . . . . . . . . . . . 14 ((𝐾𝐵𝑙 ∈ ℕ0) → (𝐴𝑙) ∈ (Base‘𝑅))
9087, 89syl 17 . . . . . . . . . . . . 13 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐴𝑙) ∈ (Base‘𝑅))
91 eqid 2730 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
9288, 8, 91ringrz 20210 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐴𝑙) ∈ (Base‘𝑅)) → ((𝐴𝑙) (0g𝑅)) = (0g𝑅))
9383, 90, 92syl2anc 584 . . . . . . . . . . . 12 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (0g𝑅)) = (0g𝑅))
9480, 93eqtrd 2765 . . . . . . . . . . 11 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (0g𝑅))
95 ltnle 11260 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ ∧ 𝑙 ∈ ℝ) → (𝑧 < 𝑙 ↔ ¬ 𝑙𝑧))
9623, 30, 95syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℕ0𝑙 ∈ ℕ0) → (𝑧 < 𝑙 ↔ ¬ 𝑙𝑧))
9796bicomd 223 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℕ0𝑙 ∈ ℕ0) → (¬ 𝑙𝑧𝑧 < 𝑙))
9897expcom 413 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ ℕ0 → (𝑧 ∈ ℕ0 → (¬ 𝑙𝑧𝑧 < 𝑙)))
9998, 29syl11 33 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ0 → (𝑙 ∈ (0...𝑛) → (¬ 𝑙𝑧𝑧 < 𝑙)))
10099ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) → (¬ 𝑙𝑧𝑧 < 𝑙)))
101100imp 406 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (¬ 𝑙𝑧𝑧 < 𝑙))
102 breq2 5114 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑙 → (𝑧 < 𝑥𝑧 < 𝑙))
103 fveqeq2 6870 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑙 → ((𝐴𝑥) = (0g𝑅) ↔ (𝐴𝑙) = (0g𝑅)))
104 fveqeq2 6870 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑙 → ((𝐶𝑥) = (0g𝑅) ↔ (𝐶𝑙) = (0g𝑅)))
105103, 104anbi12d 632 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑙 → (((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)) ↔ ((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅))))
106102, 105imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑙 → ((𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) ↔ (𝑧 < 𝑙 → ((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅)))))
107106rspcva 3589 . . . . . . . . . . . . . . . . . . . 20 ((𝑙 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < 𝑙 → ((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅))))
108 simpl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅)) → (𝐴𝑙) = (0g𝑅))
109107, 108syl6 35 . . . . . . . . . . . . . . . . . . 19 ((𝑙 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅)))
110109ex 412 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅))))
111110, 29syl11 33 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑙 ∈ (0...𝑛) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅))))
112111ad4antlr 733 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅))))
113112imp 406 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅)))
114101, 113sylbid 240 . . . . . . . . . . . . . 14 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (¬ 𝑙𝑧 → (𝐴𝑙) = (0g𝑅)))
115114impcom 407 . . . . . . . . . . . . 13 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐴𝑙) = (0g𝑅))
116115oveq1d 7405 . . . . . . . . . . . 12 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = ((0g𝑅) (𝐶‘(𝑛𝑙))))
11782adantl 481 . . . . . . . . . . . . 13 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → 𝑅 ∈ Ring)
118 simplr3 1218 . . . . . . . . . . . . . . . . 17 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝐿𝐵)
119118adantr 480 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → 𝐿𝐵)
120 fznn0sub 13524 . . . . . . . . . . . . . . . 16 (𝑙 ∈ (0...𝑛) → (𝑛𝑙) ∈ ℕ0)
121119, 120anim12i 613 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝐿𝐵 ∧ (𝑛𝑙) ∈ ℕ0))
122121adantl 481 . . . . . . . . . . . . . 14 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐿𝐵 ∧ (𝑛𝑙) ∈ ℕ0))
1234, 2, 1, 88coe1fvalcl 22104 . . . . . . . . . . . . . 14 ((𝐿𝐵 ∧ (𝑛𝑙) ∈ ℕ0) → (𝐶‘(𝑛𝑙)) ∈ (Base‘𝑅))
124122, 123syl 17 . . . . . . . . . . . . 13 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐶‘(𝑛𝑙)) ∈ (Base‘𝑅))
12588, 8, 91ringlz 20209 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐶‘(𝑛𝑙)) ∈ (Base‘𝑅)) → ((0g𝑅) (𝐶‘(𝑛𝑙))) = (0g𝑅))
126117, 124, 125syl2anc 584 . . . . . . . . . . . 12 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((0g𝑅) (𝐶‘(𝑛𝑙))) = (0g𝑅))
127116, 126eqtrd 2765 . . . . . . . . . . 11 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (0g𝑅))
12894, 127pm2.61ian 811 . . . . . . . . . 10 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (0g𝑅))
129128mpteq2dva 5203 . . . . . . . . 9 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ (0g𝑅)))
130129oveq2d 7406 . . . . . . . 8 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ (0g𝑅))))
131 ringmnd 20159 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1321313ad2ant1 1133 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑅 ∈ Mnd)
133 ovex 7423 . . . . . . . . . . 11 (0...𝑛) ∈ V
134132, 133jctir 520 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V))
135134ad3antlr 731 . . . . . . . . 9 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V))
13691gsumz 18770 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ (0g𝑅))) = (0g𝑅))
137135, 136syl 17 . . . . . . . 8 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ (0g𝑅))) = (0g𝑅))
138130, 137eqtrd 2765 . . . . . . 7 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))
139138ex 412 . . . . . 6 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
140139ralrimiva 3126 . . . . 5 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → ∀𝑛 ∈ ℕ0 ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
14116, 20, 140rspcedvd 3593 . . . 4 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
142141ex 412 . . 3 ((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
143142rexlimiva 3127 . 2 (∃𝑧 ∈ ℕ0𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
14411, 143mpcom 38 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   · cmul 11080   < clt 11215  cle 11216  cmin 11412  2c2 12248  0cn0 12449  ...cfz 13475  Basecbs 17186  .rcmulr 17228   ·𝑠 cvsca 17231  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  .gcmg 19006  mulGrpcmgp 20056  Ringcrg 20149  var1cv1 22067  Poly1cpl1 22068  coe1cco1 22069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-seq 13974  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-tset 17246  df-ple 17247  df-0g 17411  df-gsum 17412  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-psr 21825  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-ply1 22073  df-coe1 22074
This theorem is referenced by:  ply1mulgsumlem3  48381  ply1mulgsumlem4  48382
  Copyright terms: Public domain W3C validator