| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdscmnd | Structured version Visualization version GIF version | ||
| Description: The product of a family of commutative monoids is commutative. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| prdscmnd.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
| prdscmnd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| prdscmnd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| prdscmnd.r | ⊢ (𝜑 → 𝑅:𝐼⟶CMnd) |
| Ref | Expression |
|---|---|
| prdscmnd | ⊢ (𝜑 → 𝑌 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2731 | . 2 ⊢ (𝜑 → (Base‘𝑌) = (Base‘𝑌)) | |
| 2 | eqidd 2731 | . 2 ⊢ (𝜑 → (+g‘𝑌) = (+g‘𝑌)) | |
| 3 | prdscmnd.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
| 4 | prdscmnd.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | prdscmnd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 6 | prdscmnd.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶CMnd) | |
| 7 | cmnmnd 19733 | . . . . 5 ⊢ (𝑎 ∈ CMnd → 𝑎 ∈ Mnd) | |
| 8 | 7 | ssriv 3952 | . . . 4 ⊢ CMnd ⊆ Mnd |
| 9 | fss 6706 | . . . 4 ⊢ ((𝑅:𝐼⟶CMnd ∧ CMnd ⊆ Mnd) → 𝑅:𝐼⟶Mnd) | |
| 10 | 6, 8, 9 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
| 11 | 3, 4, 5, 10 | prdsmndd 18703 | . 2 ⊢ (𝜑 → 𝑌 ∈ Mnd) |
| 12 | 6 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶CMnd) |
| 13 | 12 | ffvelcdmda 7058 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → (𝑅‘𝑐) ∈ CMnd) |
| 14 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 15 | 5 | elexd 3474 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ V) |
| 16 | 15 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑆 ∈ V) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑆 ∈ V) |
| 18 | 4 | elexd 3474 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ V) |
| 19 | 18 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝐼 ∈ V) |
| 20 | 19 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝐼 ∈ V) |
| 21 | 6 | ffnd 6691 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
| 22 | 21 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑅 Fn 𝐼) |
| 23 | 22 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑅 Fn 𝐼) |
| 24 | simpl2 1193 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑎 ∈ (Base‘𝑌)) | |
| 25 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑐 ∈ 𝐼) | |
| 26 | 3, 14, 17, 20, 23, 24, 25 | prdsbasprj 17441 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → (𝑎‘𝑐) ∈ (Base‘(𝑅‘𝑐))) |
| 27 | simpl3 1194 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑏 ∈ (Base‘𝑌)) | |
| 28 | 3, 14, 17, 20, 23, 27, 25 | prdsbasprj 17441 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → (𝑏‘𝑐) ∈ (Base‘(𝑅‘𝑐))) |
| 29 | eqid 2730 | . . . . . 6 ⊢ (Base‘(𝑅‘𝑐)) = (Base‘(𝑅‘𝑐)) | |
| 30 | eqid 2730 | . . . . . 6 ⊢ (+g‘(𝑅‘𝑐)) = (+g‘(𝑅‘𝑐)) | |
| 31 | 29, 30 | cmncom 19734 | . . . . 5 ⊢ (((𝑅‘𝑐) ∈ CMnd ∧ (𝑎‘𝑐) ∈ (Base‘(𝑅‘𝑐)) ∧ (𝑏‘𝑐) ∈ (Base‘(𝑅‘𝑐))) → ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐)) = ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐))) |
| 32 | 13, 26, 28, 31 | syl3anc 1373 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐)) = ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐))) |
| 33 | 32 | mpteq2dva 5202 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑐 ∈ 𝐼 ↦ ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐))) = (𝑐 ∈ 𝐼 ↦ ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐)))) |
| 34 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑎 ∈ (Base‘𝑌)) | |
| 35 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑏 ∈ (Base‘𝑌)) | |
| 36 | eqid 2730 | . . . 4 ⊢ (+g‘𝑌) = (+g‘𝑌) | |
| 37 | 3, 14, 16, 19, 22, 34, 35, 36 | prdsplusgval 17442 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g‘𝑌)𝑏) = (𝑐 ∈ 𝐼 ↦ ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐)))) |
| 38 | 3, 14, 16, 19, 22, 35, 34, 36 | prdsplusgval 17442 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑏(+g‘𝑌)𝑎) = (𝑐 ∈ 𝐼 ↦ ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐)))) |
| 39 | 33, 37, 38 | 3eqtr4d 2775 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g‘𝑌)𝑏) = (𝑏(+g‘𝑌)𝑎)) |
| 40 | 1, 2, 11, 39 | iscmnd 19730 | 1 ⊢ (𝜑 → 𝑌 ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3916 ↦ cmpt 5190 Fn wfn 6508 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 Xscprds 17414 Mndcmnd 18667 CMndccmn 19716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-hom 17250 df-cco 17251 df-0g 17410 df-prds 17416 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-cmn 19718 |
| This theorem is referenced by: prdsabld 19798 pwscmn 19799 prdsgsum 19917 prdscrngd 20237 |
| Copyright terms: Public domain | W3C validator |