Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1mulgsumlem2 Structured version   Visualization version   GIF version

Theorem ply1mulgsumlem2 48304
Description: Lemma 2 for ply1mulgsum 48307. (Contributed by AV, 19-Oct-2019.)
Hypotheses
Ref Expression
ply1mulgsum.p 𝑃 = (Poly1𝑅)
ply1mulgsum.b 𝐵 = (Base‘𝑃)
ply1mulgsum.a 𝐴 = (coe1𝐾)
ply1mulgsum.c 𝐶 = (coe1𝐿)
ply1mulgsum.x 𝑋 = (var1𝑅)
ply1mulgsum.pm × = (.r𝑃)
ply1mulgsum.sm · = ( ·𝑠𝑃)
ply1mulgsum.rm = (.r𝑅)
ply1mulgsum.m 𝑀 = (mulGrp‘𝑃)
ply1mulgsum.e = (.g𝑀)
Assertion
Ref Expression
ply1mulgsumlem2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
Distinct variable groups:   𝐴,𝑛,𝑠   𝐵,𝑛,𝑠   𝐶,𝑛,𝑠   𝑛,𝐾,𝑠   𝑛,𝐿,𝑠   𝑅,𝑛,𝑠   𝐴,𝑙,𝑛   𝐵,𝑙   𝐶,𝑙   𝐾,𝑙   𝐿,𝑙   𝑅,𝑙,𝑠   ,𝑠
Allowed substitution hints:   𝑃(𝑛,𝑠,𝑙)   · (𝑛,𝑠,𝑙)   × (𝑛,𝑠,𝑙)   (𝑛,𝑠,𝑙)   (𝑛,𝑙)   𝑀(𝑛,𝑠,𝑙)   𝑋(𝑛,𝑠,𝑙)

Proof of Theorem ply1mulgsumlem2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1mulgsum.p . . 3 𝑃 = (Poly1𝑅)
2 ply1mulgsum.b . . 3 𝐵 = (Base‘𝑃)
3 ply1mulgsum.a . . 3 𝐴 = (coe1𝐾)
4 ply1mulgsum.c . . 3 𝐶 = (coe1𝐿)
5 ply1mulgsum.x . . 3 𝑋 = (var1𝑅)
6 ply1mulgsum.pm . . 3 × = (.r𝑃)
7 ply1mulgsum.sm . . 3 · = ( ·𝑠𝑃)
8 ply1mulgsum.rm . . 3 = (.r𝑅)
9 ply1mulgsum.m . . 3 𝑀 = (mulGrp‘𝑃)
10 ply1mulgsum.e . . 3 = (.g𝑀)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ply1mulgsumlem1 48303 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑧 ∈ ℕ0𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))))
12 2nn0 12543 . . . . . . . 8 2 ∈ ℕ0
1312a1i 11 . . . . . . 7 (𝑧 ∈ ℕ0 → 2 ∈ ℕ0)
14 id 22 . . . . . . 7 (𝑧 ∈ ℕ0𝑧 ∈ ℕ0)
1513, 14nn0mulcld 12592 . . . . . 6 (𝑧 ∈ ℕ0 → (2 · 𝑧) ∈ ℕ0)
1615ad2antrr 726 . . . . 5 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (2 · 𝑧) ∈ ℕ0)
17 breq1 5146 . . . . . . . 8 (𝑠 = (2 · 𝑧) → (𝑠 < 𝑛 ↔ (2 · 𝑧) < 𝑛))
1817imbi1d 341 . . . . . . 7 (𝑠 = (2 · 𝑧) → ((𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) ↔ ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
1918ralbidv 3178 . . . . . 6 (𝑠 = (2 · 𝑧) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) ↔ ∀𝑛 ∈ ℕ0 ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
2019adantl 481 . . . . 5 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑠 = (2 · 𝑧)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) ↔ ∀𝑛 ∈ ℕ0 ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
21 2re 12340 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ
2221a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℕ0 → 2 ∈ ℝ)
23 nn0re 12535 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℕ0𝑧 ∈ ℝ)
2422, 23remulcld 11291 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℕ0 → (2 · 𝑧) ∈ ℝ)
2524ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (2 · 𝑧) ∈ ℝ)
26 nn0re 12535 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
2726adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℝ)
2827adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑛 ∈ ℝ)
29 elfznn0 13660 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 ∈ (0...𝑛) → 𝑙 ∈ ℕ0)
30 nn0re 12535 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 ∈ ℕ0𝑙 ∈ ℝ)
3129, 30syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 ∈ (0...𝑛) → 𝑙 ∈ ℝ)
3231adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑙 ∈ ℝ)
3325, 28, 32ltsub1d 11872 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) < 𝑛 ↔ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)))
3423ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑧 ∈ ℝ)
3532, 34, 25lesub2d 11871 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑙𝑧 ↔ ((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙)))
3635adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → (𝑙𝑧 ↔ ((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙)))
3724, 23resubcld 11691 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ ℕ0 → ((2 · 𝑧) − 𝑧) ∈ ℝ)
3837ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) − 𝑧) ∈ ℝ)
3924adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑧) ∈ ℝ)
40 resubcl 11573 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((2 · 𝑧) ∈ ℝ ∧ 𝑙 ∈ ℝ) → ((2 · 𝑧) − 𝑙) ∈ ℝ)
4139, 31, 40syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) − 𝑙) ∈ ℝ)
42 resubcl 11573 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 ∈ ℝ ∧ 𝑙 ∈ ℝ) → (𝑛𝑙) ∈ ℝ)
4327, 31, 42syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) ∈ ℝ)
44 lelttr 11351 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((2 · 𝑧) − 𝑧) ∈ ℝ ∧ ((2 · 𝑧) − 𝑙) ∈ ℝ ∧ (𝑛𝑙) ∈ ℝ) → ((((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → ((2 · 𝑧) − 𝑧) < (𝑛𝑙)))
4538, 41, 43, 44syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → ((2 · 𝑧) − 𝑧) < (𝑛𝑙)))
46 nn0cn 12536 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ ℕ0𝑧 ∈ ℂ)
47 2txmxeqx 12406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ ℂ → ((2 · 𝑧) − 𝑧) = 𝑧)
4846, 47syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ ℕ0 → ((2 · 𝑧) − 𝑧) = 𝑧)
4948ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) − 𝑧) = 𝑧)
5049breq1d 5153 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (((2 · 𝑧) − 𝑧) < (𝑛𝑙) ↔ 𝑧 < (𝑛𝑙)))
5145, 50sylibd 239 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → 𝑧 < (𝑛𝑙)))
5251expcomd 416 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (((2 · 𝑧) − 𝑙) < (𝑛𝑙) → (((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) → 𝑧 < (𝑛𝑙))))
5352imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → (((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) → 𝑧 < (𝑛𝑙)))
5436, 53sylbid 240 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → (𝑙𝑧𝑧 < (𝑛𝑙)))
5554ex 412 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (((2 · 𝑧) − 𝑙) < (𝑛𝑙) → (𝑙𝑧𝑧 < (𝑛𝑙))))
5633, 55sylbid 240 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) < 𝑛 → (𝑙𝑧𝑧 < (𝑛𝑙))))
5756ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑙 ∈ (0...𝑛) → ((2 · 𝑧) < 𝑛 → (𝑙𝑧𝑧 < (𝑛𝑙)))))
5857com23 86 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → ((2 · 𝑧) < 𝑛 → (𝑙 ∈ (0...𝑛) → (𝑙𝑧𝑧 < (𝑛𝑙)))))
5958ex 412 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ0 → (𝑛 ∈ ℕ0 → ((2 · 𝑧) < 𝑛 → (𝑙 ∈ (0...𝑛) → (𝑙𝑧𝑧 < (𝑛𝑙))))))
6059ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (𝑛 ∈ ℕ0 → ((2 · 𝑧) < 𝑛 → (𝑙 ∈ (0...𝑛) → (𝑙𝑧𝑧 < (𝑛𝑙))))))
6160imp41 425 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝑙𝑧𝑧 < (𝑛𝑙)))
6261impcom 407 . . . . . . . . . . . . . 14 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → 𝑧 < (𝑛𝑙))
63 fznn0sub2 13675 . . . . . . . . . . . . . . . . . . 19 (𝑙 ∈ (0...𝑛) → (𝑛𝑙) ∈ (0...𝑛))
64 elfznn0 13660 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑙) ∈ (0...𝑛) → (𝑛𝑙) ∈ ℕ0)
65 breq2 5147 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑛𝑙) → (𝑧 < 𝑥𝑧 < (𝑛𝑙)))
66 fveqeq2 6915 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑛𝑙) → ((𝐴𝑥) = (0g𝑅) ↔ (𝐴‘(𝑛𝑙)) = (0g𝑅)))
67 fveqeq2 6915 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑛𝑙) → ((𝐶𝑥) = (0g𝑅) ↔ (𝐶‘(𝑛𝑙)) = (0g𝑅)))
6866, 67anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑛𝑙) → (((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)) ↔ ((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅))))
6965, 68imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑛𝑙) → ((𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) ↔ (𝑧 < (𝑛𝑙) → ((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅)))))
7069rspcva 3620 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛𝑙) ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < (𝑛𝑙) → ((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅))))
71 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅)) → (𝐶‘(𝑛𝑙)) = (0g𝑅))
7270, 71syl6 35 . . . . . . . . . . . . . . . . . . . 20 (((𝑛𝑙) ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅)))
7372ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑙) ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7463, 64, 733syl 18 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ (0...𝑛) → (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7574com12 32 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑙 ∈ (0...𝑛) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7675ad4antlr 733 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7776imp 406 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅)))
7877adantl 481 . . . . . . . . . . . . . 14 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅)))
7962, 78mpd 15 . . . . . . . . . . . . 13 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐶‘(𝑛𝑙)) = (0g𝑅))
8079oveq2d 7447 . . . . . . . . . . . 12 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = ((𝐴𝑙) (0g𝑅)))
81 simplr1 1216 . . . . . . . . . . . . . . 15 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
8281ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → 𝑅 ∈ Ring)
8382adantl 481 . . . . . . . . . . . . 13 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → 𝑅 ∈ Ring)
84 simplr2 1217 . . . . . . . . . . . . . . . . 17 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝐾𝐵)
8584adantr 480 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → 𝐾𝐵)
8685, 29anim12i 613 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝐾𝐵𝑙 ∈ ℕ0))
8786adantl 481 . . . . . . . . . . . . . 14 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐾𝐵𝑙 ∈ ℕ0))
88 eqid 2737 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
893, 2, 1, 88coe1fvalcl 22214 . . . . . . . . . . . . . 14 ((𝐾𝐵𝑙 ∈ ℕ0) → (𝐴𝑙) ∈ (Base‘𝑅))
9087, 89syl 17 . . . . . . . . . . . . 13 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐴𝑙) ∈ (Base‘𝑅))
91 eqid 2737 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
9288, 8, 91ringrz 20291 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐴𝑙) ∈ (Base‘𝑅)) → ((𝐴𝑙) (0g𝑅)) = (0g𝑅))
9383, 90, 92syl2anc 584 . . . . . . . . . . . 12 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (0g𝑅)) = (0g𝑅))
9480, 93eqtrd 2777 . . . . . . . . . . 11 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (0g𝑅))
95 ltnle 11340 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ ∧ 𝑙 ∈ ℝ) → (𝑧 < 𝑙 ↔ ¬ 𝑙𝑧))
9623, 30, 95syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℕ0𝑙 ∈ ℕ0) → (𝑧 < 𝑙 ↔ ¬ 𝑙𝑧))
9796bicomd 223 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℕ0𝑙 ∈ ℕ0) → (¬ 𝑙𝑧𝑧 < 𝑙))
9897expcom 413 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ ℕ0 → (𝑧 ∈ ℕ0 → (¬ 𝑙𝑧𝑧 < 𝑙)))
9998, 29syl11 33 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ0 → (𝑙 ∈ (0...𝑛) → (¬ 𝑙𝑧𝑧 < 𝑙)))
10099ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) → (¬ 𝑙𝑧𝑧 < 𝑙)))
101100imp 406 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (¬ 𝑙𝑧𝑧 < 𝑙))
102 breq2 5147 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑙 → (𝑧 < 𝑥𝑧 < 𝑙))
103 fveqeq2 6915 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑙 → ((𝐴𝑥) = (0g𝑅) ↔ (𝐴𝑙) = (0g𝑅)))
104 fveqeq2 6915 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑙 → ((𝐶𝑥) = (0g𝑅) ↔ (𝐶𝑙) = (0g𝑅)))
105103, 104anbi12d 632 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑙 → (((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)) ↔ ((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅))))
106102, 105imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑙 → ((𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) ↔ (𝑧 < 𝑙 → ((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅)))))
107106rspcva 3620 . . . . . . . . . . . . . . . . . . . 20 ((𝑙 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < 𝑙 → ((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅))))
108 simpl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅)) → (𝐴𝑙) = (0g𝑅))
109107, 108syl6 35 . . . . . . . . . . . . . . . . . . 19 ((𝑙 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅)))
110109ex 412 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅))))
111110, 29syl11 33 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑙 ∈ (0...𝑛) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅))))
112111ad4antlr 733 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅))))
113112imp 406 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅)))
114101, 113sylbid 240 . . . . . . . . . . . . . 14 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (¬ 𝑙𝑧 → (𝐴𝑙) = (0g𝑅)))
115114impcom 407 . . . . . . . . . . . . 13 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐴𝑙) = (0g𝑅))
116115oveq1d 7446 . . . . . . . . . . . 12 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = ((0g𝑅) (𝐶‘(𝑛𝑙))))
11782adantl 481 . . . . . . . . . . . . 13 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → 𝑅 ∈ Ring)
118 simplr3 1218 . . . . . . . . . . . . . . . . 17 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝐿𝐵)
119118adantr 480 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → 𝐿𝐵)
120 fznn0sub 13596 . . . . . . . . . . . . . . . 16 (𝑙 ∈ (0...𝑛) → (𝑛𝑙) ∈ ℕ0)
121119, 120anim12i 613 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝐿𝐵 ∧ (𝑛𝑙) ∈ ℕ0))
122121adantl 481 . . . . . . . . . . . . . 14 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐿𝐵 ∧ (𝑛𝑙) ∈ ℕ0))
1234, 2, 1, 88coe1fvalcl 22214 . . . . . . . . . . . . . 14 ((𝐿𝐵 ∧ (𝑛𝑙) ∈ ℕ0) → (𝐶‘(𝑛𝑙)) ∈ (Base‘𝑅))
124122, 123syl 17 . . . . . . . . . . . . 13 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐶‘(𝑛𝑙)) ∈ (Base‘𝑅))
12588, 8, 91ringlz 20290 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐶‘(𝑛𝑙)) ∈ (Base‘𝑅)) → ((0g𝑅) (𝐶‘(𝑛𝑙))) = (0g𝑅))
126117, 124, 125syl2anc 584 . . . . . . . . . . . 12 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((0g𝑅) (𝐶‘(𝑛𝑙))) = (0g𝑅))
127116, 126eqtrd 2777 . . . . . . . . . . 11 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (0g𝑅))
12894, 127pm2.61ian 812 . . . . . . . . . 10 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (0g𝑅))
129128mpteq2dva 5242 . . . . . . . . 9 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ (0g𝑅)))
130129oveq2d 7447 . . . . . . . 8 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ (0g𝑅))))
131 ringmnd 20240 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1321313ad2ant1 1134 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑅 ∈ Mnd)
133 ovex 7464 . . . . . . . . . . 11 (0...𝑛) ∈ V
134132, 133jctir 520 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V))
135134ad3antlr 731 . . . . . . . . 9 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V))
13691gsumz 18849 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ (0g𝑅))) = (0g𝑅))
137135, 136syl 17 . . . . . . . 8 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ (0g𝑅))) = (0g𝑅))
138130, 137eqtrd 2777 . . . . . . 7 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))
139138ex 412 . . . . . 6 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
140139ralrimiva 3146 . . . . 5 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → ∀𝑛 ∈ ℕ0 ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
14116, 20, 140rspcedvd 3624 . . . 4 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
142141ex 412 . . 3 ((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
143142rexlimiva 3147 . 2 (∃𝑧 ∈ ℕ0𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
14411, 143mpcom 38 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155   · cmul 11160   < clt 11295  cle 11296  cmin 11492  2c2 12321  0cn0 12526  ...cfz 13547  Basecbs 17247  .rcmulr 17298   ·𝑠 cvsca 17301  0gc0g 17484   Σg cgsu 17485  Mndcmnd 18747  .gcmg 19085  mulGrpcmgp 20137  Ringcrg 20230  var1cv1 22177  Poly1cpl1 22178  coe1cco1 22179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-seq 14043  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-tset 17316  df-ple 17317  df-0g 17486  df-gsum 17487  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-psr 21929  df-mpl 21931  df-opsr 21933  df-psr1 22181  df-ply1 22183  df-coe1 22184
This theorem is referenced by:  ply1mulgsumlem3  48305  ply1mulgsumlem4  48306
  Copyright terms: Public domain W3C validator