| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcphcphlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for tcphcph 25153: real closure of an inner product of a vector with itself. (Contributed by Mario Carneiro, 10-Oct-2015.) |
| Ref | Expression |
|---|---|
| tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
| tcphcph.v | ⊢ 𝑉 = (Base‘𝑊) |
| tcphcph.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| tcphcph.1 | ⊢ (𝜑 → 𝑊 ∈ PreHil) |
| tcphcph.2 | ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) |
| tcphcph.h | ⊢ , = (·𝑖‘𝑊) |
| Ref | Expression |
|---|---|
| tcphcphlem3 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | . . . . . 6 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
| 2 | tcphcph.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | tcphcph.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | tcphcph.1 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ PreHil) | |
| 5 | tcphcph.2 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) | |
| 6 | 1, 2, 3, 4, 5 | phclm 25148 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ ℂMod) |
| 8 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 9 | 3, 8 | clmsscn 24995 | . . . 4 ⊢ (𝑊 ∈ ℂMod → (Base‘𝐹) ⊆ ℂ) |
| 10 | 7, 9 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (Base‘𝐹) ⊆ ℂ) |
| 11 | tcphcph.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
| 12 | 3, 11, 2, 8 | ipcl 21558 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ (Base‘𝐹)) |
| 13 | 12 | 3anidm23 1423 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ (Base‘𝐹)) |
| 14 | 4, 13 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ (Base‘𝐹)) |
| 15 | 10, 14 | sseldd 3938 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℂ) |
| 16 | 3 | clmcj 24992 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → ∗ = (*𝑟‘𝐹)) |
| 17 | 7, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → ∗ = (*𝑟‘𝐹)) |
| 18 | 17 | fveq1d 6828 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (∗‘(𝑋 , 𝑋)) = ((*𝑟‘𝐹)‘(𝑋 , 𝑋))) |
| 19 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ PreHil) |
| 20 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 21 | eqid 2729 | . . . . 5 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
| 22 | 3, 11, 2, 21 | ipcj 21559 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝑋 , 𝑋)) = (𝑋 , 𝑋)) |
| 23 | 19, 20, 20, 22 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝑋 , 𝑋)) = (𝑋 , 𝑋)) |
| 24 | 18, 23 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (∗‘(𝑋 , 𝑋)) = (𝑋 , 𝑋)) |
| 25 | 15, 24 | cjrebd 15127 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 ∗ccj 15021 Basecbs 17138 ↾s cress 17159 *𝑟cstv 17181 Scalarcsca 17182 ·𝑖cip 17184 ℂfldccnfld 21279 PreHilcphl 21549 ℂModcclm 24978 toℂPreHilctcph 25083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-subg 19020 df-ghm 19110 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-subrg 20473 df-drng 20634 df-lmhm 20944 df-lvec 21025 df-sra 21095 df-rgmod 21096 df-cnfld 21280 df-phl 21551 df-clm 24979 |
| This theorem is referenced by: ipcau2 25150 tcphcphlem1 25151 tcphcphlem2 25152 tcphcph 25153 |
| Copyright terms: Public domain | W3C validator |