Step | Hyp | Ref
| Expression |
1 | | phllmhm.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑊) |
2 | | phlsrng.f |
. . . . . 6
⊢ 𝐹 = (Scalar‘𝑊) |
3 | | phllmhm.h |
. . . . . 6
⊢ , =
(·𝑖‘𝑊) |
4 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝑊) = (0g‘𝑊) |
5 | | ipcj.i |
. . . . . 6
⊢ ∗ =
(*𝑟‘𝐹) |
6 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝐹) = (0g‘𝐹) |
7 | 1, 2, 3, 4, 5, 6 | isphl 20833 |
. . . . 5
⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧
∀𝑥 ∈ 𝑉 ((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = (0g‘𝐹) → 𝑥 = (0g‘𝑊)) ∧ ∀𝑦 ∈ 𝑉 ( ∗ ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)))) |
8 | 7 | simp3bi 1146 |
. . . 4
⊢ (𝑊 ∈ PreHil →
∀𝑥 ∈ 𝑉 ((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = (0g‘𝐹) → 𝑥 = (0g‘𝑊)) ∧ ∀𝑦 ∈ 𝑉 ( ∗ ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥))) |
9 | | simp3 1137 |
. . . . 5
⊢ (((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = (0g‘𝐹) → 𝑥 = (0g‘𝑊)) ∧ ∀𝑦 ∈ 𝑉 ( ∗ ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ∀𝑦 ∈ 𝑉 ( ∗ ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) |
10 | 9 | ralimi 3087 |
. . . 4
⊢
(∀𝑥 ∈
𝑉 ((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = (0g‘𝐹) → 𝑥 = (0g‘𝑊)) ∧ ∀𝑦 ∈ 𝑉 ( ∗ ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ( ∗ ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) |
11 | 8, 10 | syl 17 |
. . 3
⊢ (𝑊 ∈ PreHil →
∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ( ∗ ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) |
12 | | fvoveq1 7298 |
. . . . 5
⊢ (𝑥 = 𝐴 → ( ∗ ‘(𝑥 , 𝑦)) = ( ∗ ‘(𝐴 , 𝑦))) |
13 | | oveq2 7283 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑦 , 𝑥) = (𝑦 , 𝐴)) |
14 | 12, 13 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = 𝐴 → (( ∗ ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥) ↔ ( ∗ ‘(𝐴 , 𝑦)) = (𝑦 , 𝐴))) |
15 | | oveq2 7283 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝐴 , 𝑦) = (𝐴 , 𝐵)) |
16 | 15 | fveq2d 6778 |
. . . . 5
⊢ (𝑦 = 𝐵 → ( ∗ ‘(𝐴 , 𝑦)) = ( ∗ ‘(𝐴 , 𝐵))) |
17 | | oveq1 7282 |
. . . . 5
⊢ (𝑦 = 𝐵 → (𝑦 , 𝐴) = (𝐵 , 𝐴)) |
18 | 16, 17 | eqeq12d 2754 |
. . . 4
⊢ (𝑦 = 𝐵 → (( ∗ ‘(𝐴 , 𝑦)) = (𝑦 , 𝐴) ↔ ( ∗ ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴))) |
19 | 14, 18 | rspc2v 3570 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ( ∗ ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥) → ( ∗ ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴))) |
20 | 11, 19 | syl5com 31 |
. 2
⊢ (𝑊 ∈ PreHil → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ( ∗ ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴))) |
21 | 20 | 3impib 1115 |
1
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ( ∗ ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)) |