| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcphcphlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for tcphcph 25165: real closure of an inner product of a vector with itself. (Contributed by Mario Carneiro, 10-Oct-2015.) |
| Ref | Expression |
|---|---|
| tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
| tcphcph.v | ⊢ 𝑉 = (Base‘𝑊) |
| tcphcph.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| tcphcph.1 | ⊢ (𝜑 → 𝑊 ∈ PreHil) |
| tcphcph.2 | ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) |
| tcphcph.h | ⊢ , = (·𝑖‘𝑊) |
| Ref | Expression |
|---|---|
| tcphcphlem3 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | . . . . . 6 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
| 2 | tcphcph.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | tcphcph.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | tcphcph.1 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ PreHil) | |
| 5 | tcphcph.2 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) | |
| 6 | 1, 2, 3, 4, 5 | phclm 25160 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ ℂMod) |
| 8 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 9 | 3, 8 | clmsscn 25007 | . . . 4 ⊢ (𝑊 ∈ ℂMod → (Base‘𝐹) ⊆ ℂ) |
| 10 | 7, 9 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (Base‘𝐹) ⊆ ℂ) |
| 11 | tcphcph.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
| 12 | 3, 11, 2, 8 | ipcl 21571 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ (Base‘𝐹)) |
| 13 | 12 | 3anidm23 1423 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ (Base‘𝐹)) |
| 14 | 4, 13 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ (Base‘𝐹)) |
| 15 | 10, 14 | sseldd 3935 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℂ) |
| 16 | 3 | clmcj 25004 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → ∗ = (*𝑟‘𝐹)) |
| 17 | 7, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → ∗ = (*𝑟‘𝐹)) |
| 18 | 17 | fveq1d 6824 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (∗‘(𝑋 , 𝑋)) = ((*𝑟‘𝐹)‘(𝑋 , 𝑋))) |
| 19 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ PreHil) |
| 20 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 21 | eqid 2731 | . . . . 5 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
| 22 | 3, 11, 2, 21 | ipcj 21572 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝑋 , 𝑋)) = (𝑋 , 𝑋)) |
| 23 | 19, 20, 20, 22 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝑋 , 𝑋)) = (𝑋 , 𝑋)) |
| 24 | 18, 23 | eqtrd 2766 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (∗‘(𝑋 , 𝑋)) = (𝑋 , 𝑋)) |
| 25 | 15, 24 | cjrebd 15109 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 ∗ccj 15003 Basecbs 17120 ↾s cress 17141 *𝑟cstv 17163 Scalarcsca 17164 ·𝑖cip 17166 ℂfldccnfld 21292 PreHilcphl 21562 ℂModcclm 24990 toℂPreHilctcph 25095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-subg 19036 df-ghm 19126 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-cring 20155 df-oppr 20256 df-dvdsr 20276 df-unit 20277 df-subrg 20486 df-drng 20647 df-lmhm 20957 df-lvec 21038 df-sra 21108 df-rgmod 21109 df-cnfld 21293 df-phl 21564 df-clm 24991 |
| This theorem is referenced by: ipcau2 25162 tcphcphlem1 25163 tcphcphlem2 25164 tcphcph 25165 |
| Copyright terms: Public domain | W3C validator |