MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul12a Structured version   Visualization version   GIF version

Theorem lemul12a 12152
Description: Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.)
Assertion
Ref Expression
lemul12a ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))

Proof of Theorem lemul12a
StepHypRef Expression
1 simpll 766 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ))
2 simpll 766 . . . . 5 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ) → 𝐶 ∈ ℝ)
32ad2antlr 726 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → 𝐶 ∈ ℝ)
4 simplrr 777 . . . . 5 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → 𝐷 ∈ ℝ)
5 0re 11292 . . . . . . . . . 10 0 ∈ ℝ
6 letr 11384 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 ≤ 𝐶𝐶𝐷) → 0 ≤ 𝐷))
75, 6mp3an1 1448 . . . . . . . . 9 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 ≤ 𝐶𝐶𝐷) → 0 ≤ 𝐷))
87exp4b 430 . . . . . . . 8 (𝐶 ∈ ℝ → (𝐷 ∈ ℝ → (0 ≤ 𝐶 → (𝐶𝐷 → 0 ≤ 𝐷))))
98com23 86 . . . . . . 7 (𝐶 ∈ ℝ → (0 ≤ 𝐶 → (𝐷 ∈ ℝ → (𝐶𝐷 → 0 ≤ 𝐷))))
109imp41 425 . . . . . 6 ((((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ) ∧ 𝐶𝐷) → 0 ≤ 𝐷)
1110ad2ant2l 745 . . . . 5 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → 0 ≤ 𝐷)
124, 11jca 511 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))
131, 3, 12jca32 515 . . 3 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))))
14 simpr 484 . . 3 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → (𝐴𝐵𝐶𝐷))
15 lemul12b 12151 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
1613, 14, 15sylc 65 . 2 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))
1716ex 412 1 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184   · cmul 11189  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523
This theorem is referenced by:  lemulge11  12157  lediv12a  12188  lemul12ad  12237  expge1  14150  leexp1a  14225  faclbnd4lem1  14342  faclbnd6  14348  o1rlimmul  15665  mertenslem1  15932  iimulcl  24985  aaliou3lem2  26403  logfacubnd  27283  lgslem3  27361  dchrisum0flblem2  27571  pntlemr  27664  factwoffsmonot  42199  pellqrex  42835
  Copyright terms: Public domain W3C validator