MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinveu Structured version   Visualization version   GIF version

Theorem grpoinveu 28881
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpoinveu.1 𝑋 = ran 𝐺
grpoinveu.2 𝑈 = (GId‘𝐺)
Assertion
Ref Expression
grpoinveu ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦,𝑈   𝑦,𝑋

Proof of Theorem grpoinveu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 grpoinveu.1 . . . . 5 𝑋 = ran 𝐺
2 grpoinveu.2 . . . . 5 𝑈 = (GId‘𝐺)
31, 2grpoidinv2 28877 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
4 simpl 483 . . . . . 6 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈)
54reximi 3178 . . . . 5 (∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → ∃𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
65adantl 482 . . . 4 ((((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → ∃𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
73, 6syl 17 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
8 eqtr3 2764 . . . . . . . . . . . 12 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝑧𝐺𝐴) = 𝑈) → (𝑦𝐺𝐴) = (𝑧𝐺𝐴))
91grporcan 28880 . . . . . . . . . . . 12 ((𝐺 ∈ GrpOp ∧ (𝑦𝑋𝑧𝑋𝐴𝑋)) → ((𝑦𝐺𝐴) = (𝑧𝐺𝐴) ↔ 𝑦 = 𝑧))
108, 9syl5ib 243 . . . . . . . . . . 11 ((𝐺 ∈ GrpOp ∧ (𝑦𝑋𝑧𝑋𝐴𝑋)) → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝑧𝐺𝐴) = 𝑈) → 𝑦 = 𝑧))
11103exp2 1353 . . . . . . . . . 10 (𝐺 ∈ GrpOp → (𝑦𝑋 → (𝑧𝑋 → (𝐴𝑋 → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝑧𝐺𝐴) = 𝑈) → 𝑦 = 𝑧)))))
1211com24 95 . . . . . . . . 9 (𝐺 ∈ GrpOp → (𝐴𝑋 → (𝑧𝑋 → (𝑦𝑋 → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝑧𝐺𝐴) = 𝑈) → 𝑦 = 𝑧)))))
1312imp41 426 . . . . . . . 8 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑧𝑋) ∧ 𝑦𝑋) → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝑧𝐺𝐴) = 𝑈) → 𝑦 = 𝑧))
1413an32s 649 . . . . . . 7 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝑧𝐺𝐴) = 𝑈) → 𝑦 = 𝑧))
1514expd 416 . . . . . 6 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → ((𝑦𝐺𝐴) = 𝑈 → ((𝑧𝐺𝐴) = 𝑈𝑦 = 𝑧)))
1615ralrimdva 3106 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → ((𝑦𝐺𝐴) = 𝑈 → ∀𝑧𝑋 ((𝑧𝐺𝐴) = 𝑈𝑦 = 𝑧)))
1716ancld 551 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → ((𝑦𝐺𝐴) = 𝑈 → ((𝑦𝐺𝐴) = 𝑈 ∧ ∀𝑧𝑋 ((𝑧𝐺𝐴) = 𝑈𝑦 = 𝑧))))
1817reximdva 3203 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (∃𝑦𝑋 (𝑦𝐺𝐴) = 𝑈 → ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ ∀𝑧𝑋 ((𝑧𝐺𝐴) = 𝑈𝑦 = 𝑧))))
197, 18mpd 15 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ ∀𝑧𝑋 ((𝑧𝐺𝐴) = 𝑈𝑦 = 𝑧)))
20 oveq1 7282 . . . 4 (𝑦 = 𝑧 → (𝑦𝐺𝐴) = (𝑧𝐺𝐴))
2120eqeq1d 2740 . . 3 (𝑦 = 𝑧 → ((𝑦𝐺𝐴) = 𝑈 ↔ (𝑧𝐺𝐴) = 𝑈))
2221reu8 3668 . 2 (∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈 ↔ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ ∀𝑧𝑋 ((𝑧𝐺𝐴) = 𝑈𝑦 = 𝑧)))
2319, 22sylibr 233 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  ∃!wreu 3066  ran crn 5590  cfv 6433  (class class class)co 7275  GrpOpcgr 28851  GIdcgi 28852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-riota 7232  df-ov 7278  df-grpo 28855  df-gid 28856
This theorem is referenced by:  grpoinvcl  28886  grpoinv  28887
  Copyright terms: Public domain W3C validator