MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinveu Structured version   Visualization version   GIF version

Theorem grpoinveu 30463
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpoinveu.1 𝑋 = ran 𝐺
grpoinveu.2 𝑈 = (GId‘𝐺)
Assertion
Ref Expression
grpoinveu ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦,𝑈   𝑦,𝑋

Proof of Theorem grpoinveu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 grpoinveu.1 . . . . 5 𝑋 = ran 𝐺
2 grpoinveu.2 . . . . 5 𝑈 = (GId‘𝐺)
31, 2grpoidinv2 30459 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
4 simpl 482 . . . . . 6 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈)
54reximi 3067 . . . . 5 (∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → ∃𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
65adantl 481 . . . 4 ((((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → ∃𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
73, 6syl 17 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
8 eqtr3 2751 . . . . . . . . . . . 12 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝑧𝐺𝐴) = 𝑈) → (𝑦𝐺𝐴) = (𝑧𝐺𝐴))
91grporcan 30462 . . . . . . . . . . . 12 ((𝐺 ∈ GrpOp ∧ (𝑦𝑋𝑧𝑋𝐴𝑋)) → ((𝑦𝐺𝐴) = (𝑧𝐺𝐴) ↔ 𝑦 = 𝑧))
108, 9imbitrid 244 . . . . . . . . . . 11 ((𝐺 ∈ GrpOp ∧ (𝑦𝑋𝑧𝑋𝐴𝑋)) → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝑧𝐺𝐴) = 𝑈) → 𝑦 = 𝑧))
11103exp2 1355 . . . . . . . . . 10 (𝐺 ∈ GrpOp → (𝑦𝑋 → (𝑧𝑋 → (𝐴𝑋 → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝑧𝐺𝐴) = 𝑈) → 𝑦 = 𝑧)))))
1211com24 95 . . . . . . . . 9 (𝐺 ∈ GrpOp → (𝐴𝑋 → (𝑧𝑋 → (𝑦𝑋 → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝑧𝐺𝐴) = 𝑈) → 𝑦 = 𝑧)))))
1312imp41 425 . . . . . . . 8 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑧𝑋) ∧ 𝑦𝑋) → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝑧𝐺𝐴) = 𝑈) → 𝑦 = 𝑧))
1413an32s 652 . . . . . . 7 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝑧𝐺𝐴) = 𝑈) → 𝑦 = 𝑧))
1514expd 415 . . . . . 6 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → ((𝑦𝐺𝐴) = 𝑈 → ((𝑧𝐺𝐴) = 𝑈𝑦 = 𝑧)))
1615ralrimdva 3129 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → ((𝑦𝐺𝐴) = 𝑈 → ∀𝑧𝑋 ((𝑧𝐺𝐴) = 𝑈𝑦 = 𝑧)))
1716ancld 550 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → ((𝑦𝐺𝐴) = 𝑈 → ((𝑦𝐺𝐴) = 𝑈 ∧ ∀𝑧𝑋 ((𝑧𝐺𝐴) = 𝑈𝑦 = 𝑧))))
1817reximdva 3142 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (∃𝑦𝑋 (𝑦𝐺𝐴) = 𝑈 → ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ ∀𝑧𝑋 ((𝑧𝐺𝐴) = 𝑈𝑦 = 𝑧))))
197, 18mpd 15 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ ∀𝑧𝑋 ((𝑧𝐺𝐴) = 𝑈𝑦 = 𝑧)))
20 oveq1 7356 . . . 4 (𝑦 = 𝑧 → (𝑦𝐺𝐴) = (𝑧𝐺𝐴))
2120eqeq1d 2731 . . 3 (𝑦 = 𝑧 → ((𝑦𝐺𝐴) = 𝑈 ↔ (𝑧𝐺𝐴) = 𝑈))
2221reu8 3693 . 2 (∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈 ↔ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ ∀𝑧𝑋 ((𝑧𝐺𝐴) = 𝑈𝑦 = 𝑧)))
2319, 22sylibr 234 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3341  ran crn 5620  cfv 6482  (class class class)co 7349  GrpOpcgr 30433  GIdcgi 30434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-riota 7306  df-ov 7352  df-grpo 30437  df-gid 30438
This theorem is referenced by:  grpoinvcl  30468  grpoinv  30469
  Copyright terms: Public domain W3C validator