Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1mulgsumlem2 Structured version   Visualization version   GIF version

Theorem ply1mulgsumlem2 44782
 Description: Lemma 2 for ply1mulgsum 44785. (Contributed by AV, 19-Oct-2019.)
Hypotheses
Ref Expression
ply1mulgsum.p 𝑃 = (Poly1𝑅)
ply1mulgsum.b 𝐵 = (Base‘𝑃)
ply1mulgsum.a 𝐴 = (coe1𝐾)
ply1mulgsum.c 𝐶 = (coe1𝐿)
ply1mulgsum.x 𝑋 = (var1𝑅)
ply1mulgsum.pm × = (.r𝑃)
ply1mulgsum.sm · = ( ·𝑠𝑃)
ply1mulgsum.rm = (.r𝑅)
ply1mulgsum.m 𝑀 = (mulGrp‘𝑃)
ply1mulgsum.e = (.g𝑀)
Assertion
Ref Expression
ply1mulgsumlem2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
Distinct variable groups:   𝐴,𝑛,𝑠   𝐵,𝑛,𝑠   𝐶,𝑛,𝑠   𝑛,𝐾,𝑠   𝑛,𝐿,𝑠   𝑅,𝑛,𝑠   𝐴,𝑙,𝑛   𝐵,𝑙   𝐶,𝑙   𝐾,𝑙   𝐿,𝑙   𝑅,𝑙,𝑠   ,𝑠
Allowed substitution hints:   𝑃(𝑛,𝑠,𝑙)   · (𝑛,𝑠,𝑙)   × (𝑛,𝑠,𝑙)   (𝑛,𝑠,𝑙)   (𝑛,𝑙)   𝑀(𝑛,𝑠,𝑙)   𝑋(𝑛,𝑠,𝑙)

Proof of Theorem ply1mulgsumlem2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1mulgsum.p . . 3 𝑃 = (Poly1𝑅)
2 ply1mulgsum.b . . 3 𝐵 = (Base‘𝑃)
3 ply1mulgsum.a . . 3 𝐴 = (coe1𝐾)
4 ply1mulgsum.c . . 3 𝐶 = (coe1𝐿)
5 ply1mulgsum.x . . 3 𝑋 = (var1𝑅)
6 ply1mulgsum.pm . . 3 × = (.r𝑃)
7 ply1mulgsum.sm . . 3 · = ( ·𝑠𝑃)
8 ply1mulgsum.rm . . 3 = (.r𝑅)
9 ply1mulgsum.m . . 3 𝑀 = (mulGrp‘𝑃)
10 ply1mulgsum.e . . 3 = (.g𝑀)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ply1mulgsumlem1 44781 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑧 ∈ ℕ0𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))))
12 2nn0 11906 . . . . . . . 8 2 ∈ ℕ0
1312a1i 11 . . . . . . 7 (𝑧 ∈ ℕ0 → 2 ∈ ℕ0)
14 id 22 . . . . . . 7 (𝑧 ∈ ℕ0𝑧 ∈ ℕ0)
1513, 14nn0mulcld 11952 . . . . . 6 (𝑧 ∈ ℕ0 → (2 · 𝑧) ∈ ℕ0)
1615ad2antrr 725 . . . . 5 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (2 · 𝑧) ∈ ℕ0)
17 breq1 5036 . . . . . . . 8 (𝑠 = (2 · 𝑧) → (𝑠 < 𝑛 ↔ (2 · 𝑧) < 𝑛))
1817imbi1d 345 . . . . . . 7 (𝑠 = (2 · 𝑧) → ((𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) ↔ ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
1918ralbidv 3165 . . . . . 6 (𝑠 = (2 · 𝑧) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) ↔ ∀𝑛 ∈ ℕ0 ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
2019adantl 485 . . . . 5 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑠 = (2 · 𝑧)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) ↔ ∀𝑛 ∈ ℕ0 ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
21 2re 11703 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ
2221a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℕ0 → 2 ∈ ℝ)
23 nn0re 11898 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℕ0𝑧 ∈ ℝ)
2422, 23remulcld 10664 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℕ0 → (2 · 𝑧) ∈ ℝ)
2524ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (2 · 𝑧) ∈ ℝ)
26 nn0re 11898 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
2726adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℝ)
2827adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑛 ∈ ℝ)
29 elfznn0 12999 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 ∈ (0...𝑛) → 𝑙 ∈ ℕ0)
30 nn0re 11898 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 ∈ ℕ0𝑙 ∈ ℝ)
3129, 30syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 ∈ (0...𝑛) → 𝑙 ∈ ℝ)
3231adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑙 ∈ ℝ)
3325, 28, 32ltsub1d 11242 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) < 𝑛 ↔ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)))
3423ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑧 ∈ ℝ)
3532, 34, 25lesub2d 11241 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑙𝑧 ↔ ((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙)))
3635adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → (𝑙𝑧 ↔ ((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙)))
3724, 23resubcld 11061 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ ℕ0 → ((2 · 𝑧) − 𝑧) ∈ ℝ)
3837ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) − 𝑧) ∈ ℝ)
3924adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑧) ∈ ℝ)
40 resubcl 10943 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((2 · 𝑧) ∈ ℝ ∧ 𝑙 ∈ ℝ) → ((2 · 𝑧) − 𝑙) ∈ ℝ)
4139, 31, 40syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) − 𝑙) ∈ ℝ)
42 resubcl 10943 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 ∈ ℝ ∧ 𝑙 ∈ ℝ) → (𝑛𝑙) ∈ ℝ)
4327, 31, 42syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) ∈ ℝ)
44 lelttr 10724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((2 · 𝑧) − 𝑧) ∈ ℝ ∧ ((2 · 𝑧) − 𝑙) ∈ ℝ ∧ (𝑛𝑙) ∈ ℝ) → ((((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → ((2 · 𝑧) − 𝑧) < (𝑛𝑙)))
4538, 41, 43, 44syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → ((2 · 𝑧) − 𝑧) < (𝑛𝑙)))
46 nn0cn 11899 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ ℕ0𝑧 ∈ ℂ)
47 2txmxeqx 11769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ ℂ → ((2 · 𝑧) − 𝑧) = 𝑧)
4846, 47syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ ℕ0 → ((2 · 𝑧) − 𝑧) = 𝑧)
4948ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) − 𝑧) = 𝑧)
5049breq1d 5043 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (((2 · 𝑧) − 𝑧) < (𝑛𝑙) ↔ 𝑧 < (𝑛𝑙)))
5145, 50sylibd 242 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → 𝑧 < (𝑛𝑙)))
5251expcomd 420 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (((2 · 𝑧) − 𝑙) < (𝑛𝑙) → (((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) → 𝑧 < (𝑛𝑙))))
5352imp 410 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → (((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) → 𝑧 < (𝑛𝑙)))
5436, 53sylbid 243 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → (𝑙𝑧𝑧 < (𝑛𝑙)))
5554ex 416 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (((2 · 𝑧) − 𝑙) < (𝑛𝑙) → (𝑙𝑧𝑧 < (𝑛𝑙))))
5633, 55sylbid 243 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) < 𝑛 → (𝑙𝑧𝑧 < (𝑛𝑙))))
5756ex 416 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑙 ∈ (0...𝑛) → ((2 · 𝑧) < 𝑛 → (𝑙𝑧𝑧 < (𝑛𝑙)))))
5857com23 86 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → ((2 · 𝑧) < 𝑛 → (𝑙 ∈ (0...𝑛) → (𝑙𝑧𝑧 < (𝑛𝑙)))))
5958ex 416 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ0 → (𝑛 ∈ ℕ0 → ((2 · 𝑧) < 𝑛 → (𝑙 ∈ (0...𝑛) → (𝑙𝑧𝑧 < (𝑛𝑙))))))
6059ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (𝑛 ∈ ℕ0 → ((2 · 𝑧) < 𝑛 → (𝑙 ∈ (0...𝑛) → (𝑙𝑧𝑧 < (𝑛𝑙))))))
6160imp41 429 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝑙𝑧𝑧 < (𝑛𝑙)))
6261impcom 411 . . . . . . . . . . . . . 14 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → 𝑧 < (𝑛𝑙))
63 fznn0sub2 13013 . . . . . . . . . . . . . . . . . . 19 (𝑙 ∈ (0...𝑛) → (𝑛𝑙) ∈ (0...𝑛))
64 elfznn0 12999 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑙) ∈ (0...𝑛) → (𝑛𝑙) ∈ ℕ0)
65 breq2 5037 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑛𝑙) → (𝑧 < 𝑥𝑧 < (𝑛𝑙)))
66 fveqeq2 6658 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑛𝑙) → ((𝐴𝑥) = (0g𝑅) ↔ (𝐴‘(𝑛𝑙)) = (0g𝑅)))
67 fveqeq2 6658 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑛𝑙) → ((𝐶𝑥) = (0g𝑅) ↔ (𝐶‘(𝑛𝑙)) = (0g𝑅)))
6866, 67anbi12d 633 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑛𝑙) → (((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)) ↔ ((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅))))
6965, 68imbi12d 348 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑛𝑙) → ((𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) ↔ (𝑧 < (𝑛𝑙) → ((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅)))))
7069rspcva 3572 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛𝑙) ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < (𝑛𝑙) → ((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅))))
71 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅)) → (𝐶‘(𝑛𝑙)) = (0g𝑅))
7270, 71syl6 35 . . . . . . . . . . . . . . . . . . . 20 (((𝑛𝑙) ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅)))
7372ex 416 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑙) ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7463, 64, 733syl 18 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ (0...𝑛) → (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7574com12 32 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑙 ∈ (0...𝑛) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7675ad4antlr 732 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7776imp 410 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅)))
7877adantl 485 . . . . . . . . . . . . . 14 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅)))
7962, 78mpd 15 . . . . . . . . . . . . 13 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐶‘(𝑛𝑙)) = (0g𝑅))
8079oveq2d 7155 . . . . . . . . . . . 12 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = ((𝐴𝑙) (0g𝑅)))
81 simplr1 1212 . . . . . . . . . . . . . . 15 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
8281ad2antrr 725 . . . . . . . . . . . . . 14 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → 𝑅 ∈ Ring)
8382adantl 485 . . . . . . . . . . . . 13 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → 𝑅 ∈ Ring)
84 simplr2 1213 . . . . . . . . . . . . . . . . 17 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝐾𝐵)
8584adantr 484 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → 𝐾𝐵)
8685, 29anim12i 615 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝐾𝐵𝑙 ∈ ℕ0))
8786adantl 485 . . . . . . . . . . . . . 14 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐾𝐵𝑙 ∈ ℕ0))
88 eqid 2801 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
893, 2, 1, 88coe1fvalcl 20844 . . . . . . . . . . . . . 14 ((𝐾𝐵𝑙 ∈ ℕ0) → (𝐴𝑙) ∈ (Base‘𝑅))
9087, 89syl 17 . . . . . . . . . . . . 13 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐴𝑙) ∈ (Base‘𝑅))
91 eqid 2801 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
9288, 8, 91ringrz 19337 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐴𝑙) ∈ (Base‘𝑅)) → ((𝐴𝑙) (0g𝑅)) = (0g𝑅))
9383, 90, 92syl2anc 587 . . . . . . . . . . . 12 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (0g𝑅)) = (0g𝑅))
9480, 93eqtrd 2836 . . . . . . . . . . 11 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (0g𝑅))
95 ltnle 10713 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ ∧ 𝑙 ∈ ℝ) → (𝑧 < 𝑙 ↔ ¬ 𝑙𝑧))
9623, 30, 95syl2an 598 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℕ0𝑙 ∈ ℕ0) → (𝑧 < 𝑙 ↔ ¬ 𝑙𝑧))
9796bicomd 226 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℕ0𝑙 ∈ ℕ0) → (¬ 𝑙𝑧𝑧 < 𝑙))
9897expcom 417 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ ℕ0 → (𝑧 ∈ ℕ0 → (¬ 𝑙𝑧𝑧 < 𝑙)))
9998, 29syl11 33 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ0 → (𝑙 ∈ (0...𝑛) → (¬ 𝑙𝑧𝑧 < 𝑙)))
10099ad4antr 731 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) → (¬ 𝑙𝑧𝑧 < 𝑙)))
101100imp 410 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (¬ 𝑙𝑧𝑧 < 𝑙))
102 breq2 5037 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑙 → (𝑧 < 𝑥𝑧 < 𝑙))
103 fveqeq2 6658 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑙 → ((𝐴𝑥) = (0g𝑅) ↔ (𝐴𝑙) = (0g𝑅)))
104 fveqeq2 6658 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑙 → ((𝐶𝑥) = (0g𝑅) ↔ (𝐶𝑙) = (0g𝑅)))
105103, 104anbi12d 633 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑙 → (((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)) ↔ ((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅))))
106102, 105imbi12d 348 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑙 → ((𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) ↔ (𝑧 < 𝑙 → ((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅)))))
107106rspcva 3572 . . . . . . . . . . . . . . . . . . . 20 ((𝑙 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < 𝑙 → ((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅))))
108 simpl 486 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅)) → (𝐴𝑙) = (0g𝑅))
109107, 108syl6 35 . . . . . . . . . . . . . . . . . . 19 ((𝑙 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅)))
110109ex 416 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅))))
111110, 29syl11 33 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑙 ∈ (0...𝑛) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅))))
112111ad4antlr 732 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅))))
113112imp 410 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅)))
114101, 113sylbid 243 . . . . . . . . . . . . . 14 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (¬ 𝑙𝑧 → (𝐴𝑙) = (0g𝑅)))
115114impcom 411 . . . . . . . . . . . . 13 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐴𝑙) = (0g𝑅))
116115oveq1d 7154 . . . . . . . . . . . 12 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = ((0g𝑅) (𝐶‘(𝑛𝑙))))
11782adantl 485 . . . . . . . . . . . . 13 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → 𝑅 ∈ Ring)
118 simplr3 1214 . . . . . . . . . . . . . . . . 17 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝐿𝐵)
119118adantr 484 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → 𝐿𝐵)
120 fznn0sub 12938 . . . . . . . . . . . . . . . 16 (𝑙 ∈ (0...𝑛) → (𝑛𝑙) ∈ ℕ0)
121119, 120anim12i 615 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝐿𝐵 ∧ (𝑛𝑙) ∈ ℕ0))
122121adantl 485 . . . . . . . . . . . . . 14 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐿𝐵 ∧ (𝑛𝑙) ∈ ℕ0))
1234, 2, 1, 88coe1fvalcl 20844 . . . . . . . . . . . . . 14 ((𝐿𝐵 ∧ (𝑛𝑙) ∈ ℕ0) → (𝐶‘(𝑛𝑙)) ∈ (Base‘𝑅))
124122, 123syl 17 . . . . . . . . . . . . 13 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐶‘(𝑛𝑙)) ∈ (Base‘𝑅))
12588, 8, 91ringlz 19336 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐶‘(𝑛𝑙)) ∈ (Base‘𝑅)) → ((0g𝑅) (𝐶‘(𝑛𝑙))) = (0g𝑅))
126117, 124, 125syl2anc 587 . . . . . . . . . . . 12 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((0g𝑅) (𝐶‘(𝑛𝑙))) = (0g𝑅))
127116, 126eqtrd 2836 . . . . . . . . . . 11 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (0g𝑅))
12894, 127pm2.61ian 811 . . . . . . . . . 10 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (0g𝑅))
129128mpteq2dva 5128 . . . . . . . . 9 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ (0g𝑅)))
130129oveq2d 7155 . . . . . . . 8 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ (0g𝑅))))
131 ringmnd 19303 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1321313ad2ant1 1130 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑅 ∈ Mnd)
133 ovex 7172 . . . . . . . . . . 11 (0...𝑛) ∈ V
134132, 133jctir 524 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V))
135134ad3antlr 730 . . . . . . . . 9 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V))
13691gsumz 17995 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ (0g𝑅))) = (0g𝑅))
137135, 136syl 17 . . . . . . . 8 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ (0g𝑅))) = (0g𝑅))
138130, 137eqtrd 2836 . . . . . . 7 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))
139138ex 416 . . . . . 6 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
140139ralrimiva 3152 . . . . 5 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → ∀𝑛 ∈ ℕ0 ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
14116, 20, 140rspcedvd 3577 . . . 4 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
142141ex 416 . . 3 ((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
143142rexlimiva 3243 . 2 (∃𝑧 ∈ ℕ0𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
14411, 143mpcom 38 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110  Vcvv 3444   class class class wbr 5033   ↦ cmpt 5113  ‘cfv 6328  (class class class)co 7139  ℂcc 10528  ℝcr 10529  0cc0 10530   · cmul 10535   < clt 10668   ≤ cle 10669   − cmin 10863  2c2 11684  ℕ0cn0 11889  ...cfz 12889  Basecbs 16478  .rcmulr 16561   ·𝑠 cvsca 16564  0gc0g 16708   Σg cgsu 16709  Mndcmnd 17906  .gcmg 18219  mulGrpcmgp 19235  Ringcrg 19293  var1cv1 20808  Poly1cpl1 20809  coe1cco1 20810 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-seq 13369  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-tset 16579  df-ple 16580  df-0g 16710  df-gsum 16711  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-mgp 19236  df-ring 19295  df-psr 20597  df-mpl 20599  df-opsr 20601  df-psr1 20812  df-ply1 20814  df-coe1 20815 This theorem is referenced by:  ply1mulgsumlem3  44783  ply1mulgsumlem4  44784
 Copyright terms: Public domain W3C validator