Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tcphcphlem3 | Structured version Visualization version GIF version |
Description: Lemma for tcphcph 24473: real closure of an inner product of a vector with itself. (Contributed by Mario Carneiro, 10-Oct-2015.) |
Ref | Expression |
---|---|
tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
tcphcph.v | ⊢ 𝑉 = (Base‘𝑊) |
tcphcph.f | ⊢ 𝐹 = (Scalar‘𝑊) |
tcphcph.1 | ⊢ (𝜑 → 𝑊 ∈ PreHil) |
tcphcph.2 | ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) |
tcphcph.h | ⊢ , = (·𝑖‘𝑊) |
Ref | Expression |
---|---|
tcphcphlem3 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tcphval.n | . . . . . 6 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
2 | tcphcph.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
3 | tcphcph.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | tcphcph.1 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ PreHil) | |
5 | tcphcph.2 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) | |
6 | 1, 2, 3, 4, 5 | phclm 24468 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
7 | 6 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ ℂMod) |
8 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
9 | 3, 8 | clmsscn 24314 | . . . 4 ⊢ (𝑊 ∈ ℂMod → (Base‘𝐹) ⊆ ℂ) |
10 | 7, 9 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (Base‘𝐹) ⊆ ℂ) |
11 | tcphcph.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
12 | 3, 11, 2, 8 | ipcl 20910 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ (Base‘𝐹)) |
13 | 12 | 3anidm23 1420 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ (Base‘𝐹)) |
14 | 4, 13 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ (Base‘𝐹)) |
15 | 10, 14 | sseldd 3932 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℂ) |
16 | 3 | clmcj 24311 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → ∗ = (*𝑟‘𝐹)) |
17 | 7, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → ∗ = (*𝑟‘𝐹)) |
18 | 17 | fveq1d 6813 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (∗‘(𝑋 , 𝑋)) = ((*𝑟‘𝐹)‘(𝑋 , 𝑋))) |
19 | 4 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ PreHil) |
20 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
21 | eqid 2737 | . . . . 5 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
22 | 3, 11, 2, 21 | ipcj 20911 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝑋 , 𝑋)) = (𝑋 , 𝑋)) |
23 | 19, 20, 20, 22 | syl3anc 1370 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝑋 , 𝑋)) = (𝑋 , 𝑋)) |
24 | 18, 23 | eqtrd 2777 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (∗‘(𝑋 , 𝑋)) = (𝑋 , 𝑋)) |
25 | 15, 24 | cjrebd 14985 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⊆ wss 3897 ‘cfv 6465 (class class class)co 7315 ℂcc 10942 ℝcr 10943 ∗ccj 14879 Basecbs 16982 ↾s cress 17011 *𝑟cstv 17034 Scalarcsca 17035 ·𝑖cip 17037 ℂfldccnfld 20669 PreHilcphl 20901 ℂModcclm 24297 toℂPreHilctcph 24403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-addf 11023 ax-mulf 11024 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-tpos 8089 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-7 12114 df-8 12115 df-9 12116 df-n0 12307 df-z 12393 df-dec 12511 df-uz 12656 df-fz 13313 df-seq 13795 df-exp 13856 df-cj 14882 df-re 14883 df-im 14884 df-struct 16918 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-ress 17012 df-plusg 17045 df-mulr 17046 df-starv 17047 df-sca 17048 df-vsca 17049 df-ip 17050 df-tset 17051 df-ple 17052 df-ds 17054 df-unif 17055 df-0g 17222 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-grp 18649 df-subg 18821 df-ghm 18901 df-cmn 19456 df-mgp 19789 df-ur 19806 df-ring 19853 df-cring 19854 df-oppr 19930 df-dvdsr 19951 df-unit 19952 df-drng 20065 df-subrg 20094 df-lmhm 20356 df-lvec 20437 df-sra 20506 df-rgmod 20507 df-cnfld 20670 df-phl 20903 df-clm 24298 |
This theorem is referenced by: ipcau2 24470 tcphcphlem1 24471 tcphcphlem2 24472 tcphcph 24473 |
Copyright terms: Public domain | W3C validator |