MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdscmnd Structured version   Visualization version   GIF version

Theorem prdscmnd 19797
Description: The product of a family of commutative monoids is commutative. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdscmnd.y 𝑌 = (𝑆Xs𝑅)
prdscmnd.i (𝜑𝐼𝑊)
prdscmnd.s (𝜑𝑆𝑉)
prdscmnd.r (𝜑𝑅:𝐼⟶CMnd)
Assertion
Ref Expression
prdscmnd (𝜑𝑌 ∈ CMnd)

Proof of Theorem prdscmnd
Dummy variables 𝑐 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2731 . 2 (𝜑 → (Base‘𝑌) = (Base‘𝑌))
2 eqidd 2731 . 2 (𝜑 → (+g𝑌) = (+g𝑌))
3 prdscmnd.y . . 3 𝑌 = (𝑆Xs𝑅)
4 prdscmnd.i . . 3 (𝜑𝐼𝑊)
5 prdscmnd.s . . 3 (𝜑𝑆𝑉)
6 prdscmnd.r . . . 4 (𝜑𝑅:𝐼⟶CMnd)
7 cmnmnd 19733 . . . . 5 (𝑎 ∈ CMnd → 𝑎 ∈ Mnd)
87ssriv 3952 . . . 4 CMnd ⊆ Mnd
9 fss 6706 . . . 4 ((𝑅:𝐼⟶CMnd ∧ CMnd ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
106, 8, 9sylancl 586 . . 3 (𝜑𝑅:𝐼⟶Mnd)
113, 4, 5, 10prdsmndd 18703 . 2 (𝜑𝑌 ∈ Mnd)
1263ad2ant1 1133 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶CMnd)
1312ffvelcdmda 7058 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → (𝑅𝑐) ∈ CMnd)
14 eqid 2730 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
155elexd 3474 . . . . . . . 8 (𝜑𝑆 ∈ V)
16153ad2ant1 1133 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑆 ∈ V)
1716adantr 480 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑆 ∈ V)
184elexd 3474 . . . . . . . 8 (𝜑𝐼 ∈ V)
19183ad2ant1 1133 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝐼 ∈ V)
2019adantr 480 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝐼 ∈ V)
216ffnd 6691 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
22213ad2ant1 1133 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑅 Fn 𝐼)
2322adantr 480 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑅 Fn 𝐼)
24 simpl2 1193 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑎 ∈ (Base‘𝑌))
25 simpr 484 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑐𝐼)
263, 14, 17, 20, 23, 24, 25prdsbasprj 17441 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → (𝑎𝑐) ∈ (Base‘(𝑅𝑐)))
27 simpl3 1194 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑏 ∈ (Base‘𝑌))
283, 14, 17, 20, 23, 27, 25prdsbasprj 17441 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → (𝑏𝑐) ∈ (Base‘(𝑅𝑐)))
29 eqid 2730 . . . . . 6 (Base‘(𝑅𝑐)) = (Base‘(𝑅𝑐))
30 eqid 2730 . . . . . 6 (+g‘(𝑅𝑐)) = (+g‘(𝑅𝑐))
3129, 30cmncom 19734 . . . . 5 (((𝑅𝑐) ∈ CMnd ∧ (𝑎𝑐) ∈ (Base‘(𝑅𝑐)) ∧ (𝑏𝑐) ∈ (Base‘(𝑅𝑐))) → ((𝑎𝑐)(+g‘(𝑅𝑐))(𝑏𝑐)) = ((𝑏𝑐)(+g‘(𝑅𝑐))(𝑎𝑐)))
3213, 26, 28, 31syl3anc 1373 . . . 4 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → ((𝑎𝑐)(+g‘(𝑅𝑐))(𝑏𝑐)) = ((𝑏𝑐)(+g‘(𝑅𝑐))(𝑎𝑐)))
3332mpteq2dva 5202 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑐𝐼 ↦ ((𝑎𝑐)(+g‘(𝑅𝑐))(𝑏𝑐))) = (𝑐𝐼 ↦ ((𝑏𝑐)(+g‘(𝑅𝑐))(𝑎𝑐))))
34 simp2 1137 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑎 ∈ (Base‘𝑌))
35 simp3 1138 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑏 ∈ (Base‘𝑌))
36 eqid 2730 . . . 4 (+g𝑌) = (+g𝑌)
373, 14, 16, 19, 22, 34, 35, 36prdsplusgval 17442 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g𝑌)𝑏) = (𝑐𝐼 ↦ ((𝑎𝑐)(+g‘(𝑅𝑐))(𝑏𝑐))))
383, 14, 16, 19, 22, 35, 34, 36prdsplusgval 17442 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑏(+g𝑌)𝑎) = (𝑐𝐼 ↦ ((𝑏𝑐)(+g‘(𝑅𝑐))(𝑎𝑐))))
3933, 37, 383eqtr4d 2775 . 2 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g𝑌)𝑏) = (𝑏(+g𝑌)𝑎))
401, 2, 11, 39iscmnd 19730 1 (𝜑𝑌 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  wss 3916  cmpt 5190   Fn wfn 6508  wf 6509  cfv 6513  (class class class)co 7389  Basecbs 17185  +gcplusg 17226  Xscprds 17414  Mndcmnd 18667  CMndccmn 19716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-0g 17410  df-prds 17416  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-cmn 19718
This theorem is referenced by:  prdsabld  19798  pwscmn  19799  prdsgsum  19917  prdscrngd  20237
  Copyright terms: Public domain W3C validator