| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcphcphlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for tcphcph 25194: real closure of an inner product of a vector with itself. (Contributed by Mario Carneiro, 10-Oct-2015.) |
| Ref | Expression |
|---|---|
| tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
| tcphcph.v | ⊢ 𝑉 = (Base‘𝑊) |
| tcphcph.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| tcphcph.1 | ⊢ (𝜑 → 𝑊 ∈ PreHil) |
| tcphcph.2 | ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) |
| tcphcph.h | ⊢ , = (·𝑖‘𝑊) |
| Ref | Expression |
|---|---|
| tcphcphlem3 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | . . . . . 6 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
| 2 | tcphcph.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | tcphcph.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | tcphcph.1 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ PreHil) | |
| 5 | tcphcph.2 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) | |
| 6 | 1, 2, 3, 4, 5 | phclm 25189 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ ℂMod) |
| 8 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 9 | 3, 8 | clmsscn 25035 | . . . 4 ⊢ (𝑊 ∈ ℂMod → (Base‘𝐹) ⊆ ℂ) |
| 10 | 7, 9 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (Base‘𝐹) ⊆ ℂ) |
| 11 | tcphcph.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
| 12 | 3, 11, 2, 8 | ipcl 21598 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ (Base‘𝐹)) |
| 13 | 12 | 3anidm23 1423 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ (Base‘𝐹)) |
| 14 | 4, 13 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ (Base‘𝐹)) |
| 15 | 10, 14 | sseldd 3964 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℂ) |
| 16 | 3 | clmcj 25032 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → ∗ = (*𝑟‘𝐹)) |
| 17 | 7, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → ∗ = (*𝑟‘𝐹)) |
| 18 | 17 | fveq1d 6883 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (∗‘(𝑋 , 𝑋)) = ((*𝑟‘𝐹)‘(𝑋 , 𝑋))) |
| 19 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ PreHil) |
| 20 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 21 | eqid 2736 | . . . . 5 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
| 22 | 3, 11, 2, 21 | ipcj 21599 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝑋 , 𝑋)) = (𝑋 , 𝑋)) |
| 23 | 19, 20, 20, 22 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝑋 , 𝑋)) = (𝑋 , 𝑋)) |
| 24 | 18, 23 | eqtrd 2771 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (∗‘(𝑋 , 𝑋)) = (𝑋 , 𝑋)) |
| 25 | 15, 24 | cjrebd 15226 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ℝcr 11133 ∗ccj 15120 Basecbs 17233 ↾s cress 17256 *𝑟cstv 17278 Scalarcsca 17279 ·𝑖cip 17281 ℂfldccnfld 21320 PreHilcphl 21589 ℂModcclm 25018 toℂPreHilctcph 25124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-subg 19111 df-ghm 19201 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-subrg 20535 df-drng 20696 df-lmhm 20985 df-lvec 21066 df-sra 21136 df-rgmod 21137 df-cnfld 21321 df-phl 21591 df-clm 25019 |
| This theorem is referenced by: ipcau2 25191 tcphcphlem1 25192 tcphcphlem2 25193 tcphcph 25194 |
| Copyright terms: Public domain | W3C validator |