![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tcphcphlem3 | Structured version Visualization version GIF version |
Description: Lemma for tcphcph 24754: real closure of an inner product of a vector with itself. (Contributed by Mario Carneiro, 10-Oct-2015.) |
Ref | Expression |
---|---|
tcphval.n | β’ πΊ = (toβPreHilβπ) |
tcphcph.v | β’ π = (Baseβπ) |
tcphcph.f | β’ πΉ = (Scalarβπ) |
tcphcph.1 | β’ (π β π β PreHil) |
tcphcph.2 | β’ (π β πΉ = (βfld βΎs πΎ)) |
tcphcph.h | β’ , = (Β·πβπ) |
Ref | Expression |
---|---|
tcphcphlem3 | β’ ((π β§ π β π) β (π , π) β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tcphval.n | . . . . . 6 β’ πΊ = (toβPreHilβπ) | |
2 | tcphcph.v | . . . . . 6 β’ π = (Baseβπ) | |
3 | tcphcph.f | . . . . . 6 β’ πΉ = (Scalarβπ) | |
4 | tcphcph.1 | . . . . . 6 β’ (π β π β PreHil) | |
5 | tcphcph.2 | . . . . . 6 β’ (π β πΉ = (βfld βΎs πΎ)) | |
6 | 1, 2, 3, 4, 5 | phclm 24749 | . . . . 5 β’ (π β π β βMod) |
7 | 6 | adantr 482 | . . . 4 β’ ((π β§ π β π) β π β βMod) |
8 | eqid 2733 | . . . . 5 β’ (BaseβπΉ) = (BaseβπΉ) | |
9 | 3, 8 | clmsscn 24595 | . . . 4 β’ (π β βMod β (BaseβπΉ) β β) |
10 | 7, 9 | syl 17 | . . 3 β’ ((π β§ π β π) β (BaseβπΉ) β β) |
11 | tcphcph.h | . . . . . 6 β’ , = (Β·πβπ) | |
12 | 3, 11, 2, 8 | ipcl 21186 | . . . . 5 β’ ((π β PreHil β§ π β π β§ π β π) β (π , π) β (BaseβπΉ)) |
13 | 12 | 3anidm23 1422 | . . . 4 β’ ((π β PreHil β§ π β π) β (π , π) β (BaseβπΉ)) |
14 | 4, 13 | sylan 581 | . . 3 β’ ((π β§ π β π) β (π , π) β (BaseβπΉ)) |
15 | 10, 14 | sseldd 3984 | . 2 β’ ((π β§ π β π) β (π , π) β β) |
16 | 3 | clmcj 24592 | . . . . 5 β’ (π β βMod β β = (*πβπΉ)) |
17 | 7, 16 | syl 17 | . . . 4 β’ ((π β§ π β π) β β = (*πβπΉ)) |
18 | 17 | fveq1d 6894 | . . 3 β’ ((π β§ π β π) β (ββ(π , π)) = ((*πβπΉ)β(π , π))) |
19 | 4 | adantr 482 | . . . 4 β’ ((π β§ π β π) β π β PreHil) |
20 | simpr 486 | . . . 4 β’ ((π β§ π β π) β π β π) | |
21 | eqid 2733 | . . . . 5 β’ (*πβπΉ) = (*πβπΉ) | |
22 | 3, 11, 2, 21 | ipcj 21187 | . . . 4 β’ ((π β PreHil β§ π β π β§ π β π) β ((*πβπΉ)β(π , π)) = (π , π)) |
23 | 19, 20, 20, 22 | syl3anc 1372 | . . 3 β’ ((π β§ π β π) β ((*πβπΉ)β(π , π)) = (π , π)) |
24 | 18, 23 | eqtrd 2773 | . 2 β’ ((π β§ π β π) β (ββ(π , π)) = (π , π)) |
25 | 15, 24 | cjrebd 15149 | 1 β’ ((π β§ π β π) β (π , π) β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wss 3949 βcfv 6544 (class class class)co 7409 βcc 11108 βcr 11109 βccj 15043 Basecbs 17144 βΎs cress 17173 *πcstv 17199 Scalarcsca 17200 Β·πcip 17202 βfldccnfld 20944 PreHilcphl 21177 βModcclm 24578 toβPreHilctcph 24684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-seq 13967 df-exp 14028 df-cj 15046 df-re 15047 df-im 15048 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-subg 19003 df-ghm 19090 df-cmn 19650 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-oppr 20150 df-dvdsr 20171 df-unit 20172 df-subrg 20317 df-drng 20359 df-lmhm 20633 df-lvec 20714 df-sra 20785 df-rgmod 20786 df-cnfld 20945 df-phl 21179 df-clm 24579 |
This theorem is referenced by: ipcau2 24751 tcphcphlem1 24752 tcphcphlem2 24753 tcphcph 24754 |
Copyright terms: Public domain | W3C validator |