MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdscmnd Structured version   Visualization version   GIF version

Theorem prdscmnd 19758
Description: The product of a family of commutative monoids is commutative. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdscmnd.y 𝑌 = (𝑆Xs𝑅)
prdscmnd.i (𝜑𝐼𝑊)
prdscmnd.s (𝜑𝑆𝑉)
prdscmnd.r (𝜑𝑅:𝐼⟶CMnd)
Assertion
Ref Expression
prdscmnd (𝜑𝑌 ∈ CMnd)

Proof of Theorem prdscmnd
Dummy variables 𝑐 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . 2 (𝜑 → (Base‘𝑌) = (Base‘𝑌))
2 eqidd 2730 . 2 (𝜑 → (+g𝑌) = (+g𝑌))
3 prdscmnd.y . . 3 𝑌 = (𝑆Xs𝑅)
4 prdscmnd.i . . 3 (𝜑𝐼𝑊)
5 prdscmnd.s . . 3 (𝜑𝑆𝑉)
6 prdscmnd.r . . . 4 (𝜑𝑅:𝐼⟶CMnd)
7 cmnmnd 19694 . . . . 5 (𝑎 ∈ CMnd → 𝑎 ∈ Mnd)
87ssriv 3941 . . . 4 CMnd ⊆ Mnd
9 fss 6672 . . . 4 ((𝑅:𝐼⟶CMnd ∧ CMnd ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
106, 8, 9sylancl 586 . . 3 (𝜑𝑅:𝐼⟶Mnd)
113, 4, 5, 10prdsmndd 18662 . 2 (𝜑𝑌 ∈ Mnd)
1263ad2ant1 1133 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶CMnd)
1312ffvelcdmda 7022 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → (𝑅𝑐) ∈ CMnd)
14 eqid 2729 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
155elexd 3462 . . . . . . . 8 (𝜑𝑆 ∈ V)
16153ad2ant1 1133 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑆 ∈ V)
1716adantr 480 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑆 ∈ V)
184elexd 3462 . . . . . . . 8 (𝜑𝐼 ∈ V)
19183ad2ant1 1133 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝐼 ∈ V)
2019adantr 480 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝐼 ∈ V)
216ffnd 6657 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
22213ad2ant1 1133 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑅 Fn 𝐼)
2322adantr 480 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑅 Fn 𝐼)
24 simpl2 1193 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑎 ∈ (Base‘𝑌))
25 simpr 484 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑐𝐼)
263, 14, 17, 20, 23, 24, 25prdsbasprj 17394 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → (𝑎𝑐) ∈ (Base‘(𝑅𝑐)))
27 simpl3 1194 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑏 ∈ (Base‘𝑌))
283, 14, 17, 20, 23, 27, 25prdsbasprj 17394 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → (𝑏𝑐) ∈ (Base‘(𝑅𝑐)))
29 eqid 2729 . . . . . 6 (Base‘(𝑅𝑐)) = (Base‘(𝑅𝑐))
30 eqid 2729 . . . . . 6 (+g‘(𝑅𝑐)) = (+g‘(𝑅𝑐))
3129, 30cmncom 19695 . . . . 5 (((𝑅𝑐) ∈ CMnd ∧ (𝑎𝑐) ∈ (Base‘(𝑅𝑐)) ∧ (𝑏𝑐) ∈ (Base‘(𝑅𝑐))) → ((𝑎𝑐)(+g‘(𝑅𝑐))(𝑏𝑐)) = ((𝑏𝑐)(+g‘(𝑅𝑐))(𝑎𝑐)))
3213, 26, 28, 31syl3anc 1373 . . . 4 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → ((𝑎𝑐)(+g‘(𝑅𝑐))(𝑏𝑐)) = ((𝑏𝑐)(+g‘(𝑅𝑐))(𝑎𝑐)))
3332mpteq2dva 5188 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑐𝐼 ↦ ((𝑎𝑐)(+g‘(𝑅𝑐))(𝑏𝑐))) = (𝑐𝐼 ↦ ((𝑏𝑐)(+g‘(𝑅𝑐))(𝑎𝑐))))
34 simp2 1137 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑎 ∈ (Base‘𝑌))
35 simp3 1138 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑏 ∈ (Base‘𝑌))
36 eqid 2729 . . . 4 (+g𝑌) = (+g𝑌)
373, 14, 16, 19, 22, 34, 35, 36prdsplusgval 17395 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g𝑌)𝑏) = (𝑐𝐼 ↦ ((𝑎𝑐)(+g‘(𝑅𝑐))(𝑏𝑐))))
383, 14, 16, 19, 22, 35, 34, 36prdsplusgval 17395 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑏(+g𝑌)𝑎) = (𝑐𝐼 ↦ ((𝑏𝑐)(+g‘(𝑅𝑐))(𝑎𝑐))))
3933, 37, 383eqtr4d 2774 . 2 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g𝑌)𝑏) = (𝑏(+g𝑌)𝑎))
401, 2, 11, 39iscmnd 19691 1 (𝜑𝑌 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  wss 3905  cmpt 5176   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  Xscprds 17367  Mndcmnd 18626  CMndccmn 19677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-prds 17369  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-cmn 19679
This theorem is referenced by:  prdsabld  19759  pwscmn  19760  prdsgsum  19878  prdscrngd  20225
  Copyright terms: Public domain W3C validator