MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphcphlem1 Structured version   Visualization version   GIF version

Theorem tcphcphlem1 24304
Description: Lemma for tcphcph 24306: the triangle inequality. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphcph.v 𝑉 = (Base‘𝑊)
tcphcph.f 𝐹 = (Scalar‘𝑊)
tcphcph.1 (𝜑𝑊 ∈ PreHil)
tcphcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tcphcph.h , = (·𝑖𝑊)
tcphcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tcphcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
tcphcph.k 𝐾 = (Base‘𝐹)
tcphcph.m = (-g𝑊)
tcphcphlem1.3 (𝜑𝑋𝑉)
tcphcphlem1.4 (𝜑𝑌𝑉)
Assertion
Ref Expression
tcphcphlem1 (𝜑 → (√‘((𝑋 𝑌) , (𝑋 𝑌))) ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))))
Distinct variable groups:   𝑥,   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝜑,𝑥   𝑥,𝑊   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem tcphcphlem1
StepHypRef Expression
1 tcphcph.1 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
2 phllmod 20747 . . . . . . 7 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
3 lmodgrp 20045 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
41, 2, 33syl 18 . . . . . 6 (𝜑𝑊 ∈ Grp)
5 tcphcphlem1.3 . . . . . 6 (𝜑𝑋𝑉)
6 tcphcphlem1.4 . . . . . 6 (𝜑𝑌𝑉)
7 tcphcph.v . . . . . . 7 𝑉 = (Base‘𝑊)
8 tcphcph.m . . . . . . 7 = (-g𝑊)
97, 8grpsubcl 18570 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
104, 5, 6, 9syl3anc 1369 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
11 tcphval.n . . . . . 6 𝐺 = (toℂPreHil‘𝑊)
12 tcphcph.f . . . . . 6 𝐹 = (Scalar‘𝑊)
13 tcphcph.2 . . . . . 6 (𝜑𝐹 = (ℂflds 𝐾))
14 tcphcph.h . . . . . 6 , = (·𝑖𝑊)
1511, 7, 12, 1, 13, 14tcphcphlem3 24302 . . . . 5 ((𝜑 ∧ (𝑋 𝑌) ∈ 𝑉) → ((𝑋 𝑌) , (𝑋 𝑌)) ∈ ℝ)
1610, 15mpdan 683 . . . 4 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ∈ ℝ)
1711, 7, 12, 1, 13, 14tcphcphlem3 24302 . . . . . . 7 ((𝜑𝑋𝑉) → (𝑋 , 𝑋) ∈ ℝ)
185, 17mpdan 683 . . . . . 6 (𝜑 → (𝑋 , 𝑋) ∈ ℝ)
1911, 7, 12, 1, 13, 14tcphcphlem3 24302 . . . . . . 7 ((𝜑𝑌𝑉) → (𝑌 , 𝑌) ∈ ℝ)
206, 19mpdan 683 . . . . . 6 (𝜑 → (𝑌 , 𝑌) ∈ ℝ)
2118, 20readdcld 10935 . . . . 5 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ ℝ)
2211, 7, 12, 1, 13phclm 24301 . . . . . . . . 9 (𝜑𝑊 ∈ ℂMod)
23 tcphcph.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
2412, 23clmsscn 24148 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
2522, 24syl 17 . . . . . . . 8 (𝜑𝐾 ⊆ ℂ)
2612, 14, 7, 23ipcl 20750 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑋 , 𝑌) ∈ 𝐾)
271, 5, 6, 26syl3anc 1369 . . . . . . . 8 (𝜑 → (𝑋 , 𝑌) ∈ 𝐾)
2825, 27sseldd 3918 . . . . . . 7 (𝜑 → (𝑋 , 𝑌) ∈ ℂ)
2912, 14, 7, 23ipcl 20750 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑋𝑉) → (𝑌 , 𝑋) ∈ 𝐾)
301, 6, 5, 29syl3anc 1369 . . . . . . . 8 (𝜑 → (𝑌 , 𝑋) ∈ 𝐾)
3125, 30sseldd 3918 . . . . . . 7 (𝜑 → (𝑌 , 𝑋) ∈ ℂ)
3228, 31addcld 10925 . . . . . 6 (𝜑 → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ ℂ)
3332abscld 15076 . . . . 5 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ∈ ℝ)
3421, 33readdcld 10935 . . . 4 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ∈ ℝ)
3518recnd 10934 . . . . . 6 (𝜑 → (𝑋 , 𝑋) ∈ ℂ)
36 2re 11977 . . . . . . . 8 2 ∈ ℝ
37 oveq12 7264 . . . . . . . . . . . . 13 ((𝑥 = 𝑋𝑥 = 𝑋) → (𝑥 , 𝑥) = (𝑋 , 𝑋))
3837anidms 566 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥 , 𝑥) = (𝑋 , 𝑋))
3938breq2d 5082 . . . . . . . . . . 11 (𝑥 = 𝑋 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑋 , 𝑋)))
40 tcphcph.4 . . . . . . . . . . . 12 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
4140ralrimiva 3107 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
4239, 41, 5rspcdva 3554 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑋 , 𝑋))
4318, 42resqrtcld 15057 . . . . . . . . 9 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℝ)
44 oveq12 7264 . . . . . . . . . . . . 13 ((𝑥 = 𝑌𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌))
4544anidms 566 . . . . . . . . . . . 12 (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌))
4645breq2d 5082 . . . . . . . . . . 11 (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌)))
4746, 41, 6rspcdva 3554 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑌 , 𝑌))
4820, 47resqrtcld 15057 . . . . . . . . 9 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℝ)
4943, 48remulcld 10936 . . . . . . . 8 (𝜑 → ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ)
50 remulcl 10887 . . . . . . . 8 ((2 ∈ ℝ ∧ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ) → (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))) ∈ ℝ)
5136, 49, 50sylancr 586 . . . . . . 7 (𝜑 → (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))) ∈ ℝ)
5251recnd 10934 . . . . . 6 (𝜑 → (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))) ∈ ℂ)
5320recnd 10934 . . . . . 6 (𝜑 → (𝑌 , 𝑌) ∈ ℂ)
5435, 52, 53add32d 11132 . . . . 5 (𝜑 → (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)) = (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
5521, 51readdcld 10935 . . . . 5 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) ∈ ℝ)
5654, 55eqeltrd 2839 . . . 4 (𝜑 → (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)) ∈ ℝ)
57 oveq12 7264 . . . . . . . . . . 11 ((𝑥 = (𝑋 𝑌) ∧ 𝑥 = (𝑋 𝑌)) → (𝑥 , 𝑥) = ((𝑋 𝑌) , (𝑋 𝑌)))
5857anidms 566 . . . . . . . . . 10 (𝑥 = (𝑋 𝑌) → (𝑥 , 𝑥) = ((𝑋 𝑌) , (𝑋 𝑌)))
5958breq2d 5082 . . . . . . . . 9 (𝑥 = (𝑋 𝑌) → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ ((𝑋 𝑌) , (𝑋 𝑌))))
6059, 41, 10rspcdva 3554 . . . . . . . 8 (𝜑 → 0 ≤ ((𝑋 𝑌) , (𝑋 𝑌)))
6116, 60absidd 15062 . . . . . . 7 (𝜑 → (abs‘((𝑋 𝑌) , (𝑋 𝑌))) = ((𝑋 𝑌) , (𝑋 𝑌)))
6212clmadd 24143 . . . . . . . . . . . 12 (𝑊 ∈ ℂMod → + = (+g𝐹))
6322, 62syl 17 . . . . . . . . . . 11 (𝜑 → + = (+g𝐹))
6463oveqd 7272 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) = ((𝑋 , 𝑋)(+g𝐹)(𝑌 , 𝑌)))
6563oveqd 7272 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) = ((𝑋 , 𝑌)(+g𝐹)(𝑌 , 𝑋)))
6664, 65oveq12d 7273 . . . . . . . . 9 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌) + (𝑌 , 𝑋))) = (((𝑋 , 𝑋)(+g𝐹)(𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌)(+g𝐹)(𝑌 , 𝑋))))
6712, 14, 7, 23ipcl 20750 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑋𝑉) → (𝑋 , 𝑋) ∈ 𝐾)
681, 5, 5, 67syl3anc 1369 . . . . . . . . . . 11 (𝜑 → (𝑋 , 𝑋) ∈ 𝐾)
6912, 14, 7, 23ipcl 20750 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑌𝑉) → (𝑌 , 𝑌) ∈ 𝐾)
701, 6, 6, 69syl3anc 1369 . . . . . . . . . . 11 (𝜑 → (𝑌 , 𝑌) ∈ 𝐾)
7112, 23clmacl 24153 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑋) ∈ 𝐾 ∧ (𝑌 , 𝑌) ∈ 𝐾) → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ 𝐾)
7222, 68, 70, 71syl3anc 1369 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ 𝐾)
7312, 23clmacl 24153 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑌) ∈ 𝐾 ∧ (𝑌 , 𝑋) ∈ 𝐾) → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ 𝐾)
7422, 27, 30, 73syl3anc 1369 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ 𝐾)
7512, 23clmsub 24149 . . . . . . . . . 10 ((𝑊 ∈ ℂMod ∧ ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ 𝐾 ∧ ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ 𝐾) → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋))) = (((𝑋 , 𝑋) + (𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌) + (𝑌 , 𝑋))))
7622, 72, 74, 75syl3anc 1369 . . . . . . . . 9 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋))) = (((𝑋 , 𝑋) + (𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌) + (𝑌 , 𝑋))))
77 eqid 2738 . . . . . . . . . 10 (-g𝐹) = (-g𝐹)
78 eqid 2738 . . . . . . . . . 10 (+g𝐹) = (+g𝐹)
7912, 14, 7, 8, 77, 78, 1, 5, 6, 5, 6ip2subdi 20761 . . . . . . . . 9 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) = (((𝑋 , 𝑋)(+g𝐹)(𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌)(+g𝐹)(𝑌 , 𝑋))))
8066, 76, 793eqtr4rd 2789 . . . . . . . 8 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) = (((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋))))
8180fveq2d 6760 . . . . . . 7 (𝜑 → (abs‘((𝑋 𝑌) , (𝑋 𝑌))) = (abs‘(((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8261, 81eqtr3d 2780 . . . . . 6 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) = (abs‘(((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8325, 72sseldd 3918 . . . . . . 7 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ ℂ)
8483, 32abs2dif2d 15098 . . . . . 6 (𝜑 → (abs‘(((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ≤ ((abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8582, 84eqbrtrd 5092 . . . . 5 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ≤ ((abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8618, 20, 42, 47addge0d 11481 . . . . . . 7 (𝜑 → 0 ≤ ((𝑋 , 𝑋) + (𝑌 , 𝑌)))
8721, 86absidd 15062 . . . . . 6 (𝜑 → (abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) = ((𝑋 , 𝑋) + (𝑌 , 𝑌)))
8887oveq1d 7270 . . . . 5 (𝜑 → ((abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) = (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8985, 88breqtrd 5096 . . . 4 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ≤ (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
9028abscld 15076 . . . . . . . 8 (𝜑 → (abs‘(𝑋 , 𝑌)) ∈ ℝ)
91 remulcl 10887 . . . . . . . 8 ((2 ∈ ℝ ∧ (abs‘(𝑋 , 𝑌)) ∈ ℝ) → (2 · (abs‘(𝑋 , 𝑌))) ∈ ℝ)
9236, 90, 91sylancr 586 . . . . . . 7 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) ∈ ℝ)
9328, 31abstrid 15096 . . . . . . . 8 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ≤ ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑌 , 𝑋))))
9490recnd 10934 . . . . . . . . . 10 (𝜑 → (abs‘(𝑋 , 𝑌)) ∈ ℂ)
95942timesd 12146 . . . . . . . . 9 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) = ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑋 , 𝑌))))
9628abscjd 15090 . . . . . . . . . . 11 (𝜑 → (abs‘(∗‘(𝑋 , 𝑌))) = (abs‘(𝑋 , 𝑌)))
9712clmcj 24145 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂMod → ∗ = (*𝑟𝐹))
9822, 97syl 17 . . . . . . . . . . . . . 14 (𝜑 → ∗ = (*𝑟𝐹))
9998fveq1d 6758 . . . . . . . . . . . . 13 (𝜑 → (∗‘(𝑋 , 𝑌)) = ((*𝑟𝐹)‘(𝑋 , 𝑌)))
100 eqid 2738 . . . . . . . . . . . . . . 15 (*𝑟𝐹) = (*𝑟𝐹)
10112, 14, 7, 100ipcj 20751 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
1021, 5, 6, 101syl3anc 1369 . . . . . . . . . . . . 13 (𝜑 → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
10399, 102eqtrd 2778 . . . . . . . . . . . 12 (𝜑 → (∗‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
104103fveq2d 6760 . . . . . . . . . . 11 (𝜑 → (abs‘(∗‘(𝑋 , 𝑌))) = (abs‘(𝑌 , 𝑋)))
10596, 104eqtr3d 2780 . . . . . . . . . 10 (𝜑 → (abs‘(𝑋 , 𝑌)) = (abs‘(𝑌 , 𝑋)))
106105oveq2d 7271 . . . . . . . . 9 (𝜑 → ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑋 , 𝑌))) = ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑌 , 𝑋))))
10795, 106eqtrd 2778 . . . . . . . 8 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) = ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑌 , 𝑋))))
10893, 107breqtrrd 5098 . . . . . . 7 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ≤ (2 · (abs‘(𝑋 , 𝑌))))
109 tcphcph.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
110 eqid 2738 . . . . . . . . . 10 (norm‘𝐺) = (norm‘𝐺)
111 eqid 2738 . . . . . . . . . 10 ((𝑌 , 𝑋) / (𝑌 , 𝑌)) = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
11211, 7, 12, 1, 13, 14, 109, 40, 23, 110, 111, 5, 6ipcau2 24303 . . . . . . . . 9 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ (((norm‘𝐺)‘𝑋) · ((norm‘𝐺)‘𝑌)))
11311, 110, 7, 14tcphnmval 24298 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → ((norm‘𝐺)‘𝑋) = (√‘(𝑋 , 𝑋)))
1144, 5, 113syl2anc 583 . . . . . . . . . 10 (𝜑 → ((norm‘𝐺)‘𝑋) = (√‘(𝑋 , 𝑋)))
11511, 110, 7, 14tcphnmval 24298 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑌𝑉) → ((norm‘𝐺)‘𝑌) = (√‘(𝑌 , 𝑌)))
1164, 6, 115syl2anc 583 . . . . . . . . . 10 (𝜑 → ((norm‘𝐺)‘𝑌) = (√‘(𝑌 , 𝑌)))
117114, 116oveq12d 7273 . . . . . . . . 9 (𝜑 → (((norm‘𝐺)‘𝑋) · ((norm‘𝐺)‘𝑌)) = ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
118112, 117breqtrd 5096 . . . . . . . 8 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
11936a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
120 2pos 12006 . . . . . . . . . 10 0 < 2
121120a1i 11 . . . . . . . . 9 (𝜑 → 0 < 2)
122 lemul2 11758 . . . . . . . . 9 (((abs‘(𝑋 , 𝑌)) ∈ ℝ ∧ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ↔ (2 · (abs‘(𝑋 , 𝑌))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
12390, 49, 119, 121, 122syl112anc 1372 . . . . . . . 8 (𝜑 → ((abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ↔ (2 · (abs‘(𝑋 , 𝑌))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
124118, 123mpbid 231 . . . . . . 7 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))))
12533, 92, 51, 108, 124letrd 11062 . . . . . 6 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))))
12633, 51, 21, 125leadd2dd 11520 . . . . 5 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ≤ (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
127126, 54breqtrrd 5098 . . . 4 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ≤ (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
12816, 34, 56, 89, 127letrd 11062 . . 3 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ≤ (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
12916recnd 10934 . . . 4 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ∈ ℂ)
130129sqsqrtd 15079 . . 3 (𝜑 → ((√‘((𝑋 𝑌) , (𝑋 𝑌)))↑2) = ((𝑋 𝑌) , (𝑋 𝑌)))
13135sqrtcld 15077 . . . . 5 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℂ)
13248recnd 10934 . . . . 5 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℂ)
133 binom2 13861 . . . . 5 (((√‘(𝑋 , 𝑋)) ∈ ℂ ∧ (√‘(𝑌 , 𝑌)) ∈ ℂ) → (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2) = ((((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + ((√‘(𝑌 , 𝑌))↑2)))
134131, 132, 133syl2anc 583 . . . 4 (𝜑 → (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2) = ((((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + ((√‘(𝑌 , 𝑌))↑2)))
13535sqsqrtd 15079 . . . . . 6 (𝜑 → ((√‘(𝑋 , 𝑋))↑2) = (𝑋 , 𝑋))
136135oveq1d 7270 . . . . 5 (𝜑 → (((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) = ((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
13753sqsqrtd 15079 . . . . 5 (𝜑 → ((√‘(𝑌 , 𝑌))↑2) = (𝑌 , 𝑌))
138136, 137oveq12d 7273 . . . 4 (𝜑 → ((((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + ((√‘(𝑌 , 𝑌))↑2)) = (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
139134, 138eqtrd 2778 . . 3 (𝜑 → (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2) = (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
140128, 130, 1393brtr4d 5102 . 2 (𝜑 → ((√‘((𝑋 𝑌) , (𝑋 𝑌)))↑2) ≤ (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2))
14116, 60resqrtcld 15057 . . 3 (𝜑 → (√‘((𝑋 𝑌) , (𝑋 𝑌))) ∈ ℝ)
14243, 48readdcld 10935 . . 3 (𝜑 → ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))) ∈ ℝ)
14316, 60sqrtge0d 15060 . . 3 (𝜑 → 0 ≤ (√‘((𝑋 𝑌) , (𝑋 𝑌))))
14418, 42sqrtge0d 15060 . . . 4 (𝜑 → 0 ≤ (√‘(𝑋 , 𝑋)))
14520, 47sqrtge0d 15060 . . . 4 (𝜑 → 0 ≤ (√‘(𝑌 , 𝑌)))
14643, 48, 144, 145addge0d 11481 . . 3 (𝜑 → 0 ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))))
147141, 142, 143, 146le2sqd 13902 . 2 (𝜑 → ((√‘((𝑋 𝑌) , (𝑋 𝑌))) ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))) ↔ ((√‘((𝑋 𝑌) , (𝑋 𝑌)))↑2) ≤ (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2)))
148140, 147mpbird 256 1 (𝜑 → (√‘((𝑋 𝑌) , (𝑋 𝑌))) ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  cexp 13710  ccj 14735  csqrt 14872  abscabs 14873  Basecbs 16840  s cress 16867  +gcplusg 16888  *𝑟cstv 16890  Scalarcsca 16891  ·𝑖cip 16893  Grpcgrp 18492  -gcsg 18494  LModclmod 20038  fldccnfld 20510  PreHilcphl 20741  normcnm 23638  ℂModcclm 24131  toℂPreHilctcph 24236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-subrg 19937  df-staf 20020  df-srng 20021  df-lmod 20040  df-lmhm 20199  df-lvec 20280  df-sra 20349  df-rgmod 20350  df-cnfld 20511  df-phl 20743  df-nm 23644  df-tng 23646  df-clm 24132  df-tcph 24238
This theorem is referenced by:  tcphcph  24306
  Copyright terms: Public domain W3C validator