Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdscmnd | Structured version Visualization version GIF version |
Description: The product of a family of commutative monoids is commutative. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
Ref | Expression |
---|---|
prdscmnd.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdscmnd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdscmnd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdscmnd.r | ⊢ (𝜑 → 𝑅:𝐼⟶CMnd) |
Ref | Expression |
---|---|
prdscmnd | ⊢ (𝜑 → 𝑌 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2738 | . 2 ⊢ (𝜑 → (Base‘𝑌) = (Base‘𝑌)) | |
2 | eqidd 2738 | . 2 ⊢ (𝜑 → (+g‘𝑌) = (+g‘𝑌)) | |
3 | prdscmnd.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
4 | prdscmnd.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | prdscmnd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
6 | prdscmnd.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶CMnd) | |
7 | cmnmnd 19502 | . . . . 5 ⊢ (𝑎 ∈ CMnd → 𝑎 ∈ Mnd) | |
8 | 7 | ssriv 3943 | . . . 4 ⊢ CMnd ⊆ Mnd |
9 | fss 6677 | . . . 4 ⊢ ((𝑅:𝐼⟶CMnd ∧ CMnd ⊆ Mnd) → 𝑅:𝐼⟶Mnd) | |
10 | 6, 8, 9 | sylancl 587 | . . 3 ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
11 | 3, 4, 5, 10 | prdsmndd 18520 | . 2 ⊢ (𝜑 → 𝑌 ∈ Mnd) |
12 | 6 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶CMnd) |
13 | 12 | ffvelcdmda 7026 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → (𝑅‘𝑐) ∈ CMnd) |
14 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
15 | 5 | elexd 3463 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ V) |
16 | 15 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑆 ∈ V) |
17 | 16 | adantr 482 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑆 ∈ V) |
18 | 4 | elexd 3463 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ V) |
19 | 18 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝐼 ∈ V) |
20 | 19 | adantr 482 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝐼 ∈ V) |
21 | 6 | ffnd 6661 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
22 | 21 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑅 Fn 𝐼) |
23 | 22 | adantr 482 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑅 Fn 𝐼) |
24 | simpl2 1192 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑎 ∈ (Base‘𝑌)) | |
25 | simpr 486 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑐 ∈ 𝐼) | |
26 | 3, 14, 17, 20, 23, 24, 25 | prdsbasprj 17285 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → (𝑎‘𝑐) ∈ (Base‘(𝑅‘𝑐))) |
27 | simpl3 1193 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑏 ∈ (Base‘𝑌)) | |
28 | 3, 14, 17, 20, 23, 27, 25 | prdsbasprj 17285 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → (𝑏‘𝑐) ∈ (Base‘(𝑅‘𝑐))) |
29 | eqid 2737 | . . . . . 6 ⊢ (Base‘(𝑅‘𝑐)) = (Base‘(𝑅‘𝑐)) | |
30 | eqid 2737 | . . . . . 6 ⊢ (+g‘(𝑅‘𝑐)) = (+g‘(𝑅‘𝑐)) | |
31 | 29, 30 | cmncom 19503 | . . . . 5 ⊢ (((𝑅‘𝑐) ∈ CMnd ∧ (𝑎‘𝑐) ∈ (Base‘(𝑅‘𝑐)) ∧ (𝑏‘𝑐) ∈ (Base‘(𝑅‘𝑐))) → ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐)) = ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐))) |
32 | 13, 26, 28, 31 | syl3anc 1371 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐)) = ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐))) |
33 | 32 | mpteq2dva 5200 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑐 ∈ 𝐼 ↦ ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐))) = (𝑐 ∈ 𝐼 ↦ ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐)))) |
34 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑎 ∈ (Base‘𝑌)) | |
35 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑏 ∈ (Base‘𝑌)) | |
36 | eqid 2737 | . . . 4 ⊢ (+g‘𝑌) = (+g‘𝑌) | |
37 | 3, 14, 16, 19, 22, 34, 35, 36 | prdsplusgval 17286 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g‘𝑌)𝑏) = (𝑐 ∈ 𝐼 ↦ ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐)))) |
38 | 3, 14, 16, 19, 22, 35, 34, 36 | prdsplusgval 17286 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑏(+g‘𝑌)𝑎) = (𝑐 ∈ 𝐼 ↦ ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐)))) |
39 | 33, 37, 38 | 3eqtr4d 2787 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g‘𝑌)𝑏) = (𝑏(+g‘𝑌)𝑎)) |
40 | 1, 2, 11, 39 | iscmnd 19499 | 1 ⊢ (𝜑 → 𝑌 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3443 ⊆ wss 3905 ↦ cmpt 5183 Fn wfn 6483 ⟶wf 6484 ‘cfv 6488 (class class class)co 7346 Basecbs 17014 +gcplusg 17064 Xscprds 17258 Mndcmnd 18487 CMndccmn 19486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-tp 4586 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-1st 7908 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-1o 8376 df-er 8578 df-map 8697 df-ixp 8766 df-en 8814 df-dom 8815 df-sdom 8816 df-fin 8817 df-sup 9308 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-nn 12084 df-2 12146 df-3 12147 df-4 12148 df-5 12149 df-6 12150 df-7 12151 df-8 12152 df-9 12153 df-n0 12344 df-z 12430 df-dec 12548 df-uz 12693 df-fz 13350 df-struct 16950 df-slot 16985 df-ndx 16997 df-base 17015 df-plusg 17077 df-mulr 17078 df-sca 17080 df-vsca 17081 df-ip 17082 df-tset 17083 df-ple 17084 df-ds 17086 df-hom 17088 df-cco 17089 df-0g 17254 df-prds 17260 df-mgm 18428 df-sgrp 18477 df-mnd 18488 df-cmn 19488 |
This theorem is referenced by: prdsabld 19563 pwscmn 19564 prdsgsum 19681 prdscrngd 19951 |
Copyright terms: Public domain | W3C validator |