MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcj Structured version   Visualization version   GIF version

Theorem ipcj 20839
Description: Conjugate of an inner product in a pre-Hilbert space. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipcj.i = (*𝑟𝐹)
Assertion
Ref Expression
ipcj ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ( ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴))

Proof of Theorem ipcj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
2 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
3 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
4 eqid 2738 . . . . . 6 (0g𝑊) = (0g𝑊)
5 ipcj.i . . . . . 6 = (*𝑟𝐹)
6 eqid 2738 . . . . . 6 (0g𝐹) = (0g𝐹)
71, 2, 3, 4, 5, 6isphl 20833 . . . . 5 (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = (0g𝐹) → 𝑥 = (0g𝑊)) ∧ ∀𝑦𝑉 ( ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥))))
87simp3bi 1146 . . . 4 (𝑊 ∈ PreHil → ∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = (0g𝐹) → 𝑥 = (0g𝑊)) ∧ ∀𝑦𝑉 ( ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)))
9 simp3 1137 . . . . 5 (((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = (0g𝐹) → 𝑥 = (0g𝑊)) ∧ ∀𝑦𝑉 ( ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ∀𝑦𝑉 ( ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥))
109ralimi 3087 . . . 4 (∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = (0g𝐹) → 𝑥 = (0g𝑊)) ∧ ∀𝑦𝑉 ( ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ∀𝑥𝑉𝑦𝑉 ( ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥))
118, 10syl 17 . . 3 (𝑊 ∈ PreHil → ∀𝑥𝑉𝑦𝑉 ( ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥))
12 fvoveq1 7298 . . . . 5 (𝑥 = 𝐴 → ( ‘(𝑥 , 𝑦)) = ( ‘(𝐴 , 𝑦)))
13 oveq2 7283 . . . . 5 (𝑥 = 𝐴 → (𝑦 , 𝑥) = (𝑦 , 𝐴))
1412, 13eqeq12d 2754 . . . 4 (𝑥 = 𝐴 → (( ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥) ↔ ( ‘(𝐴 , 𝑦)) = (𝑦 , 𝐴)))
15 oveq2 7283 . . . . . 6 (𝑦 = 𝐵 → (𝐴 , 𝑦) = (𝐴 , 𝐵))
1615fveq2d 6778 . . . . 5 (𝑦 = 𝐵 → ( ‘(𝐴 , 𝑦)) = ( ‘(𝐴 , 𝐵)))
17 oveq1 7282 . . . . 5 (𝑦 = 𝐵 → (𝑦 , 𝐴) = (𝐵 , 𝐴))
1816, 17eqeq12d 2754 . . . 4 (𝑦 = 𝐵 → (( ‘(𝐴 , 𝑦)) = (𝑦 , 𝐴) ↔ ( ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)))
1914, 18rspc2v 3570 . . 3 ((𝐴𝑉𝐵𝑉) → (∀𝑥𝑉𝑦𝑉 ( ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥) → ( ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)))
2011, 19syl5com 31 . 2 (𝑊 ∈ PreHil → ((𝐴𝑉𝐵𝑉) → ( ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)))
21203impib 1115 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ( ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cmpt 5157  cfv 6433  (class class class)co 7275  Basecbs 16912  *𝑟cstv 16964  Scalarcsca 16965  ·𝑖cip 16967  0gc0g 17150  *-Ringcsr 20104   LMHom clmhm 20281  LVecclvec 20364  ringLModcrglmod 20431  PreHilcphl 20829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-iota 6391  df-fv 6441  df-ov 7278  df-phl 20831
This theorem is referenced by:  iporthcom  20840  ip0r  20842  ipdi  20845  ipassr  20851  phlssphl  20864  cphipcj  24363  tcphcphlem3  24397  ipcau2  24398  tcphcphlem1  24399
  Copyright terms: Public domain W3C validator