![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tcphcphlem3 | Structured version Visualization version GIF version |
Description: Lemma for tcphcph 25120: real closure of an inner product of a vector with itself. (Contributed by Mario Carneiro, 10-Oct-2015.) |
Ref | Expression |
---|---|
tcphval.n | β’ πΊ = (toβPreHilβπ) |
tcphcph.v | β’ π = (Baseβπ) |
tcphcph.f | β’ πΉ = (Scalarβπ) |
tcphcph.1 | β’ (π β π β PreHil) |
tcphcph.2 | β’ (π β πΉ = (βfld βΎs πΎ)) |
tcphcph.h | β’ , = (Β·πβπ) |
Ref | Expression |
---|---|
tcphcphlem3 | β’ ((π β§ π β π) β (π , π) β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tcphval.n | . . . . . 6 β’ πΊ = (toβPreHilβπ) | |
2 | tcphcph.v | . . . . . 6 β’ π = (Baseβπ) | |
3 | tcphcph.f | . . . . . 6 β’ πΉ = (Scalarβπ) | |
4 | tcphcph.1 | . . . . . 6 β’ (π β π β PreHil) | |
5 | tcphcph.2 | . . . . . 6 β’ (π β πΉ = (βfld βΎs πΎ)) | |
6 | 1, 2, 3, 4, 5 | phclm 25115 | . . . . 5 β’ (π β π β βMod) |
7 | 6 | adantr 480 | . . . 4 β’ ((π β§ π β π) β π β βMod) |
8 | eqid 2726 | . . . . 5 β’ (BaseβπΉ) = (BaseβπΉ) | |
9 | 3, 8 | clmsscn 24961 | . . . 4 β’ (π β βMod β (BaseβπΉ) β β) |
10 | 7, 9 | syl 17 | . . 3 β’ ((π β§ π β π) β (BaseβπΉ) β β) |
11 | tcphcph.h | . . . . . 6 β’ , = (Β·πβπ) | |
12 | 3, 11, 2, 8 | ipcl 21526 | . . . . 5 β’ ((π β PreHil β§ π β π β§ π β π) β (π , π) β (BaseβπΉ)) |
13 | 12 | 3anidm23 1418 | . . . 4 β’ ((π β PreHil β§ π β π) β (π , π) β (BaseβπΉ)) |
14 | 4, 13 | sylan 579 | . . 3 β’ ((π β§ π β π) β (π , π) β (BaseβπΉ)) |
15 | 10, 14 | sseldd 3978 | . 2 β’ ((π β§ π β π) β (π , π) β β) |
16 | 3 | clmcj 24958 | . . . . 5 β’ (π β βMod β β = (*πβπΉ)) |
17 | 7, 16 | syl 17 | . . . 4 β’ ((π β§ π β π) β β = (*πβπΉ)) |
18 | 17 | fveq1d 6887 | . . 3 β’ ((π β§ π β π) β (ββ(π , π)) = ((*πβπΉ)β(π , π))) |
19 | 4 | adantr 480 | . . . 4 β’ ((π β§ π β π) β π β PreHil) |
20 | simpr 484 | . . . 4 β’ ((π β§ π β π) β π β π) | |
21 | eqid 2726 | . . . . 5 β’ (*πβπΉ) = (*πβπΉ) | |
22 | 3, 11, 2, 21 | ipcj 21527 | . . . 4 β’ ((π β PreHil β§ π β π β§ π β π) β ((*πβπΉ)β(π , π)) = (π , π)) |
23 | 19, 20, 20, 22 | syl3anc 1368 | . . 3 β’ ((π β§ π β π) β ((*πβπΉ)β(π , π)) = (π , π)) |
24 | 18, 23 | eqtrd 2766 | . 2 β’ ((π β§ π β π) β (ββ(π , π)) = (π , π)) |
25 | 15, 24 | cjrebd 15155 | 1 β’ ((π β§ π β π) β (π , π) β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wss 3943 βcfv 6537 (class class class)co 7405 βcc 11110 βcr 11111 βccj 15049 Basecbs 17153 βΎs cress 17182 *πcstv 17208 Scalarcsca 17209 Β·πcip 17211 βfldccnfld 21240 PreHilcphl 21517 βModcclm 24944 toβPreHilctcph 25050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-seq 13973 df-exp 14033 df-cj 15052 df-re 15053 df-im 15054 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-starv 17221 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-unif 17229 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-minusg 18867 df-subg 19050 df-ghm 19139 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 df-cring 20141 df-oppr 20236 df-dvdsr 20259 df-unit 20260 df-subrg 20471 df-drng 20589 df-lmhm 20870 df-lvec 20951 df-sra 21021 df-rgmod 21022 df-cnfld 21241 df-phl 21519 df-clm 24945 |
This theorem is referenced by: ipcau2 25117 tcphcphlem1 25118 tcphcphlem2 25119 tcphcph 25120 |
Copyright terms: Public domain | W3C validator |