MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul12a Structured version   Visualization version   GIF version

Theorem lemul12a 11487
Description: Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.)
Assertion
Ref Expression
lemul12a ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))

Proof of Theorem lemul12a
StepHypRef Expression
1 simpll 766 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ))
2 simpll 766 . . . . 5 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ) → 𝐶 ∈ ℝ)
32ad2antlr 726 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → 𝐶 ∈ ℝ)
4 simplrr 777 . . . . 5 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → 𝐷 ∈ ℝ)
5 0re 10632 . . . . . . . . . 10 0 ∈ ℝ
6 letr 10723 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 ≤ 𝐶𝐶𝐷) → 0 ≤ 𝐷))
75, 6mp3an1 1445 . . . . . . . . 9 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 ≤ 𝐶𝐶𝐷) → 0 ≤ 𝐷))
87exp4b 434 . . . . . . . 8 (𝐶 ∈ ℝ → (𝐷 ∈ ℝ → (0 ≤ 𝐶 → (𝐶𝐷 → 0 ≤ 𝐷))))
98com23 86 . . . . . . 7 (𝐶 ∈ ℝ → (0 ≤ 𝐶 → (𝐷 ∈ ℝ → (𝐶𝐷 → 0 ≤ 𝐷))))
109imp41 429 . . . . . 6 ((((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ) ∧ 𝐶𝐷) → 0 ≤ 𝐷)
1110ad2ant2l 745 . . . . 5 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → 0 ≤ 𝐷)
124, 11jca 515 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))
131, 3, 12jca32 519 . . 3 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))))
14 simpr 488 . . 3 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → (𝐴𝐵𝐶𝐷))
15 lemul12b 11486 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
1613, 14, 15sylc 65 . 2 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))
1716ex 416 1 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2111   class class class wbr 5030  (class class class)co 7135  cr 10525  0cc0 10526   · cmul 10531  cle 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862
This theorem is referenced by:  lemulge11  11491  lediv12a  11522  lemul12ad  11571  expge1  13462  leexp1a  13535  faclbnd4lem1  13649  faclbnd6  13655  o1rlimmul  14967  mertenslem1  15232  iimulcl  23542  aaliou3lem2  24939  logfacubnd  25805  lgslem3  25883  dchrisum0flblem2  26093  pntlemr  26186  factwoffsmonot  39383  pellqrex  39815
  Copyright terms: Public domain W3C validator