| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lemul12a | Structured version Visualization version GIF version | ||
| Description: Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.) |
| Ref | Expression |
|---|---|
| lemul12a | ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . 4 ⊢ (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷)) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)) | |
| 2 | simpll 766 | . . . . 5 ⊢ (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ) → 𝐶 ∈ ℝ) | |
| 3 | 2 | ad2antlr 727 | . . . 4 ⊢ (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷)) → 𝐶 ∈ ℝ) |
| 4 | simplrr 777 | . . . . 5 ⊢ (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷)) → 𝐷 ∈ ℝ) | |
| 5 | 0re 11237 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
| 6 | letr 11329 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 ≤ 𝐶 ∧ 𝐶 ≤ 𝐷) → 0 ≤ 𝐷)) | |
| 7 | 5, 6 | mp3an1 1450 | . . . . . . . . 9 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 ≤ 𝐶 ∧ 𝐶 ≤ 𝐷) → 0 ≤ 𝐷)) |
| 8 | 7 | exp4b 430 | . . . . . . . 8 ⊢ (𝐶 ∈ ℝ → (𝐷 ∈ ℝ → (0 ≤ 𝐶 → (𝐶 ≤ 𝐷 → 0 ≤ 𝐷)))) |
| 9 | 8 | com23 86 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ → (0 ≤ 𝐶 → (𝐷 ∈ ℝ → (𝐶 ≤ 𝐷 → 0 ≤ 𝐷)))) |
| 10 | 9 | imp41 425 | . . . . . 6 ⊢ ((((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ) ∧ 𝐶 ≤ 𝐷) → 0 ≤ 𝐷) |
| 11 | 10 | ad2ant2l 746 | . . . . 5 ⊢ (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷)) → 0 ≤ 𝐷) |
| 12 | 4, 11 | jca 511 | . . . 4 ⊢ (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷)) → (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷)) |
| 13 | 1, 3, 12 | jca32 515 | . . 3 ⊢ (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷)) → (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷)))) |
| 14 | simpr 484 | . . 3 ⊢ (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷)) → (𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷)) | |
| 15 | lemul12b 12098 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))) | |
| 16 | 13, 14, 15 | sylc 65 | . 2 ⊢ (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷)) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)) |
| 17 | 16 | ex 412 | 1 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 0cc0 11129 · cmul 11134 ≤ cle 11270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 |
| This theorem is referenced by: lemulge11 12104 lediv12a 12135 lemul12ad 12184 expge1 14117 leexp1a 14193 faclbnd4lem1 14311 faclbnd6 14317 o1rlimmul 15635 mertenslem1 15900 iimulcl 24884 aaliou3lem2 26303 logfacubnd 27184 lgslem3 27262 dchrisum0flblem2 27472 pntlemr 27565 factwoffsmonot 42255 pellqrex 42902 |
| Copyright terms: Public domain | W3C validator |