MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphcphlem1 Structured version   Visualization version   GIF version

Theorem tcphcphlem1 25142
Description: Lemma for tcphcph 25144: the triangle inequality. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphcph.v 𝑉 = (Base‘𝑊)
tcphcph.f 𝐹 = (Scalar‘𝑊)
tcphcph.1 (𝜑𝑊 ∈ PreHil)
tcphcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tcphcph.h , = (·𝑖𝑊)
tcphcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tcphcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
tcphcph.k 𝐾 = (Base‘𝐹)
tcphcph.m = (-g𝑊)
tcphcphlem1.3 (𝜑𝑋𝑉)
tcphcphlem1.4 (𝜑𝑌𝑉)
Assertion
Ref Expression
tcphcphlem1 (𝜑 → (√‘((𝑋 𝑌) , (𝑋 𝑌))) ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))))
Distinct variable groups:   𝑥,   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝜑,𝑥   𝑥,𝑊   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem tcphcphlem1
StepHypRef Expression
1 tcphcph.1 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
2 phllmod 21546 . . . . . . 7 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
3 lmodgrp 20780 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
41, 2, 33syl 18 . . . . . 6 (𝜑𝑊 ∈ Grp)
5 tcphcphlem1.3 . . . . . 6 (𝜑𝑋𝑉)
6 tcphcphlem1.4 . . . . . 6 (𝜑𝑌𝑉)
7 tcphcph.v . . . . . . 7 𝑉 = (Base‘𝑊)
8 tcphcph.m . . . . . . 7 = (-g𝑊)
97, 8grpsubcl 18959 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
104, 5, 6, 9syl3anc 1373 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
11 tcphval.n . . . . . 6 𝐺 = (toℂPreHil‘𝑊)
12 tcphcph.f . . . . . 6 𝐹 = (Scalar‘𝑊)
13 tcphcph.2 . . . . . 6 (𝜑𝐹 = (ℂflds 𝐾))
14 tcphcph.h . . . . . 6 , = (·𝑖𝑊)
1511, 7, 12, 1, 13, 14tcphcphlem3 25140 . . . . 5 ((𝜑 ∧ (𝑋 𝑌) ∈ 𝑉) → ((𝑋 𝑌) , (𝑋 𝑌)) ∈ ℝ)
1610, 15mpdan 687 . . . 4 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ∈ ℝ)
1711, 7, 12, 1, 13, 14tcphcphlem3 25140 . . . . . . 7 ((𝜑𝑋𝑉) → (𝑋 , 𝑋) ∈ ℝ)
185, 17mpdan 687 . . . . . 6 (𝜑 → (𝑋 , 𝑋) ∈ ℝ)
1911, 7, 12, 1, 13, 14tcphcphlem3 25140 . . . . . . 7 ((𝜑𝑌𝑉) → (𝑌 , 𝑌) ∈ ℝ)
206, 19mpdan 687 . . . . . 6 (𝜑 → (𝑌 , 𝑌) ∈ ℝ)
2118, 20readdcld 11210 . . . . 5 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ ℝ)
2211, 7, 12, 1, 13phclm 25139 . . . . . . . . 9 (𝜑𝑊 ∈ ℂMod)
23 tcphcph.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
2412, 23clmsscn 24986 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
2522, 24syl 17 . . . . . . . 8 (𝜑𝐾 ⊆ ℂ)
2612, 14, 7, 23ipcl 21549 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑋 , 𝑌) ∈ 𝐾)
271, 5, 6, 26syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑋 , 𝑌) ∈ 𝐾)
2825, 27sseldd 3950 . . . . . . 7 (𝜑 → (𝑋 , 𝑌) ∈ ℂ)
2912, 14, 7, 23ipcl 21549 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑋𝑉) → (𝑌 , 𝑋) ∈ 𝐾)
301, 6, 5, 29syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑌 , 𝑋) ∈ 𝐾)
3125, 30sseldd 3950 . . . . . . 7 (𝜑 → (𝑌 , 𝑋) ∈ ℂ)
3228, 31addcld 11200 . . . . . 6 (𝜑 → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ ℂ)
3332abscld 15412 . . . . 5 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ∈ ℝ)
3421, 33readdcld 11210 . . . 4 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ∈ ℝ)
3518recnd 11209 . . . . . 6 (𝜑 → (𝑋 , 𝑋) ∈ ℂ)
36 2re 12267 . . . . . . . 8 2 ∈ ℝ
37 oveq12 7399 . . . . . . . . . . . . 13 ((𝑥 = 𝑋𝑥 = 𝑋) → (𝑥 , 𝑥) = (𝑋 , 𝑋))
3837anidms 566 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥 , 𝑥) = (𝑋 , 𝑋))
3938breq2d 5122 . . . . . . . . . . 11 (𝑥 = 𝑋 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑋 , 𝑋)))
40 tcphcph.4 . . . . . . . . . . . 12 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
4140ralrimiva 3126 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
4239, 41, 5rspcdva 3592 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑋 , 𝑋))
4318, 42resqrtcld 15391 . . . . . . . . 9 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℝ)
44 oveq12 7399 . . . . . . . . . . . . 13 ((𝑥 = 𝑌𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌))
4544anidms 566 . . . . . . . . . . . 12 (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌))
4645breq2d 5122 . . . . . . . . . . 11 (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌)))
4746, 41, 6rspcdva 3592 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑌 , 𝑌))
4820, 47resqrtcld 15391 . . . . . . . . 9 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℝ)
4943, 48remulcld 11211 . . . . . . . 8 (𝜑 → ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ)
50 remulcl 11160 . . . . . . . 8 ((2 ∈ ℝ ∧ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ) → (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))) ∈ ℝ)
5136, 49, 50sylancr 587 . . . . . . 7 (𝜑 → (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))) ∈ ℝ)
5251recnd 11209 . . . . . 6 (𝜑 → (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))) ∈ ℂ)
5320recnd 11209 . . . . . 6 (𝜑 → (𝑌 , 𝑌) ∈ ℂ)
5435, 52, 53add32d 11409 . . . . 5 (𝜑 → (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)) = (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
5521, 51readdcld 11210 . . . . 5 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) ∈ ℝ)
5654, 55eqeltrd 2829 . . . 4 (𝜑 → (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)) ∈ ℝ)
57 oveq12 7399 . . . . . . . . . . 11 ((𝑥 = (𝑋 𝑌) ∧ 𝑥 = (𝑋 𝑌)) → (𝑥 , 𝑥) = ((𝑋 𝑌) , (𝑋 𝑌)))
5857anidms 566 . . . . . . . . . 10 (𝑥 = (𝑋 𝑌) → (𝑥 , 𝑥) = ((𝑋 𝑌) , (𝑋 𝑌)))
5958breq2d 5122 . . . . . . . . 9 (𝑥 = (𝑋 𝑌) → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ ((𝑋 𝑌) , (𝑋 𝑌))))
6059, 41, 10rspcdva 3592 . . . . . . . 8 (𝜑 → 0 ≤ ((𝑋 𝑌) , (𝑋 𝑌)))
6116, 60absidd 15396 . . . . . . 7 (𝜑 → (abs‘((𝑋 𝑌) , (𝑋 𝑌))) = ((𝑋 𝑌) , (𝑋 𝑌)))
6212clmadd 24981 . . . . . . . . . . . 12 (𝑊 ∈ ℂMod → + = (+g𝐹))
6322, 62syl 17 . . . . . . . . . . 11 (𝜑 → + = (+g𝐹))
6463oveqd 7407 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) = ((𝑋 , 𝑋)(+g𝐹)(𝑌 , 𝑌)))
6563oveqd 7407 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) = ((𝑋 , 𝑌)(+g𝐹)(𝑌 , 𝑋)))
6664, 65oveq12d 7408 . . . . . . . . 9 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌) + (𝑌 , 𝑋))) = (((𝑋 , 𝑋)(+g𝐹)(𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌)(+g𝐹)(𝑌 , 𝑋))))
6712, 14, 7, 23ipcl 21549 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑋𝑉) → (𝑋 , 𝑋) ∈ 𝐾)
681, 5, 5, 67syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑋 , 𝑋) ∈ 𝐾)
6912, 14, 7, 23ipcl 21549 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑌𝑉) → (𝑌 , 𝑌) ∈ 𝐾)
701, 6, 6, 69syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑌 , 𝑌) ∈ 𝐾)
7112, 23clmacl 24991 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑋) ∈ 𝐾 ∧ (𝑌 , 𝑌) ∈ 𝐾) → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ 𝐾)
7222, 68, 70, 71syl3anc 1373 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ 𝐾)
7312, 23clmacl 24991 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑌) ∈ 𝐾 ∧ (𝑌 , 𝑋) ∈ 𝐾) → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ 𝐾)
7422, 27, 30, 73syl3anc 1373 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ 𝐾)
7512, 23clmsub 24987 . . . . . . . . . 10 ((𝑊 ∈ ℂMod ∧ ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ 𝐾 ∧ ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ 𝐾) → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋))) = (((𝑋 , 𝑋) + (𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌) + (𝑌 , 𝑋))))
7622, 72, 74, 75syl3anc 1373 . . . . . . . . 9 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋))) = (((𝑋 , 𝑋) + (𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌) + (𝑌 , 𝑋))))
77 eqid 2730 . . . . . . . . . 10 (-g𝐹) = (-g𝐹)
78 eqid 2730 . . . . . . . . . 10 (+g𝐹) = (+g𝐹)
7912, 14, 7, 8, 77, 78, 1, 5, 6, 5, 6ip2subdi 21560 . . . . . . . . 9 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) = (((𝑋 , 𝑋)(+g𝐹)(𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌)(+g𝐹)(𝑌 , 𝑋))))
8066, 76, 793eqtr4rd 2776 . . . . . . . 8 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) = (((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋))))
8180fveq2d 6865 . . . . . . 7 (𝜑 → (abs‘((𝑋 𝑌) , (𝑋 𝑌))) = (abs‘(((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8261, 81eqtr3d 2767 . . . . . 6 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) = (abs‘(((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8325, 72sseldd 3950 . . . . . . 7 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ ℂ)
8483, 32abs2dif2d 15434 . . . . . 6 (𝜑 → (abs‘(((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ≤ ((abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8582, 84eqbrtrd 5132 . . . . 5 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ≤ ((abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8618, 20, 42, 47addge0d 11761 . . . . . . 7 (𝜑 → 0 ≤ ((𝑋 , 𝑋) + (𝑌 , 𝑌)))
8721, 86absidd 15396 . . . . . 6 (𝜑 → (abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) = ((𝑋 , 𝑋) + (𝑌 , 𝑌)))
8887oveq1d 7405 . . . . 5 (𝜑 → ((abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) = (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8985, 88breqtrd 5136 . . . 4 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ≤ (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
9028abscld 15412 . . . . . . . 8 (𝜑 → (abs‘(𝑋 , 𝑌)) ∈ ℝ)
91 remulcl 11160 . . . . . . . 8 ((2 ∈ ℝ ∧ (abs‘(𝑋 , 𝑌)) ∈ ℝ) → (2 · (abs‘(𝑋 , 𝑌))) ∈ ℝ)
9236, 90, 91sylancr 587 . . . . . . 7 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) ∈ ℝ)
9328, 31abstrid 15432 . . . . . . . 8 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ≤ ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑌 , 𝑋))))
9490recnd 11209 . . . . . . . . . 10 (𝜑 → (abs‘(𝑋 , 𝑌)) ∈ ℂ)
95942timesd 12432 . . . . . . . . 9 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) = ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑋 , 𝑌))))
9628abscjd 15426 . . . . . . . . . . 11 (𝜑 → (abs‘(∗‘(𝑋 , 𝑌))) = (abs‘(𝑋 , 𝑌)))
9712clmcj 24983 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂMod → ∗ = (*𝑟𝐹))
9822, 97syl 17 . . . . . . . . . . . . . 14 (𝜑 → ∗ = (*𝑟𝐹))
9998fveq1d 6863 . . . . . . . . . . . . 13 (𝜑 → (∗‘(𝑋 , 𝑌)) = ((*𝑟𝐹)‘(𝑋 , 𝑌)))
100 eqid 2730 . . . . . . . . . . . . . . 15 (*𝑟𝐹) = (*𝑟𝐹)
10112, 14, 7, 100ipcj 21550 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
1021, 5, 6, 101syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
10399, 102eqtrd 2765 . . . . . . . . . . . 12 (𝜑 → (∗‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
104103fveq2d 6865 . . . . . . . . . . 11 (𝜑 → (abs‘(∗‘(𝑋 , 𝑌))) = (abs‘(𝑌 , 𝑋)))
10596, 104eqtr3d 2767 . . . . . . . . . 10 (𝜑 → (abs‘(𝑋 , 𝑌)) = (abs‘(𝑌 , 𝑋)))
106105oveq2d 7406 . . . . . . . . 9 (𝜑 → ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑋 , 𝑌))) = ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑌 , 𝑋))))
10795, 106eqtrd 2765 . . . . . . . 8 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) = ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑌 , 𝑋))))
10893, 107breqtrrd 5138 . . . . . . 7 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ≤ (2 · (abs‘(𝑋 , 𝑌))))
109 tcphcph.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
110 eqid 2730 . . . . . . . . . 10 (norm‘𝐺) = (norm‘𝐺)
111 eqid 2730 . . . . . . . . . 10 ((𝑌 , 𝑋) / (𝑌 , 𝑌)) = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
11211, 7, 12, 1, 13, 14, 109, 40, 23, 110, 111, 5, 6ipcau2 25141 . . . . . . . . 9 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ (((norm‘𝐺)‘𝑋) · ((norm‘𝐺)‘𝑌)))
11311, 110, 7, 14tcphnmval 25136 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → ((norm‘𝐺)‘𝑋) = (√‘(𝑋 , 𝑋)))
1144, 5, 113syl2anc 584 . . . . . . . . . 10 (𝜑 → ((norm‘𝐺)‘𝑋) = (√‘(𝑋 , 𝑋)))
11511, 110, 7, 14tcphnmval 25136 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑌𝑉) → ((norm‘𝐺)‘𝑌) = (√‘(𝑌 , 𝑌)))
1164, 6, 115syl2anc 584 . . . . . . . . . 10 (𝜑 → ((norm‘𝐺)‘𝑌) = (√‘(𝑌 , 𝑌)))
117114, 116oveq12d 7408 . . . . . . . . 9 (𝜑 → (((norm‘𝐺)‘𝑋) · ((norm‘𝐺)‘𝑌)) = ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
118112, 117breqtrd 5136 . . . . . . . 8 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
11936a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
120 2pos 12296 . . . . . . . . . 10 0 < 2
121120a1i 11 . . . . . . . . 9 (𝜑 → 0 < 2)
122 lemul2 12042 . . . . . . . . 9 (((abs‘(𝑋 , 𝑌)) ∈ ℝ ∧ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ↔ (2 · (abs‘(𝑋 , 𝑌))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
12390, 49, 119, 121, 122syl112anc 1376 . . . . . . . 8 (𝜑 → ((abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ↔ (2 · (abs‘(𝑋 , 𝑌))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
124118, 123mpbid 232 . . . . . . 7 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))))
12533, 92, 51, 108, 124letrd 11338 . . . . . 6 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))))
12633, 51, 21, 125leadd2dd 11800 . . . . 5 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ≤ (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
127126, 54breqtrrd 5138 . . . 4 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ≤ (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
12816, 34, 56, 89, 127letrd 11338 . . 3 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ≤ (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
12916recnd 11209 . . . 4 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ∈ ℂ)
130129sqsqrtd 15415 . . 3 (𝜑 → ((√‘((𝑋 𝑌) , (𝑋 𝑌)))↑2) = ((𝑋 𝑌) , (𝑋 𝑌)))
13135sqrtcld 15413 . . . . 5 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℂ)
13248recnd 11209 . . . . 5 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℂ)
133 binom2 14189 . . . . 5 (((√‘(𝑋 , 𝑋)) ∈ ℂ ∧ (√‘(𝑌 , 𝑌)) ∈ ℂ) → (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2) = ((((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + ((√‘(𝑌 , 𝑌))↑2)))
134131, 132, 133syl2anc 584 . . . 4 (𝜑 → (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2) = ((((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + ((√‘(𝑌 , 𝑌))↑2)))
13535sqsqrtd 15415 . . . . . 6 (𝜑 → ((√‘(𝑋 , 𝑋))↑2) = (𝑋 , 𝑋))
136135oveq1d 7405 . . . . 5 (𝜑 → (((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) = ((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
13753sqsqrtd 15415 . . . . 5 (𝜑 → ((√‘(𝑌 , 𝑌))↑2) = (𝑌 , 𝑌))
138136, 137oveq12d 7408 . . . 4 (𝜑 → ((((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + ((√‘(𝑌 , 𝑌))↑2)) = (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
139134, 138eqtrd 2765 . . 3 (𝜑 → (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2) = (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
140128, 130, 1393brtr4d 5142 . 2 (𝜑 → ((√‘((𝑋 𝑌) , (𝑋 𝑌)))↑2) ≤ (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2))
14116, 60resqrtcld 15391 . . 3 (𝜑 → (√‘((𝑋 𝑌) , (𝑋 𝑌))) ∈ ℝ)
14243, 48readdcld 11210 . . 3 (𝜑 → ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))) ∈ ℝ)
14316, 60sqrtge0d 15394 . . 3 (𝜑 → 0 ≤ (√‘((𝑋 𝑌) , (𝑋 𝑌))))
14418, 42sqrtge0d 15394 . . . 4 (𝜑 → 0 ≤ (√‘(𝑋 , 𝑋)))
14520, 47sqrtge0d 15394 . . . 4 (𝜑 → 0 ≤ (√‘(𝑌 , 𝑌)))
14643, 48, 144, 145addge0d 11761 . . 3 (𝜑 → 0 ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))))
147141, 142, 143, 146le2sqd 14229 . 2 (𝜑 → ((√‘((𝑋 𝑌) , (𝑋 𝑌))) ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))) ↔ ((√‘((𝑋 𝑌) , (𝑋 𝑌)))↑2) ≤ (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2)))
148140, 147mpbird 257 1 (𝜑 → (√‘((𝑋 𝑌) , (𝑋 𝑌))) ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3917   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  2c2 12248  cexp 14033  ccj 15069  csqrt 15206  abscabs 15207  Basecbs 17186  s cress 17207  +gcplusg 17227  *𝑟cstv 17229  Scalarcsca 17230  ·𝑖cip 17232  Grpcgrp 18872  -gcsg 18874  LModclmod 20773  fldccnfld 21271  PreHilcphl 21540  normcnm 24471  ℂModcclm 24969  toℂPreHilctcph 25074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-drng 20647  df-staf 20755  df-srng 20756  df-lmod 20775  df-lmhm 20936  df-lvec 21017  df-sra 21087  df-rgmod 21088  df-cnfld 21272  df-phl 21542  df-nm 24477  df-tng 24479  df-clm 24970  df-tcph 25076
This theorem is referenced by:  tcphcph  25144
  Copyright terms: Public domain W3C validator