Step | Hyp | Ref
| Expression |
1 | | ply1mulgsum.p |
. . 3
⊢ 𝑃 = (Poly1‘𝑅) |
2 | | ply1mulgsum.b |
. . 3
⊢ 𝐵 = (Base‘𝑃) |
3 | | ply1mulgsum.a |
. . 3
⊢ 𝐴 = (coe1‘𝐾) |
4 | | ply1mulgsum.c |
. . 3
⊢ 𝐶 = (coe1‘𝐿) |
5 | | ply1mulgsum.x |
. . 3
⊢ 𝑋 = (var1‘𝑅) |
6 | | ply1mulgsum.pm |
. . 3
⊢ × =
(.r‘𝑃) |
7 | | ply1mulgsum.sm |
. . 3
⊢ · = (
·𝑠 ‘𝑃) |
8 | | ply1mulgsum.rm |
. . 3
⊢ ∗ =
(.r‘𝑅) |
9 | | ply1mulgsum.m |
. . 3
⊢ 𝑀 = (mulGrp‘𝑃) |
10 | | ply1mulgsum.e |
. . 3
⊢ ↑ =
(.g‘𝑀) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ply1mulgsumlem1 45615 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → ∃𝑧 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) |
12 | | 2nn0 12180 |
. . . . . . . 8
⊢ 2 ∈
ℕ0 |
13 | 12 | a1i 11 |
. . . . . . 7
⊢ (𝑧 ∈ ℕ0
→ 2 ∈ ℕ0) |
14 | | id 22 |
. . . . . . 7
⊢ (𝑧 ∈ ℕ0
→ 𝑧 ∈
ℕ0) |
15 | 13, 14 | nn0mulcld 12228 |
. . . . . 6
⊢ (𝑧 ∈ ℕ0
→ (2 · 𝑧)
∈ ℕ0) |
16 | 15 | ad2antrr 722 |
. . . . 5
⊢ (((𝑧 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) → (2 · 𝑧) ∈
ℕ0) |
17 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑠 = (2 · 𝑧) → (𝑠 < 𝑛 ↔ (2 · 𝑧) < 𝑛)) |
18 | 17 | imbi1d 341 |
. . . . . . 7
⊢ (𝑠 = (2 · 𝑧) → ((𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) ↔ ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)))) |
19 | 18 | ralbidv 3120 |
. . . . . 6
⊢ (𝑠 = (2 · 𝑧) → (∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) ↔ ∀𝑛 ∈ ℕ0 ((2
· 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)))) |
20 | 19 | adantl 481 |
. . . . 5
⊢ ((((𝑧 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑠 = (2 · 𝑧)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) ↔ ∀𝑛 ∈ ℕ0 ((2
· 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)))) |
21 | | 2re 11977 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 2 ∈
ℝ |
22 | 21 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 ∈ ℕ0
→ 2 ∈ ℝ) |
23 | | nn0re 12172 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 ∈ ℕ0
→ 𝑧 ∈
ℝ) |
24 | 22, 23 | remulcld 10936 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ ℕ0
→ (2 · 𝑧)
∈ ℝ) |
25 | 24 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (2 · 𝑧) ∈ ℝ) |
26 | | nn0re 12172 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℝ) |
27 | 26 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) → 𝑛 ∈ ℝ) |
28 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑛 ∈ ℝ) |
29 | | elfznn0 13278 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑙 ∈ (0...𝑛) → 𝑙 ∈ ℕ0) |
30 | | nn0re 12172 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑙 ∈ ℕ0
→ 𝑙 ∈
ℝ) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑙 ∈ (0...𝑛) → 𝑙 ∈ ℝ) |
32 | 31 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑙 ∈ ℝ) |
33 | 25, 28, 32 | ltsub1d 11514 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) < 𝑛 ↔ ((2 · 𝑧) − 𝑙) < (𝑛 − 𝑙))) |
34 | 23 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑧 ∈ ℝ) |
35 | 32, 34, 25 | lesub2d 11513 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑙 ≤ 𝑧 ↔ ((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙))) |
36 | 35 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ ((2 · 𝑧) − 𝑙) < (𝑛 − 𝑙)) → (𝑙 ≤ 𝑧 ↔ ((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙))) |
37 | 24, 23 | resubcld 11333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ ℕ0
→ ((2 · 𝑧)
− 𝑧) ∈
ℝ) |
38 | 37 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) − 𝑧) ∈ ℝ) |
39 | 24 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) → (2 · 𝑧) ∈ ℝ) |
40 | | resubcl 11215 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((2
· 𝑧) ∈ ℝ
∧ 𝑙 ∈ ℝ)
→ ((2 · 𝑧)
− 𝑙) ∈
ℝ) |
41 | 39, 31, 40 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) − 𝑙) ∈ ℝ) |
42 | | resubcl 11215 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑛 ∈ ℝ ∧ 𝑙 ∈ ℝ) → (𝑛 − 𝑙) ∈ ℝ) |
43 | 27, 31, 42 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛 − 𝑙) ∈ ℝ) |
44 | | lelttr 10996 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((2
· 𝑧) − 𝑧) ∈ ℝ ∧ ((2
· 𝑧) − 𝑙) ∈ ℝ ∧ (𝑛 − 𝑙) ∈ ℝ) → ((((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) ∧ ((2 · 𝑧) − 𝑙) < (𝑛 − 𝑙)) → ((2 · 𝑧) − 𝑧) < (𝑛 − 𝑙))) |
45 | 38, 41, 43, 44 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) ∧ ((2 · 𝑧) − 𝑙) < (𝑛 − 𝑙)) → ((2 · 𝑧) − 𝑧) < (𝑛 − 𝑙))) |
46 | | nn0cn 12173 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 ∈ ℕ0
→ 𝑧 ∈
ℂ) |
47 | | 2txmxeqx 12043 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 ∈ ℂ → ((2
· 𝑧) − 𝑧) = 𝑧) |
48 | 46, 47 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ ℕ0
→ ((2 · 𝑧)
− 𝑧) = 𝑧) |
49 | 48 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) − 𝑧) = 𝑧) |
50 | 49 | breq1d 5080 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (((2 · 𝑧) − 𝑧) < (𝑛 − 𝑙) ↔ 𝑧 < (𝑛 − 𝑙))) |
51 | 45, 50 | sylibd 238 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) ∧ ((2 · 𝑧) − 𝑙) < (𝑛 − 𝑙)) → 𝑧 < (𝑛 − 𝑙))) |
52 | 51 | expcomd 416 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (((2 · 𝑧) − 𝑙) < (𝑛 − 𝑙) → (((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) → 𝑧 < (𝑛 − 𝑙)))) |
53 | 52 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ ((2 · 𝑧) − 𝑙) < (𝑛 − 𝑙)) → (((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) → 𝑧 < (𝑛 − 𝑙))) |
54 | 36, 53 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ ((2 · 𝑧) − 𝑙) < (𝑛 − 𝑙)) → (𝑙 ≤ 𝑧 → 𝑧 < (𝑛 − 𝑙))) |
55 | 54 | ex 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (((2 · 𝑧) − 𝑙) < (𝑛 − 𝑙) → (𝑙 ≤ 𝑧 → 𝑧 < (𝑛 − 𝑙)))) |
56 | 33, 55 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) < 𝑛 → (𝑙 ≤ 𝑧 → 𝑧 < (𝑛 − 𝑙)))) |
57 | 56 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) → (𝑙 ∈ (0...𝑛) → ((2 · 𝑧) < 𝑛 → (𝑙 ≤ 𝑧 → 𝑧 < (𝑛 − 𝑙))))) |
58 | 57 | com23 86 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℕ0
∧ 𝑛 ∈
ℕ0) → ((2 · 𝑧) < 𝑛 → (𝑙 ∈ (0...𝑛) → (𝑙 ≤ 𝑧 → 𝑧 < (𝑛 − 𝑙))))) |
59 | 58 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℕ0
→ (𝑛 ∈
ℕ0 → ((2 · 𝑧) < 𝑛 → (𝑙 ∈ (0...𝑛) → (𝑙 ≤ 𝑧 → 𝑧 < (𝑛 − 𝑙)))))) |
60 | 59 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑧 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) → (𝑛 ∈ ℕ0 → ((2
· 𝑧) < 𝑛 → (𝑙 ∈ (0...𝑛) → (𝑙 ≤ 𝑧 → 𝑧 < (𝑛 − 𝑙)))))) |
61 | 60 | imp41 425 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝑙 ≤ 𝑧 → 𝑧 < (𝑛 − 𝑙))) |
62 | 61 | impcom 407 |
. . . . . . . . . . . . . 14
⊢ ((𝑙 ≤ 𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → 𝑧 < (𝑛 − 𝑙)) |
63 | | fznn0sub2 13292 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 ∈ (0...𝑛) → (𝑛 − 𝑙) ∈ (0...𝑛)) |
64 | | elfznn0 13278 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 − 𝑙) ∈ (0...𝑛) → (𝑛 − 𝑙) ∈
ℕ0) |
65 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = (𝑛 − 𝑙) → (𝑧 < 𝑥 ↔ 𝑧 < (𝑛 − 𝑙))) |
66 | | fveqeq2 6765 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = (𝑛 − 𝑙) → ((𝐴‘𝑥) = (0g‘𝑅) ↔ (𝐴‘(𝑛 − 𝑙)) = (0g‘𝑅))) |
67 | | fveqeq2 6765 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = (𝑛 − 𝑙) → ((𝐶‘𝑥) = (0g‘𝑅) ↔ (𝐶‘(𝑛 − 𝑙)) = (0g‘𝑅))) |
68 | 66, 67 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = (𝑛 − 𝑙) → (((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)) ↔ ((𝐴‘(𝑛 − 𝑙)) = (0g‘𝑅) ∧ (𝐶‘(𝑛 − 𝑙)) = (0g‘𝑅)))) |
69 | 65, 68 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = (𝑛 − 𝑙) → ((𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅))) ↔ (𝑧 < (𝑛 − 𝑙) → ((𝐴‘(𝑛 − 𝑙)) = (0g‘𝑅) ∧ (𝐶‘(𝑛 − 𝑙)) = (0g‘𝑅))))) |
70 | 69 | rspcva 3550 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 − 𝑙) ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) → (𝑧 < (𝑛 − 𝑙) → ((𝐴‘(𝑛 − 𝑙)) = (0g‘𝑅) ∧ (𝐶‘(𝑛 − 𝑙)) = (0g‘𝑅)))) |
71 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴‘(𝑛 − 𝑙)) = (0g‘𝑅) ∧ (𝐶‘(𝑛 − 𝑙)) = (0g‘𝑅)) → (𝐶‘(𝑛 − 𝑙)) = (0g‘𝑅)) |
72 | 70, 71 | syl6 35 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 − 𝑙) ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) → (𝑧 < (𝑛 − 𝑙) → (𝐶‘(𝑛 − 𝑙)) = (0g‘𝑅))) |
73 | 72 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 − 𝑙) ∈ ℕ0 →
(∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅))) → (𝑧 < (𝑛 − 𝑙) → (𝐶‘(𝑛 − 𝑙)) = (0g‘𝑅)))) |
74 | 63, 64, 73 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 ∈ (0...𝑛) → (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅))) → (𝑧 < (𝑛 − 𝑙) → (𝐶‘(𝑛 − 𝑙)) = (0g‘𝑅)))) |
75 | 74 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅))) → (𝑙 ∈ (0...𝑛) → (𝑧 < (𝑛 − 𝑙) → (𝐶‘(𝑛 − 𝑙)) = (0g‘𝑅)))) |
76 | 75 | ad4antlr 729 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) → (𝑧 < (𝑛 − 𝑙) → (𝐶‘(𝑛 − 𝑙)) = (0g‘𝑅)))) |
77 | 76 | imp 406 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝑧 < (𝑛 − 𝑙) → (𝐶‘(𝑛 − 𝑙)) = (0g‘𝑅))) |
78 | 77 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑙 ≤ 𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝑧 < (𝑛 − 𝑙) → (𝐶‘(𝑛 − 𝑙)) = (0g‘𝑅))) |
79 | 62, 78 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝑙 ≤ 𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐶‘(𝑛 − 𝑙)) = (0g‘𝑅)) |
80 | 79 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ ((𝑙 ≤ 𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))) = ((𝐴‘𝑙) ∗
(0g‘𝑅))) |
81 | | simplr1 1213 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑧 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
82 | 81 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢
((((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → 𝑅 ∈ Ring) |
83 | 82 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑙 ≤ 𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → 𝑅 ∈ Ring) |
84 | | simplr2 1214 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑧 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝐾 ∈ 𝐵) |
85 | 84 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) → 𝐾 ∈ 𝐵) |
86 | 85, 29 | anim12i 612 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝐾 ∈ 𝐵 ∧ 𝑙 ∈
ℕ0)) |
87 | 86 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑙 ≤ 𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐾 ∈ 𝐵 ∧ 𝑙 ∈
ℕ0)) |
88 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑅) =
(Base‘𝑅) |
89 | 3, 2, 1, 88 | coe1fvalcl 21293 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ 𝐵 ∧ 𝑙 ∈ ℕ0) → (𝐴‘𝑙) ∈ (Base‘𝑅)) |
90 | 87, 89 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑙 ≤ 𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐴‘𝑙) ∈ (Base‘𝑅)) |
91 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝑅) = (0g‘𝑅) |
92 | 88, 8, 91 | ringrz 19742 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ (𝐴‘𝑙) ∈ (Base‘𝑅)) → ((𝐴‘𝑙) ∗
(0g‘𝑅)) =
(0g‘𝑅)) |
93 | 83, 90, 92 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝑙 ≤ 𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴‘𝑙) ∗
(0g‘𝑅)) =
(0g‘𝑅)) |
94 | 80, 93 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝑙 ≤ 𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))) = (0g‘𝑅)) |
95 | | ltnle 10985 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 ∈ ℝ ∧ 𝑙 ∈ ℝ) → (𝑧 < 𝑙 ↔ ¬ 𝑙 ≤ 𝑧)) |
96 | 23, 30, 95 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ ℕ0
∧ 𝑙 ∈
ℕ0) → (𝑧 < 𝑙 ↔ ¬ 𝑙 ≤ 𝑧)) |
97 | 96 | bicomd 222 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ ℕ0
∧ 𝑙 ∈
ℕ0) → (¬ 𝑙 ≤ 𝑧 ↔ 𝑧 < 𝑙)) |
98 | 97 | expcom 413 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 ∈ ℕ0
→ (𝑧 ∈
ℕ0 → (¬ 𝑙 ≤ 𝑧 ↔ 𝑧 < 𝑙))) |
99 | 98, 29 | syl11 33 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℕ0
→ (𝑙 ∈ (0...𝑛) → (¬ 𝑙 ≤ 𝑧 ↔ 𝑧 < 𝑙))) |
100 | 99 | ad4antr 728 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) → (¬ 𝑙 ≤ 𝑧 ↔ 𝑧 < 𝑙))) |
101 | 100 | imp 406 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (¬ 𝑙 ≤ 𝑧 ↔ 𝑧 < 𝑙)) |
102 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑙 → (𝑧 < 𝑥 ↔ 𝑧 < 𝑙)) |
103 | | fveqeq2 6765 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑙 → ((𝐴‘𝑥) = (0g‘𝑅) ↔ (𝐴‘𝑙) = (0g‘𝑅))) |
104 | | fveqeq2 6765 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑙 → ((𝐶‘𝑥) = (0g‘𝑅) ↔ (𝐶‘𝑙) = (0g‘𝑅))) |
105 | 103, 104 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑙 → (((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)) ↔ ((𝐴‘𝑙) = (0g‘𝑅) ∧ (𝐶‘𝑙) = (0g‘𝑅)))) |
106 | 102, 105 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑙 → ((𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅))) ↔ (𝑧 < 𝑙 → ((𝐴‘𝑙) = (0g‘𝑅) ∧ (𝐶‘𝑙) = (0g‘𝑅))))) |
107 | 106 | rspcva 3550 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑙 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) → (𝑧 < 𝑙 → ((𝐴‘𝑙) = (0g‘𝑅) ∧ (𝐶‘𝑙) = (0g‘𝑅)))) |
108 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴‘𝑙) = (0g‘𝑅) ∧ (𝐶‘𝑙) = (0g‘𝑅)) → (𝐴‘𝑙) = (0g‘𝑅)) |
109 | 107, 108 | syl6 35 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑙 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) → (𝑧 < 𝑙 → (𝐴‘𝑙) = (0g‘𝑅))) |
110 | 109 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 ∈ ℕ0
→ (∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅))) → (𝑧 < 𝑙 → (𝐴‘𝑙) = (0g‘𝑅)))) |
111 | 110, 29 | syl11 33 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅))) → (𝑙 ∈ (0...𝑛) → (𝑧 < 𝑙 → (𝐴‘𝑙) = (0g‘𝑅)))) |
112 | 111 | ad4antlr 729 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) → (𝑧 < 𝑙 → (𝐴‘𝑙) = (0g‘𝑅)))) |
113 | 112 | imp 406 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝑧 < 𝑙 → (𝐴‘𝑙) = (0g‘𝑅))) |
114 | 101, 113 | sylbid 239 |
. . . . . . . . . . . . . 14
⊢
((((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (¬ 𝑙 ≤ 𝑧 → (𝐴‘𝑙) = (0g‘𝑅))) |
115 | 114 | impcom 407 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑙 ≤ 𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐴‘𝑙) = (0g‘𝑅)) |
116 | 115 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ ((¬
𝑙 ≤ 𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))) = ((0g‘𝑅) ∗ (𝐶‘(𝑛 − 𝑙)))) |
117 | 82 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑙 ≤ 𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → 𝑅 ∈ Ring) |
118 | | simplr3 1215 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑧 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝐿 ∈ 𝐵) |
119 | 118 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) → 𝐿 ∈ 𝐵) |
120 | | fznn0sub 13217 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 ∈ (0...𝑛) → (𝑛 − 𝑙) ∈
ℕ0) |
121 | 119, 120 | anim12i 612 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝐿 ∈ 𝐵 ∧ (𝑛 − 𝑙) ∈
ℕ0)) |
122 | 121 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝑙 ≤ 𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐿 ∈ 𝐵 ∧ (𝑛 − 𝑙) ∈
ℕ0)) |
123 | 4, 2, 1, 88 | coe1fvalcl 21293 |
. . . . . . . . . . . . . 14
⊢ ((𝐿 ∈ 𝐵 ∧ (𝑛 − 𝑙) ∈ ℕ0) → (𝐶‘(𝑛 − 𝑙)) ∈ (Base‘𝑅)) |
124 | 122, 123 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑙 ≤ 𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐶‘(𝑛 − 𝑙)) ∈ (Base‘𝑅)) |
125 | 88, 8, 91 | ringlz 19741 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ (𝐶‘(𝑛 − 𝑙)) ∈ (Base‘𝑅)) → ((0g‘𝑅) ∗ (𝐶‘(𝑛 − 𝑙))) = (0g‘𝑅)) |
126 | 117, 124,
125 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((¬
𝑙 ≤ 𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((0g‘𝑅) ∗ (𝐶‘(𝑛 − 𝑙))) = (0g‘𝑅)) |
127 | 116, 126 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((¬
𝑙 ≤ 𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))) = (0g‘𝑅)) |
128 | 94, 127 | pm2.61ian 808 |
. . . . . . . . . 10
⊢
((((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))) = (0g‘𝑅)) |
129 | 128 | mpteq2dva 5170 |
. . . . . . . . 9
⊢
(((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ (0g‘𝑅))) |
130 | 129 | oveq2d 7271 |
. . . . . . . 8
⊢
(((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ (0g‘𝑅)))) |
131 | | ringmnd 19708 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
132 | 131 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝑅 ∈ Mnd) |
133 | | ovex 7288 |
. . . . . . . . . . 11
⊢
(0...𝑛) ∈
V |
134 | 132, 133 | jctir 520 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V)) |
135 | 134 | ad3antlr 727 |
. . . . . . . . 9
⊢
(((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) → (𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V)) |
136 | 91 | gsumz 18389 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V) → (𝑅 Σg
(𝑙 ∈ (0...𝑛) ↦
(0g‘𝑅))) =
(0g‘𝑅)) |
137 | 135, 136 | syl 17 |
. . . . . . . 8
⊢
(((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ (0g‘𝑅))) = (0g‘𝑅)) |
138 | 130, 137 | eqtrd 2778 |
. . . . . . 7
⊢
(((((𝑧 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2
· 𝑧) < 𝑛) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)) |
139 | 138 | ex 412 |
. . . . . 6
⊢ ((((𝑧 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((2
· 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅))) |
140 | 139 | ralrimiva 3107 |
. . . . 5
⊢ (((𝑧 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) → ∀𝑛 ∈ ℕ0 ((2 ·
𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅))) |
141 | 16, 20, 140 | rspcedvd 3555 |
. . . 4
⊢ (((𝑧 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅))) |
142 | 141 | ex 412 |
. . 3
⊢ ((𝑧 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑧 <
𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅)))) → ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)))) |
143 | 142 | rexlimiva 3209 |
. 2
⊢
(∃𝑧 ∈
ℕ0 ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴‘𝑥) = (0g‘𝑅) ∧ (𝐶‘𝑥) = (0g‘𝑅))) → ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅)))) |
144 | 11, 143 | mpcom 38 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅))) |