MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdscmnd Structured version   Visualization version   GIF version

Theorem prdscmnd 19879
Description: The product of a family of commutative monoids is commutative. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdscmnd.y 𝑌 = (𝑆Xs𝑅)
prdscmnd.i (𝜑𝐼𝑊)
prdscmnd.s (𝜑𝑆𝑉)
prdscmnd.r (𝜑𝑅:𝐼⟶CMnd)
Assertion
Ref Expression
prdscmnd (𝜑𝑌 ∈ CMnd)

Proof of Theorem prdscmnd
Dummy variables 𝑐 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2738 . 2 (𝜑 → (Base‘𝑌) = (Base‘𝑌))
2 eqidd 2738 . 2 (𝜑 → (+g𝑌) = (+g𝑌))
3 prdscmnd.y . . 3 𝑌 = (𝑆Xs𝑅)
4 prdscmnd.i . . 3 (𝜑𝐼𝑊)
5 prdscmnd.s . . 3 (𝜑𝑆𝑉)
6 prdscmnd.r . . . 4 (𝜑𝑅:𝐼⟶CMnd)
7 cmnmnd 19815 . . . . 5 (𝑎 ∈ CMnd → 𝑎 ∈ Mnd)
87ssriv 3987 . . . 4 CMnd ⊆ Mnd
9 fss 6752 . . . 4 ((𝑅:𝐼⟶CMnd ∧ CMnd ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
106, 8, 9sylancl 586 . . 3 (𝜑𝑅:𝐼⟶Mnd)
113, 4, 5, 10prdsmndd 18783 . 2 (𝜑𝑌 ∈ Mnd)
1263ad2ant1 1134 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶CMnd)
1312ffvelcdmda 7104 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → (𝑅𝑐) ∈ CMnd)
14 eqid 2737 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
155elexd 3504 . . . . . . . 8 (𝜑𝑆 ∈ V)
16153ad2ant1 1134 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑆 ∈ V)
1716adantr 480 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑆 ∈ V)
184elexd 3504 . . . . . . . 8 (𝜑𝐼 ∈ V)
19183ad2ant1 1134 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝐼 ∈ V)
2019adantr 480 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝐼 ∈ V)
216ffnd 6737 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
22213ad2ant1 1134 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑅 Fn 𝐼)
2322adantr 480 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑅 Fn 𝐼)
24 simpl2 1193 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑎 ∈ (Base‘𝑌))
25 simpr 484 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑐𝐼)
263, 14, 17, 20, 23, 24, 25prdsbasprj 17517 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → (𝑎𝑐) ∈ (Base‘(𝑅𝑐)))
27 simpl3 1194 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑏 ∈ (Base‘𝑌))
283, 14, 17, 20, 23, 27, 25prdsbasprj 17517 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → (𝑏𝑐) ∈ (Base‘(𝑅𝑐)))
29 eqid 2737 . . . . . 6 (Base‘(𝑅𝑐)) = (Base‘(𝑅𝑐))
30 eqid 2737 . . . . . 6 (+g‘(𝑅𝑐)) = (+g‘(𝑅𝑐))
3129, 30cmncom 19816 . . . . 5 (((𝑅𝑐) ∈ CMnd ∧ (𝑎𝑐) ∈ (Base‘(𝑅𝑐)) ∧ (𝑏𝑐) ∈ (Base‘(𝑅𝑐))) → ((𝑎𝑐)(+g‘(𝑅𝑐))(𝑏𝑐)) = ((𝑏𝑐)(+g‘(𝑅𝑐))(𝑎𝑐)))
3213, 26, 28, 31syl3anc 1373 . . . 4 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → ((𝑎𝑐)(+g‘(𝑅𝑐))(𝑏𝑐)) = ((𝑏𝑐)(+g‘(𝑅𝑐))(𝑎𝑐)))
3332mpteq2dva 5242 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑐𝐼 ↦ ((𝑎𝑐)(+g‘(𝑅𝑐))(𝑏𝑐))) = (𝑐𝐼 ↦ ((𝑏𝑐)(+g‘(𝑅𝑐))(𝑎𝑐))))
34 simp2 1138 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑎 ∈ (Base‘𝑌))
35 simp3 1139 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑏 ∈ (Base‘𝑌))
36 eqid 2737 . . . 4 (+g𝑌) = (+g𝑌)
373, 14, 16, 19, 22, 34, 35, 36prdsplusgval 17518 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g𝑌)𝑏) = (𝑐𝐼 ↦ ((𝑎𝑐)(+g‘(𝑅𝑐))(𝑏𝑐))))
383, 14, 16, 19, 22, 35, 34, 36prdsplusgval 17518 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑏(+g𝑌)𝑎) = (𝑐𝐼 ↦ ((𝑏𝑐)(+g‘(𝑅𝑐))(𝑎𝑐))))
3933, 37, 383eqtr4d 2787 . 2 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g𝑌)𝑏) = (𝑏(+g𝑌)𝑎))
401, 2, 11, 39iscmnd 19812 1 (𝜑𝑌 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  cmpt 5225   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  Xscprds 17490  Mndcmnd 18747  CMndccmn 19798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-prds 17492  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-cmn 19800
This theorem is referenced by:  prdsabld  19880  pwscmn  19881  prdsgsum  19999  prdscrngd  20319
  Copyright terms: Public domain W3C validator