Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tcphcphlem3 | Structured version Visualization version GIF version |
Description: Lemma for tcphcph 23937: real closure of an inner product of a vector with itself. (Contributed by Mario Carneiro, 10-Oct-2015.) |
Ref | Expression |
---|---|
tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
tcphcph.v | ⊢ 𝑉 = (Base‘𝑊) |
tcphcph.f | ⊢ 𝐹 = (Scalar‘𝑊) |
tcphcph.1 | ⊢ (𝜑 → 𝑊 ∈ PreHil) |
tcphcph.2 | ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) |
tcphcph.h | ⊢ , = (·𝑖‘𝑊) |
Ref | Expression |
---|---|
tcphcphlem3 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tcphval.n | . . . . . 6 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
2 | tcphcph.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
3 | tcphcph.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | tcphcph.1 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ PreHil) | |
5 | tcphcph.2 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) | |
6 | 1, 2, 3, 4, 5 | phclm 23932 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
7 | 6 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ ℂMod) |
8 | eqid 2758 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
9 | 3, 8 | clmsscn 23780 | . . . 4 ⊢ (𝑊 ∈ ℂMod → (Base‘𝐹) ⊆ ℂ) |
10 | 7, 9 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (Base‘𝐹) ⊆ ℂ) |
11 | tcphcph.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
12 | 3, 11, 2, 8 | ipcl 20398 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ (Base‘𝐹)) |
13 | 12 | 3anidm23 1418 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ (Base‘𝐹)) |
14 | 4, 13 | sylan 583 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ (Base‘𝐹)) |
15 | 10, 14 | sseldd 3893 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℂ) |
16 | 3 | clmcj 23777 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → ∗ = (*𝑟‘𝐹)) |
17 | 7, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → ∗ = (*𝑟‘𝐹)) |
18 | 17 | fveq1d 6660 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (∗‘(𝑋 , 𝑋)) = ((*𝑟‘𝐹)‘(𝑋 , 𝑋))) |
19 | 4 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ PreHil) |
20 | simpr 488 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
21 | eqid 2758 | . . . . 5 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
22 | 3, 11, 2, 21 | ipcj 20399 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝑋 , 𝑋)) = (𝑋 , 𝑋)) |
23 | 19, 20, 20, 22 | syl3anc 1368 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝑋 , 𝑋)) = (𝑋 , 𝑋)) |
24 | 18, 23 | eqtrd 2793 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (∗‘(𝑋 , 𝑋)) = (𝑋 , 𝑋)) |
25 | 15, 24 | cjrebd 14609 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ⊆ wss 3858 ‘cfv 6335 (class class class)co 7150 ℂcc 10573 ℝcr 10574 ∗ccj 14503 Basecbs 16541 ↾s cress 16542 *𝑟cstv 16625 Scalarcsca 16626 ·𝑖cip 16628 ℂfldccnfld 20166 PreHilcphl 20389 ℂModcclm 23763 toℂPreHilctcph 23868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-addf 10654 ax-mulf 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-tpos 7902 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-fz 12940 df-seq 13419 df-exp 13480 df-cj 14506 df-re 14507 df-im 14508 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-starv 16638 df-sca 16639 df-vsca 16640 df-ip 16641 df-tset 16642 df-ple 16643 df-ds 16645 df-unif 16646 df-0g 16773 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-subg 18343 df-ghm 18423 df-cmn 18975 df-mgp 19308 df-ur 19320 df-ring 19367 df-cring 19368 df-oppr 19444 df-dvdsr 19462 df-unit 19463 df-drng 19572 df-subrg 19601 df-lmhm 19862 df-lvec 19943 df-sra 20012 df-rgmod 20013 df-cnfld 20167 df-phl 20391 df-clm 23764 |
This theorem is referenced by: ipcau2 23934 tcphcphlem1 23935 tcphcphlem2 23936 tcphcph 23937 |
Copyright terms: Public domain | W3C validator |