MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcj Structured version   Visualization version   GIF version

Theorem ipcj 20348
Description: Conjugate of an inner product in a pre-Hilbert space. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipcj.i = (*𝑟𝐹)
Assertion
Ref Expression
ipcj ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ( ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴))

Proof of Theorem ipcj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
2 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
3 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
4 eqid 2825 . . . . . 6 (0g𝑊) = (0g𝑊)
5 ipcj.i . . . . . 6 = (*𝑟𝐹)
6 eqid 2825 . . . . . 6 (0g𝐹) = (0g𝐹)
71, 2, 3, 4, 5, 6isphl 20342 . . . . 5 (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = (0g𝐹) → 𝑥 = (0g𝑊)) ∧ ∀𝑦𝑉 ( ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥))))
87simp3bi 1181 . . . 4 (𝑊 ∈ PreHil → ∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = (0g𝐹) → 𝑥 = (0g𝑊)) ∧ ∀𝑦𝑉 ( ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)))
9 simp3 1172 . . . . 5 (((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = (0g𝐹) → 𝑥 = (0g𝑊)) ∧ ∀𝑦𝑉 ( ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ∀𝑦𝑉 ( ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥))
109ralimi 3161 . . . 4 (∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = (0g𝐹) → 𝑥 = (0g𝑊)) ∧ ∀𝑦𝑉 ( ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ∀𝑥𝑉𝑦𝑉 ( ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥))
118, 10syl 17 . . 3 (𝑊 ∈ PreHil → ∀𝑥𝑉𝑦𝑉 ( ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥))
12 fvoveq1 6933 . . . . 5 (𝑥 = 𝐴 → ( ‘(𝑥 , 𝑦)) = ( ‘(𝐴 , 𝑦)))
13 oveq2 6918 . . . . 5 (𝑥 = 𝐴 → (𝑦 , 𝑥) = (𝑦 , 𝐴))
1412, 13eqeq12d 2840 . . . 4 (𝑥 = 𝐴 → (( ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥) ↔ ( ‘(𝐴 , 𝑦)) = (𝑦 , 𝐴)))
15 oveq2 6918 . . . . . 6 (𝑦 = 𝐵 → (𝐴 , 𝑦) = (𝐴 , 𝐵))
1615fveq2d 6441 . . . . 5 (𝑦 = 𝐵 → ( ‘(𝐴 , 𝑦)) = ( ‘(𝐴 , 𝐵)))
17 oveq1 6917 . . . . 5 (𝑦 = 𝐵 → (𝑦 , 𝐴) = (𝐵 , 𝐴))
1816, 17eqeq12d 2840 . . . 4 (𝑦 = 𝐵 → (( ‘(𝐴 , 𝑦)) = (𝑦 , 𝐴) ↔ ( ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)))
1914, 18rspc2v 3539 . . 3 ((𝐴𝑉𝐵𝑉) → (∀𝑥𝑉𝑦𝑉 ( ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥) → ( ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)))
2011, 19syl5com 31 . 2 (𝑊 ∈ PreHil → ((𝐴𝑉𝐵𝑉) → ( ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)))
21203impib 1148 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ( ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  wral 3117  cmpt 4954  cfv 6127  (class class class)co 6910  Basecbs 16229  *𝑟cstv 16314  Scalarcsca 16315  ·𝑖cip 16317  0gc0g 16460  *-Ringcsr 19207   LMHom clmhm 19385  LVecclvec 19468  ringLModcrglmod 19537  PreHilcphl 20338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-nul 5015
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-iota 6090  df-fv 6135  df-ov 6913  df-phl 20340
This theorem is referenced by:  iporthcom  20349  ip0r  20351  ipdi  20354  ipassr  20360  phlssphl  20373  cphipcj  23375  tcphcphlem3  23408  ipcau2  23409  tcphcphlem1  23410
  Copyright terms: Public domain W3C validator