Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1mulgsumlem2 Structured version   Visualization version   GIF version

Theorem ply1mulgsumlem2 48376
Description: Lemma 2 for ply1mulgsum 48379. (Contributed by AV, 19-Oct-2019.)
Hypotheses
Ref Expression
ply1mulgsum.p 𝑃 = (Poly1𝑅)
ply1mulgsum.b 𝐵 = (Base‘𝑃)
ply1mulgsum.a 𝐴 = (coe1𝐾)
ply1mulgsum.c 𝐶 = (coe1𝐿)
ply1mulgsum.x 𝑋 = (var1𝑅)
ply1mulgsum.pm × = (.r𝑃)
ply1mulgsum.sm · = ( ·𝑠𝑃)
ply1mulgsum.rm = (.r𝑅)
ply1mulgsum.m 𝑀 = (mulGrp‘𝑃)
ply1mulgsum.e = (.g𝑀)
Assertion
Ref Expression
ply1mulgsumlem2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
Distinct variable groups:   𝐴,𝑛,𝑠   𝐵,𝑛,𝑠   𝐶,𝑛,𝑠   𝑛,𝐾,𝑠   𝑛,𝐿,𝑠   𝑅,𝑛,𝑠   𝐴,𝑙,𝑛   𝐵,𝑙   𝐶,𝑙   𝐾,𝑙   𝐿,𝑙   𝑅,𝑙,𝑠   ,𝑠
Allowed substitution hints:   𝑃(𝑛,𝑠,𝑙)   · (𝑛,𝑠,𝑙)   × (𝑛,𝑠,𝑙)   (𝑛,𝑠,𝑙)   (𝑛,𝑙)   𝑀(𝑛,𝑠,𝑙)   𝑋(𝑛,𝑠,𝑙)

Proof of Theorem ply1mulgsumlem2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1mulgsum.p . . 3 𝑃 = (Poly1𝑅)
2 ply1mulgsum.b . . 3 𝐵 = (Base‘𝑃)
3 ply1mulgsum.a . . 3 𝐴 = (coe1𝐾)
4 ply1mulgsum.c . . 3 𝐶 = (coe1𝐿)
5 ply1mulgsum.x . . 3 𝑋 = (var1𝑅)
6 ply1mulgsum.pm . . 3 × = (.r𝑃)
7 ply1mulgsum.sm . . 3 · = ( ·𝑠𝑃)
8 ply1mulgsum.rm . . 3 = (.r𝑅)
9 ply1mulgsum.m . . 3 𝑀 = (mulGrp‘𝑃)
10 ply1mulgsum.e . . 3 = (.g𝑀)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ply1mulgsumlem1 48375 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑧 ∈ ℕ0𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))))
12 2nn0 12459 . . . . . . . 8 2 ∈ ℕ0
1312a1i 11 . . . . . . 7 (𝑧 ∈ ℕ0 → 2 ∈ ℕ0)
14 id 22 . . . . . . 7 (𝑧 ∈ ℕ0𝑧 ∈ ℕ0)
1513, 14nn0mulcld 12508 . . . . . 6 (𝑧 ∈ ℕ0 → (2 · 𝑧) ∈ ℕ0)
1615ad2antrr 726 . . . . 5 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (2 · 𝑧) ∈ ℕ0)
17 breq1 5110 . . . . . . . 8 (𝑠 = (2 · 𝑧) → (𝑠 < 𝑛 ↔ (2 · 𝑧) < 𝑛))
1817imbi1d 341 . . . . . . 7 (𝑠 = (2 · 𝑧) → ((𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) ↔ ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
1918ralbidv 3156 . . . . . 6 (𝑠 = (2 · 𝑧) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) ↔ ∀𝑛 ∈ ℕ0 ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
2019adantl 481 . . . . 5 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑠 = (2 · 𝑧)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)) ↔ ∀𝑛 ∈ ℕ0 ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
21 2re 12260 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ
2221a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℕ0 → 2 ∈ ℝ)
23 nn0re 12451 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℕ0𝑧 ∈ ℝ)
2422, 23remulcld 11204 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℕ0 → (2 · 𝑧) ∈ ℝ)
2524ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (2 · 𝑧) ∈ ℝ)
26 nn0re 12451 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
2726adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℝ)
2827adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑛 ∈ ℝ)
29 elfznn0 13581 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 ∈ (0...𝑛) → 𝑙 ∈ ℕ0)
30 nn0re 12451 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 ∈ ℕ0𝑙 ∈ ℝ)
3129, 30syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 ∈ (0...𝑛) → 𝑙 ∈ ℝ)
3231adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑙 ∈ ℝ)
3325, 28, 32ltsub1d 11787 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) < 𝑛 ↔ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)))
3423ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → 𝑧 ∈ ℝ)
3532, 34, 25lesub2d 11786 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑙𝑧 ↔ ((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙)))
3635adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → (𝑙𝑧 ↔ ((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙)))
3724, 23resubcld 11606 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ ℕ0 → ((2 · 𝑧) − 𝑧) ∈ ℝ)
3837ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) − 𝑧) ∈ ℝ)
3924adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑧) ∈ ℝ)
40 resubcl 11486 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((2 · 𝑧) ∈ ℝ ∧ 𝑙 ∈ ℝ) → ((2 · 𝑧) − 𝑙) ∈ ℝ)
4139, 31, 40syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) − 𝑙) ∈ ℝ)
42 resubcl 11486 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 ∈ ℝ ∧ 𝑙 ∈ ℝ) → (𝑛𝑙) ∈ ℝ)
4327, 31, 42syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (𝑛𝑙) ∈ ℝ)
44 lelttr 11264 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((2 · 𝑧) − 𝑧) ∈ ℝ ∧ ((2 · 𝑧) − 𝑙) ∈ ℝ ∧ (𝑛𝑙) ∈ ℝ) → ((((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → ((2 · 𝑧) − 𝑧) < (𝑛𝑙)))
4538, 41, 43, 44syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → ((2 · 𝑧) − 𝑧) < (𝑛𝑙)))
46 nn0cn 12452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ ℕ0𝑧 ∈ ℂ)
47 2txmxeqx 12321 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ ℂ → ((2 · 𝑧) − 𝑧) = 𝑧)
4846, 47syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ ℕ0 → ((2 · 𝑧) − 𝑧) = 𝑧)
4948ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) − 𝑧) = 𝑧)
5049breq1d 5117 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (((2 · 𝑧) − 𝑧) < (𝑛𝑙) ↔ 𝑧 < (𝑛𝑙)))
5145, 50sylibd 239 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → 𝑧 < (𝑛𝑙)))
5251expcomd 416 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (((2 · 𝑧) − 𝑙) < (𝑛𝑙) → (((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) → 𝑧 < (𝑛𝑙))))
5352imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → (((2 · 𝑧) − 𝑧) ≤ ((2 · 𝑧) − 𝑙) → 𝑧 < (𝑛𝑙)))
5436, 53sylbid 240 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) ∧ ((2 · 𝑧) − 𝑙) < (𝑛𝑙)) → (𝑙𝑧𝑧 < (𝑛𝑙)))
5554ex 412 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → (((2 · 𝑧) − 𝑙) < (𝑛𝑙) → (𝑙𝑧𝑧 < (𝑛𝑙))))
5633, 55sylbid 240 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑛)) → ((2 · 𝑧) < 𝑛 → (𝑙𝑧𝑧 < (𝑛𝑙))))
5756ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑙 ∈ (0...𝑛) → ((2 · 𝑧) < 𝑛 → (𝑙𝑧𝑧 < (𝑛𝑙)))))
5857com23 86 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℕ0𝑛 ∈ ℕ0) → ((2 · 𝑧) < 𝑛 → (𝑙 ∈ (0...𝑛) → (𝑙𝑧𝑧 < (𝑛𝑙)))))
5958ex 412 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ0 → (𝑛 ∈ ℕ0 → ((2 · 𝑧) < 𝑛 → (𝑙 ∈ (0...𝑛) → (𝑙𝑧𝑧 < (𝑛𝑙))))))
6059ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → (𝑛 ∈ ℕ0 → ((2 · 𝑧) < 𝑛 → (𝑙 ∈ (0...𝑛) → (𝑙𝑧𝑧 < (𝑛𝑙))))))
6160imp41 425 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝑙𝑧𝑧 < (𝑛𝑙)))
6261impcom 407 . . . . . . . . . . . . . 14 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → 𝑧 < (𝑛𝑙))
63 fznn0sub2 13596 . . . . . . . . . . . . . . . . . . 19 (𝑙 ∈ (0...𝑛) → (𝑛𝑙) ∈ (0...𝑛))
64 elfznn0 13581 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑙) ∈ (0...𝑛) → (𝑛𝑙) ∈ ℕ0)
65 breq2 5111 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑛𝑙) → (𝑧 < 𝑥𝑧 < (𝑛𝑙)))
66 fveqeq2 6867 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑛𝑙) → ((𝐴𝑥) = (0g𝑅) ↔ (𝐴‘(𝑛𝑙)) = (0g𝑅)))
67 fveqeq2 6867 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑛𝑙) → ((𝐶𝑥) = (0g𝑅) ↔ (𝐶‘(𝑛𝑙)) = (0g𝑅)))
6866, 67anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑛𝑙) → (((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)) ↔ ((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅))))
6965, 68imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑛𝑙) → ((𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) ↔ (𝑧 < (𝑛𝑙) → ((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅)))))
7069rspcva 3586 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛𝑙) ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < (𝑛𝑙) → ((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅))))
71 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴‘(𝑛𝑙)) = (0g𝑅) ∧ (𝐶‘(𝑛𝑙)) = (0g𝑅)) → (𝐶‘(𝑛𝑙)) = (0g𝑅))
7270, 71syl6 35 . . . . . . . . . . . . . . . . . . . 20 (((𝑛𝑙) ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅)))
7372ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑙) ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7463, 64, 733syl 18 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ (0...𝑛) → (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7574com12 32 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑙 ∈ (0...𝑛) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7675ad4antlr 733 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅))))
7776imp 406 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅)))
7877adantl 481 . . . . . . . . . . . . . 14 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝑧 < (𝑛𝑙) → (𝐶‘(𝑛𝑙)) = (0g𝑅)))
7962, 78mpd 15 . . . . . . . . . . . . 13 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐶‘(𝑛𝑙)) = (0g𝑅))
8079oveq2d 7403 . . . . . . . . . . . 12 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = ((𝐴𝑙) (0g𝑅)))
81 simplr1 1216 . . . . . . . . . . . . . . 15 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
8281ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → 𝑅 ∈ Ring)
8382adantl 481 . . . . . . . . . . . . 13 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → 𝑅 ∈ Ring)
84 simplr2 1217 . . . . . . . . . . . . . . . . 17 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝐾𝐵)
8584adantr 480 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → 𝐾𝐵)
8685, 29anim12i 613 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝐾𝐵𝑙 ∈ ℕ0))
8786adantl 481 . . . . . . . . . . . . . 14 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐾𝐵𝑙 ∈ ℕ0))
88 eqid 2729 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
893, 2, 1, 88coe1fvalcl 22097 . . . . . . . . . . . . . 14 ((𝐾𝐵𝑙 ∈ ℕ0) → (𝐴𝑙) ∈ (Base‘𝑅))
9087, 89syl 17 . . . . . . . . . . . . 13 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐴𝑙) ∈ (Base‘𝑅))
91 eqid 2729 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
9288, 8, 91ringrz 20203 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐴𝑙) ∈ (Base‘𝑅)) → ((𝐴𝑙) (0g𝑅)) = (0g𝑅))
9383, 90, 92syl2anc 584 . . . . . . . . . . . 12 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (0g𝑅)) = (0g𝑅))
9480, 93eqtrd 2764 . . . . . . . . . . 11 ((𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (0g𝑅))
95 ltnle 11253 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ ∧ 𝑙 ∈ ℝ) → (𝑧 < 𝑙 ↔ ¬ 𝑙𝑧))
9623, 30, 95syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℕ0𝑙 ∈ ℕ0) → (𝑧 < 𝑙 ↔ ¬ 𝑙𝑧))
9796bicomd 223 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℕ0𝑙 ∈ ℕ0) → (¬ 𝑙𝑧𝑧 < 𝑙))
9897expcom 413 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ ℕ0 → (𝑧 ∈ ℕ0 → (¬ 𝑙𝑧𝑧 < 𝑙)))
9998, 29syl11 33 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ0 → (𝑙 ∈ (0...𝑛) → (¬ 𝑙𝑧𝑧 < 𝑙)))
10099ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) → (¬ 𝑙𝑧𝑧 < 𝑙)))
101100imp 406 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (¬ 𝑙𝑧𝑧 < 𝑙))
102 breq2 5111 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑙 → (𝑧 < 𝑥𝑧 < 𝑙))
103 fveqeq2 6867 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑙 → ((𝐴𝑥) = (0g𝑅) ↔ (𝐴𝑙) = (0g𝑅)))
104 fveqeq2 6867 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑙 → ((𝐶𝑥) = (0g𝑅) ↔ (𝐶𝑙) = (0g𝑅)))
105103, 104anbi12d 632 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑙 → (((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)) ↔ ((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅))))
106102, 105imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑙 → ((𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) ↔ (𝑧 < 𝑙 → ((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅)))))
107106rspcva 3586 . . . . . . . . . . . . . . . . . . . 20 ((𝑙 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < 𝑙 → ((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅))))
108 simpl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑙) = (0g𝑅) ∧ (𝐶𝑙) = (0g𝑅)) → (𝐴𝑙) = (0g𝑅))
109107, 108syl6 35 . . . . . . . . . . . . . . . . . . 19 ((𝑙 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅)))
110109ex 412 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅))))
111110, 29syl11 33 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → (𝑙 ∈ (0...𝑛) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅))))
112111ad4antlr 733 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅))))
113112imp 406 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝑧 < 𝑙 → (𝐴𝑙) = (0g𝑅)))
114101, 113sylbid 240 . . . . . . . . . . . . . 14 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (¬ 𝑙𝑧 → (𝐴𝑙) = (0g𝑅)))
115114impcom 407 . . . . . . . . . . . . 13 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐴𝑙) = (0g𝑅))
116115oveq1d 7402 . . . . . . . . . . . 12 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = ((0g𝑅) (𝐶‘(𝑛𝑙))))
11782adantl 481 . . . . . . . . . . . . 13 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → 𝑅 ∈ Ring)
118 simplr3 1218 . . . . . . . . . . . . . . . . 17 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝐿𝐵)
119118adantr 480 . . . . . . . . . . . . . . . 16 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → 𝐿𝐵)
120 fznn0sub 13517 . . . . . . . . . . . . . . . 16 (𝑙 ∈ (0...𝑛) → (𝑛𝑙) ∈ ℕ0)
121119, 120anim12i 613 . . . . . . . . . . . . . . 15 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → (𝐿𝐵 ∧ (𝑛𝑙) ∈ ℕ0))
122121adantl 481 . . . . . . . . . . . . . 14 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐿𝐵 ∧ (𝑛𝑙) ∈ ℕ0))
1234, 2, 1, 88coe1fvalcl 22097 . . . . . . . . . . . . . 14 ((𝐿𝐵 ∧ (𝑛𝑙) ∈ ℕ0) → (𝐶‘(𝑛𝑙)) ∈ (Base‘𝑅))
124122, 123syl 17 . . . . . . . . . . . . 13 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → (𝐶‘(𝑛𝑙)) ∈ (Base‘𝑅))
12588, 8, 91ringlz 20202 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐶‘(𝑛𝑙)) ∈ (Base‘𝑅)) → ((0g𝑅) (𝐶‘(𝑛𝑙))) = (0g𝑅))
126117, 124, 125syl2anc 584 . . . . . . . . . . . 12 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((0g𝑅) (𝐶‘(𝑛𝑙))) = (0g𝑅))
127116, 126eqtrd 2764 . . . . . . . . . . 11 ((¬ 𝑙𝑧 ∧ (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛))) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (0g𝑅))
12894, 127pm2.61ian 811 . . . . . . . . . 10 ((((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) ∧ 𝑙 ∈ (0...𝑛)) → ((𝐴𝑙) (𝐶‘(𝑛𝑙))) = (0g𝑅))
129128mpteq2dva 5200 . . . . . . . . 9 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙)))) = (𝑙 ∈ (0...𝑛) ↦ (0g𝑅)))
130129oveq2d 7403 . . . . . . . 8 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ (0g𝑅))))
131 ringmnd 20152 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1321313ad2ant1 1133 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → 𝑅 ∈ Mnd)
133 ovex 7420 . . . . . . . . . . 11 (0...𝑛) ∈ V
134132, 133jctir 520 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → (𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V))
135134ad3antlr 731 . . . . . . . . 9 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V))
13691gsumz 18763 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ (0g𝑅))) = (0g𝑅))
137135, 136syl 17 . . . . . . . 8 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ (0g𝑅))) = (0g𝑅))
138130, 137eqtrd 2764 . . . . . . 7 (((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ (2 · 𝑧) < 𝑛) → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))
139138ex 412 . . . . . 6 ((((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
140139ralrimiva 3125 . . . . 5 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → ∀𝑛 ∈ ℕ0 ((2 · 𝑧) < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
14116, 20, 140rspcedvd 3590 . . . 4 (((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) ∧ (𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
142141ex 412 . . 3 ((𝑧 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅)))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
143142rexlimiva 3126 . 2 (∃𝑧 ∈ ℕ0𝑥 ∈ ℕ0 (𝑧 < 𝑥 → ((𝐴𝑥) = (0g𝑅) ∧ (𝐶𝑥) = (0g𝑅))) → ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅))))
14411, 143mpcom 38 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴𝑙) (𝐶‘(𝑛𝑙))))) = (0g𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   · cmul 11073   < clt 11208  cle 11209  cmin 11405  2c2 12241  0cn0 12442  ...cfz 13468  Basecbs 17179  .rcmulr 17221   ·𝑠 cvsca 17224  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  .gcmg 18999  mulGrpcmgp 20049  Ringcrg 20142  var1cv1 22060  Poly1cpl1 22061  coe1cco1 22062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-seq 13967  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-tset 17239  df-ple 17240  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-psr 21818  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-ply1 22066  df-coe1 22067
This theorem is referenced by:  ply1mulgsumlem3  48377  ply1mulgsumlem4  48378
  Copyright terms: Public domain W3C validator