Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphcphlem3 Structured version   Visualization version   GIF version

Theorem tcphcphlem3 23933
 Description: Lemma for tcphcph 23937: real closure of an inner product of a vector with itself. (Contributed by Mario Carneiro, 10-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphcph.v 𝑉 = (Base‘𝑊)
tcphcph.f 𝐹 = (Scalar‘𝑊)
tcphcph.1 (𝜑𝑊 ∈ PreHil)
tcphcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tcphcph.h , = (·𝑖𝑊)
Assertion
Ref Expression
tcphcphlem3 ((𝜑𝑋𝑉) → (𝑋 , 𝑋) ∈ ℝ)

Proof of Theorem tcphcphlem3
StepHypRef Expression
1 tcphval.n . . . . . 6 𝐺 = (toℂPreHil‘𝑊)
2 tcphcph.v . . . . . 6 𝑉 = (Base‘𝑊)
3 tcphcph.f . . . . . 6 𝐹 = (Scalar‘𝑊)
4 tcphcph.1 . . . . . 6 (𝜑𝑊 ∈ PreHil)
5 tcphcph.2 . . . . . 6 (𝜑𝐹 = (ℂflds 𝐾))
61, 2, 3, 4, 5phclm 23932 . . . . 5 (𝜑𝑊 ∈ ℂMod)
76adantr 484 . . . 4 ((𝜑𝑋𝑉) → 𝑊 ∈ ℂMod)
8 eqid 2758 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
93, 8clmsscn 23780 . . . 4 (𝑊 ∈ ℂMod → (Base‘𝐹) ⊆ ℂ)
107, 9syl 17 . . 3 ((𝜑𝑋𝑉) → (Base‘𝐹) ⊆ ℂ)
11 tcphcph.h . . . . . 6 , = (·𝑖𝑊)
123, 11, 2, 8ipcl 20398 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑋𝑉) → (𝑋 , 𝑋) ∈ (Base‘𝐹))
13123anidm23 1418 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑋𝑉) → (𝑋 , 𝑋) ∈ (Base‘𝐹))
144, 13sylan 583 . . 3 ((𝜑𝑋𝑉) → (𝑋 , 𝑋) ∈ (Base‘𝐹))
1510, 14sseldd 3893 . 2 ((𝜑𝑋𝑉) → (𝑋 , 𝑋) ∈ ℂ)
163clmcj 23777 . . . . 5 (𝑊 ∈ ℂMod → ∗ = (*𝑟𝐹))
177, 16syl 17 . . . 4 ((𝜑𝑋𝑉) → ∗ = (*𝑟𝐹))
1817fveq1d 6660 . . 3 ((𝜑𝑋𝑉) → (∗‘(𝑋 , 𝑋)) = ((*𝑟𝐹)‘(𝑋 , 𝑋)))
194adantr 484 . . . 4 ((𝜑𝑋𝑉) → 𝑊 ∈ PreHil)
20 simpr 488 . . . 4 ((𝜑𝑋𝑉) → 𝑋𝑉)
21 eqid 2758 . . . . 5 (*𝑟𝐹) = (*𝑟𝐹)
223, 11, 2, 21ipcj 20399 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑋𝑉) → ((*𝑟𝐹)‘(𝑋 , 𝑋)) = (𝑋 , 𝑋))
2319, 20, 20, 22syl3anc 1368 . . 3 ((𝜑𝑋𝑉) → ((*𝑟𝐹)‘(𝑋 , 𝑋)) = (𝑋 , 𝑋))
2418, 23eqtrd 2793 . 2 ((𝜑𝑋𝑉) → (∗‘(𝑋 , 𝑋)) = (𝑋 , 𝑋))
2515, 24cjrebd 14609 1 ((𝜑𝑋𝑉) → (𝑋 , 𝑋) ∈ ℝ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ⊆ wss 3858  ‘cfv 6335  (class class class)co 7150  ℂcc 10573  ℝcr 10574  ∗ccj 14503  Basecbs 16541   ↾s cress 16542  *𝑟cstv 16625  Scalarcsca 16626  ·𝑖cip 16628  ℂfldccnfld 20166  PreHilcphl 20389  ℂModcclm 23763  toℂPreHilctcph 23868 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-addf 10654  ax-mulf 10655 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-tpos 7902  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-fz 12940  df-seq 13419  df-exp 13480  df-cj 14506  df-re 14507  df-im 14508  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-subg 18343  df-ghm 18423  df-cmn 18975  df-mgp 19308  df-ur 19320  df-ring 19367  df-cring 19368  df-oppr 19444  df-dvdsr 19462  df-unit 19463  df-drng 19572  df-subrg 19601  df-lmhm 19862  df-lvec 19943  df-sra 20012  df-rgmod 20013  df-cnfld 20167  df-phl 20391  df-clm 23764 This theorem is referenced by:  ipcau2  23934  tcphcphlem1  23935  tcphcphlem2  23936  tcphcph  23937
 Copyright terms: Public domain W3C validator