MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphcphlem1 Structured version   Visualization version   GIF version

Theorem tcphcphlem1 23361
Description: Lemma for tcphcph 23363: the triangle inequality. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphcph.v 𝑉 = (Base‘𝑊)
tcphcph.f 𝐹 = (Scalar‘𝑊)
tcphcph.1 (𝜑𝑊 ∈ PreHil)
tcphcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tcphcph.h , = (·𝑖𝑊)
tcphcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tcphcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
tcphcph.k 𝐾 = (Base‘𝐹)
tcphcph.m = (-g𝑊)
tcphcphlem1.3 (𝜑𝑋𝑉)
tcphcphlem1.4 (𝜑𝑌𝑉)
Assertion
Ref Expression
tcphcphlem1 (𝜑 → (√‘((𝑋 𝑌) , (𝑋 𝑌))) ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))))
Distinct variable groups:   𝑥,   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝜑,𝑥   𝑥,𝑊   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem tcphcphlem1
StepHypRef Expression
1 tcphcph.1 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
2 phllmod 20299 . . . . . . 7 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
3 lmodgrp 19188 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
41, 2, 33syl 18 . . . . . 6 (𝜑𝑊 ∈ Grp)
5 tcphcphlem1.3 . . . . . 6 (𝜑𝑋𝑉)
6 tcphcphlem1.4 . . . . . 6 (𝜑𝑌𝑉)
7 tcphcph.v . . . . . . 7 𝑉 = (Base‘𝑊)
8 tcphcph.m . . . . . . 7 = (-g𝑊)
97, 8grpsubcl 17811 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
104, 5, 6, 9syl3anc 1491 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
11 tcphval.n . . . . . 6 𝐺 = (toℂPreHil‘𝑊)
12 tcphcph.f . . . . . 6 𝐹 = (Scalar‘𝑊)
13 tcphcph.2 . . . . . 6 (𝜑𝐹 = (ℂflds 𝐾))
14 tcphcph.h . . . . . 6 , = (·𝑖𝑊)
1511, 7, 12, 1, 13, 14tcphcphlem3 23359 . . . . 5 ((𝜑 ∧ (𝑋 𝑌) ∈ 𝑉) → ((𝑋 𝑌) , (𝑋 𝑌)) ∈ ℝ)
1610, 15mpdan 679 . . . 4 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ∈ ℝ)
1711, 7, 12, 1, 13, 14tcphcphlem3 23359 . . . . . . 7 ((𝜑𝑋𝑉) → (𝑋 , 𝑋) ∈ ℝ)
185, 17mpdan 679 . . . . . 6 (𝜑 → (𝑋 , 𝑋) ∈ ℝ)
1911, 7, 12, 1, 13, 14tcphcphlem3 23359 . . . . . . 7 ((𝜑𝑌𝑉) → (𝑌 , 𝑌) ∈ ℝ)
206, 19mpdan 679 . . . . . 6 (𝜑 → (𝑌 , 𝑌) ∈ ℝ)
2118, 20readdcld 10358 . . . . 5 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ ℝ)
2211, 7, 12, 1, 13phclm 23358 . . . . . . . . 9 (𝜑𝑊 ∈ ℂMod)
23 tcphcph.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
2412, 23clmsscn 23206 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
2522, 24syl 17 . . . . . . . 8 (𝜑𝐾 ⊆ ℂ)
2612, 14, 7, 23ipcl 20302 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑋 , 𝑌) ∈ 𝐾)
271, 5, 6, 26syl3anc 1491 . . . . . . . 8 (𝜑 → (𝑋 , 𝑌) ∈ 𝐾)
2825, 27sseldd 3799 . . . . . . 7 (𝜑 → (𝑋 , 𝑌) ∈ ℂ)
2912, 14, 7, 23ipcl 20302 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑋𝑉) → (𝑌 , 𝑋) ∈ 𝐾)
301, 6, 5, 29syl3anc 1491 . . . . . . . 8 (𝜑 → (𝑌 , 𝑋) ∈ 𝐾)
3125, 30sseldd 3799 . . . . . . 7 (𝜑 → (𝑌 , 𝑋) ∈ ℂ)
3228, 31addcld 10348 . . . . . 6 (𝜑 → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ ℂ)
3332abscld 14516 . . . . 5 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ∈ ℝ)
3421, 33readdcld 10358 . . . 4 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ∈ ℝ)
3518recnd 10357 . . . . . 6 (𝜑 → (𝑋 , 𝑋) ∈ ℂ)
36 2re 11387 . . . . . . . 8 2 ∈ ℝ
37 oveq12 6887 . . . . . . . . . . . . 13 ((𝑥 = 𝑋𝑥 = 𝑋) → (𝑥 , 𝑥) = (𝑋 , 𝑋))
3837anidms 563 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥 , 𝑥) = (𝑋 , 𝑋))
3938breq2d 4855 . . . . . . . . . . 11 (𝑥 = 𝑋 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑋 , 𝑋)))
40 tcphcph.4 . . . . . . . . . . . 12 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
4140ralrimiva 3147 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
4239, 41, 5rspcdva 3503 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑋 , 𝑋))
4318, 42resqrtcld 14497 . . . . . . . . 9 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℝ)
44 oveq12 6887 . . . . . . . . . . . . 13 ((𝑥 = 𝑌𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌))
4544anidms 563 . . . . . . . . . . . 12 (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌))
4645breq2d 4855 . . . . . . . . . . 11 (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌)))
4746, 41, 6rspcdva 3503 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑌 , 𝑌))
4820, 47resqrtcld 14497 . . . . . . . . 9 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℝ)
4943, 48remulcld 10359 . . . . . . . 8 (𝜑 → ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ)
50 remulcl 10309 . . . . . . . 8 ((2 ∈ ℝ ∧ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ) → (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))) ∈ ℝ)
5136, 49, 50sylancr 582 . . . . . . 7 (𝜑 → (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))) ∈ ℝ)
5251recnd 10357 . . . . . 6 (𝜑 → (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))) ∈ ℂ)
5320recnd 10357 . . . . . 6 (𝜑 → (𝑌 , 𝑌) ∈ ℂ)
5435, 52, 53add32d 10553 . . . . 5 (𝜑 → (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)) = (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
5521, 51readdcld 10358 . . . . 5 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) ∈ ℝ)
5654, 55eqeltrd 2878 . . . 4 (𝜑 → (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)) ∈ ℝ)
57 oveq12 6887 . . . . . . . . . . 11 ((𝑥 = (𝑋 𝑌) ∧ 𝑥 = (𝑋 𝑌)) → (𝑥 , 𝑥) = ((𝑋 𝑌) , (𝑋 𝑌)))
5857anidms 563 . . . . . . . . . 10 (𝑥 = (𝑋 𝑌) → (𝑥 , 𝑥) = ((𝑋 𝑌) , (𝑋 𝑌)))
5958breq2d 4855 . . . . . . . . 9 (𝑥 = (𝑋 𝑌) → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ ((𝑋 𝑌) , (𝑋 𝑌))))
6059, 41, 10rspcdva 3503 . . . . . . . 8 (𝜑 → 0 ≤ ((𝑋 𝑌) , (𝑋 𝑌)))
6116, 60absidd 14502 . . . . . . 7 (𝜑 → (abs‘((𝑋 𝑌) , (𝑋 𝑌))) = ((𝑋 𝑌) , (𝑋 𝑌)))
6212clmadd 23201 . . . . . . . . . . . 12 (𝑊 ∈ ℂMod → + = (+g𝐹))
6322, 62syl 17 . . . . . . . . . . 11 (𝜑 → + = (+g𝐹))
6463oveqd 6895 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) = ((𝑋 , 𝑋)(+g𝐹)(𝑌 , 𝑌)))
6563oveqd 6895 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) = ((𝑋 , 𝑌)(+g𝐹)(𝑌 , 𝑋)))
6664, 65oveq12d 6896 . . . . . . . . 9 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌) + (𝑌 , 𝑋))) = (((𝑋 , 𝑋)(+g𝐹)(𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌)(+g𝐹)(𝑌 , 𝑋))))
6712, 14, 7, 23ipcl 20302 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑋𝑉) → (𝑋 , 𝑋) ∈ 𝐾)
681, 5, 5, 67syl3anc 1491 . . . . . . . . . . 11 (𝜑 → (𝑋 , 𝑋) ∈ 𝐾)
6912, 14, 7, 23ipcl 20302 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑌𝑉) → (𝑌 , 𝑌) ∈ 𝐾)
701, 6, 6, 69syl3anc 1491 . . . . . . . . . . 11 (𝜑 → (𝑌 , 𝑌) ∈ 𝐾)
7112, 23clmacl 23211 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑋) ∈ 𝐾 ∧ (𝑌 , 𝑌) ∈ 𝐾) → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ 𝐾)
7222, 68, 70, 71syl3anc 1491 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ 𝐾)
7312, 23clmacl 23211 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑌) ∈ 𝐾 ∧ (𝑌 , 𝑋) ∈ 𝐾) → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ 𝐾)
7422, 27, 30, 73syl3anc 1491 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ 𝐾)
7512, 23clmsub 23207 . . . . . . . . . 10 ((𝑊 ∈ ℂMod ∧ ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ 𝐾 ∧ ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ 𝐾) → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋))) = (((𝑋 , 𝑋) + (𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌) + (𝑌 , 𝑋))))
7622, 72, 74, 75syl3anc 1491 . . . . . . . . 9 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋))) = (((𝑋 , 𝑋) + (𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌) + (𝑌 , 𝑋))))
77 eqid 2799 . . . . . . . . . 10 (-g𝐹) = (-g𝐹)
78 eqid 2799 . . . . . . . . . 10 (+g𝐹) = (+g𝐹)
7912, 14, 7, 8, 77, 78, 1, 5, 6, 5, 6ip2subdi 20313 . . . . . . . . 9 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) = (((𝑋 , 𝑋)(+g𝐹)(𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌)(+g𝐹)(𝑌 , 𝑋))))
8066, 76, 793eqtr4rd 2844 . . . . . . . 8 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) = (((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋))))
8180fveq2d 6415 . . . . . . 7 (𝜑 → (abs‘((𝑋 𝑌) , (𝑋 𝑌))) = (abs‘(((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8261, 81eqtr3d 2835 . . . . . 6 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) = (abs‘(((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8325, 72sseldd 3799 . . . . . . 7 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ ℂ)
8483, 32abs2dif2d 14538 . . . . . 6 (𝜑 → (abs‘(((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ≤ ((abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8582, 84eqbrtrd 4865 . . . . 5 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ≤ ((abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8618, 20, 42, 47addge0d 10895 . . . . . . 7 (𝜑 → 0 ≤ ((𝑋 , 𝑋) + (𝑌 , 𝑌)))
8721, 86absidd 14502 . . . . . 6 (𝜑 → (abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) = ((𝑋 , 𝑋) + (𝑌 , 𝑌)))
8887oveq1d 6893 . . . . 5 (𝜑 → ((abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) = (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8985, 88breqtrd 4869 . . . 4 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ≤ (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
9028abscld 14516 . . . . . . . 8 (𝜑 → (abs‘(𝑋 , 𝑌)) ∈ ℝ)
91 remulcl 10309 . . . . . . . 8 ((2 ∈ ℝ ∧ (abs‘(𝑋 , 𝑌)) ∈ ℝ) → (2 · (abs‘(𝑋 , 𝑌))) ∈ ℝ)
9236, 90, 91sylancr 582 . . . . . . 7 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) ∈ ℝ)
9328, 31abstrid 14536 . . . . . . . 8 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ≤ ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑌 , 𝑋))))
9490recnd 10357 . . . . . . . . . 10 (𝜑 → (abs‘(𝑋 , 𝑌)) ∈ ℂ)
95942timesd 11563 . . . . . . . . 9 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) = ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑋 , 𝑌))))
9628abscjd 14530 . . . . . . . . . . 11 (𝜑 → (abs‘(∗‘(𝑋 , 𝑌))) = (abs‘(𝑋 , 𝑌)))
9712clmcj 23203 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂMod → ∗ = (*𝑟𝐹))
9822, 97syl 17 . . . . . . . . . . . . . 14 (𝜑 → ∗ = (*𝑟𝐹))
9998fveq1d 6413 . . . . . . . . . . . . 13 (𝜑 → (∗‘(𝑋 , 𝑌)) = ((*𝑟𝐹)‘(𝑋 , 𝑌)))
100 eqid 2799 . . . . . . . . . . . . . . 15 (*𝑟𝐹) = (*𝑟𝐹)
10112, 14, 7, 100ipcj 20303 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
1021, 5, 6, 101syl3anc 1491 . . . . . . . . . . . . 13 (𝜑 → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
10399, 102eqtrd 2833 . . . . . . . . . . . 12 (𝜑 → (∗‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
104103fveq2d 6415 . . . . . . . . . . 11 (𝜑 → (abs‘(∗‘(𝑋 , 𝑌))) = (abs‘(𝑌 , 𝑋)))
10596, 104eqtr3d 2835 . . . . . . . . . 10 (𝜑 → (abs‘(𝑋 , 𝑌)) = (abs‘(𝑌 , 𝑋)))
106105oveq2d 6894 . . . . . . . . 9 (𝜑 → ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑋 , 𝑌))) = ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑌 , 𝑋))))
10795, 106eqtrd 2833 . . . . . . . 8 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) = ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑌 , 𝑋))))
10893, 107breqtrrd 4871 . . . . . . 7 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ≤ (2 · (abs‘(𝑋 , 𝑌))))
109 tcphcph.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
110 eqid 2799 . . . . . . . . . 10 (norm‘𝐺) = (norm‘𝐺)
111 eqid 2799 . . . . . . . . . 10 ((𝑌 , 𝑋) / (𝑌 , 𝑌)) = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
11211, 7, 12, 1, 13, 14, 109, 40, 23, 110, 111, 5, 6ipcau2 23360 . . . . . . . . 9 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ (((norm‘𝐺)‘𝑋) · ((norm‘𝐺)‘𝑌)))
11311, 110, 7, 14tcphnmval 23355 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → ((norm‘𝐺)‘𝑋) = (√‘(𝑋 , 𝑋)))
1144, 5, 113syl2anc 580 . . . . . . . . . 10 (𝜑 → ((norm‘𝐺)‘𝑋) = (√‘(𝑋 , 𝑋)))
11511, 110, 7, 14tcphnmval 23355 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑌𝑉) → ((norm‘𝐺)‘𝑌) = (√‘(𝑌 , 𝑌)))
1164, 6, 115syl2anc 580 . . . . . . . . . 10 (𝜑 → ((norm‘𝐺)‘𝑌) = (√‘(𝑌 , 𝑌)))
117114, 116oveq12d 6896 . . . . . . . . 9 (𝜑 → (((norm‘𝐺)‘𝑋) · ((norm‘𝐺)‘𝑌)) = ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
118112, 117breqtrd 4869 . . . . . . . 8 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
11936a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
120 2pos 11423 . . . . . . . . . 10 0 < 2
121120a1i 11 . . . . . . . . 9 (𝜑 → 0 < 2)
122 lemul2 11168 . . . . . . . . 9 (((abs‘(𝑋 , 𝑌)) ∈ ℝ ∧ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ↔ (2 · (abs‘(𝑋 , 𝑌))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
12390, 49, 119, 121, 122syl112anc 1494 . . . . . . . 8 (𝜑 → ((abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ↔ (2 · (abs‘(𝑋 , 𝑌))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
124118, 123mpbid 224 . . . . . . 7 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))))
12533, 92, 51, 108, 124letrd 10484 . . . . . 6 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))))
12633, 51, 21, 125leadd2dd 10934 . . . . 5 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ≤ (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
127126, 54breqtrrd 4871 . . . 4 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ≤ (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
12816, 34, 56, 89, 127letrd 10484 . . 3 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ≤ (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
12916recnd 10357 . . . 4 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ∈ ℂ)
130129sqsqrtd 14519 . . 3 (𝜑 → ((√‘((𝑋 𝑌) , (𝑋 𝑌)))↑2) = ((𝑋 𝑌) , (𝑋 𝑌)))
13135sqrtcld 14517 . . . . 5 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℂ)
13248recnd 10357 . . . . 5 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℂ)
133 binom2 13233 . . . . 5 (((√‘(𝑋 , 𝑋)) ∈ ℂ ∧ (√‘(𝑌 , 𝑌)) ∈ ℂ) → (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2) = ((((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + ((√‘(𝑌 , 𝑌))↑2)))
134131, 132, 133syl2anc 580 . . . 4 (𝜑 → (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2) = ((((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + ((√‘(𝑌 , 𝑌))↑2)))
13535sqsqrtd 14519 . . . . . 6 (𝜑 → ((√‘(𝑋 , 𝑋))↑2) = (𝑋 , 𝑋))
136135oveq1d 6893 . . . . 5 (𝜑 → (((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) = ((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
13753sqsqrtd 14519 . . . . 5 (𝜑 → ((√‘(𝑌 , 𝑌))↑2) = (𝑌 , 𝑌))
138136, 137oveq12d 6896 . . . 4 (𝜑 → ((((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + ((√‘(𝑌 , 𝑌))↑2)) = (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
139134, 138eqtrd 2833 . . 3 (𝜑 → (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2) = (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
140128, 130, 1393brtr4d 4875 . 2 (𝜑 → ((√‘((𝑋 𝑌) , (𝑋 𝑌)))↑2) ≤ (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2))
14116, 60resqrtcld 14497 . . 3 (𝜑 → (√‘((𝑋 𝑌) , (𝑋 𝑌))) ∈ ℝ)
14243, 48readdcld 10358 . . 3 (𝜑 → ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))) ∈ ℝ)
14316, 60sqrtge0d 14500 . . 3 (𝜑 → 0 ≤ (√‘((𝑋 𝑌) , (𝑋 𝑌))))
14418, 42sqrtge0d 14500 . . . 4 (𝜑 → 0 ≤ (√‘(𝑋 , 𝑋)))
14520, 47sqrtge0d 14500 . . . 4 (𝜑 → 0 ≤ (√‘(𝑌 , 𝑌)))
14643, 48, 144, 145addge0d 10895 . . 3 (𝜑 → 0 ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))))
147141, 142, 143, 146le2sqd 13300 . 2 (𝜑 → ((√‘((𝑋 𝑌) , (𝑋 𝑌))) ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))) ↔ ((√‘((𝑋 𝑌) , (𝑋 𝑌)))↑2) ≤ (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2)))
148140, 147mpbird 249 1 (𝜑 → (√‘((𝑋 𝑌) , (𝑋 𝑌))) ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wss 3769   class class class wbr 4843  cfv 6101  (class class class)co 6878  cc 10222  cr 10223  0cc0 10224   + caddc 10227   · cmul 10229   < clt 10363  cle 10364  cmin 10556   / cdiv 10976  2c2 11368  cexp 13114  ccj 14177  csqrt 14314  abscabs 14315  Basecbs 16184  s cress 16185  +gcplusg 16267  *𝑟cstv 16269  Scalarcsca 16270  ·𝑖cip 16272  Grpcgrp 17738  -gcsg 17740  LModclmod 19181  fldccnfld 20068  PreHilcphl 20293  normcnm 22709  ℂModcclm 23189  toℂPreHilctcph 23294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-addf 10303  ax-mulf 10304
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-tpos 7590  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-rp 12075  df-fz 12581  df-seq 13056  df-exp 13115  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-starv 16282  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-unif 16290  df-0g 16417  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-mhm 17650  df-grp 17741  df-minusg 17742  df-sbg 17743  df-subg 17904  df-ghm 17971  df-cmn 18510  df-abl 18511  df-mgp 18806  df-ur 18818  df-ring 18865  df-cring 18866  df-oppr 18939  df-dvdsr 18957  df-unit 18958  df-invr 18988  df-dvr 18999  df-rnghom 19033  df-drng 19067  df-subrg 19096  df-staf 19163  df-srng 19164  df-lmod 19183  df-lmhm 19343  df-lvec 19424  df-sra 19495  df-rgmod 19496  df-cnfld 20069  df-phl 20295  df-nm 22715  df-tng 22717  df-clm 23190  df-tcph 23296
This theorem is referenced by:  tcphcph  23363
  Copyright terms: Public domain W3C validator