Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdscmnd | Structured version Visualization version GIF version |
Description: The product of a family of commutative monoids is commutative. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
Ref | Expression |
---|---|
prdscmnd.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdscmnd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdscmnd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdscmnd.r | ⊢ (𝜑 → 𝑅:𝐼⟶CMnd) |
Ref | Expression |
---|---|
prdscmnd | ⊢ (𝜑 → 𝑌 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2738 | . 2 ⊢ (𝜑 → (Base‘𝑌) = (Base‘𝑌)) | |
2 | eqidd 2738 | . 2 ⊢ (𝜑 → (+g‘𝑌) = (+g‘𝑌)) | |
3 | prdscmnd.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
4 | prdscmnd.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | prdscmnd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
6 | prdscmnd.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶CMnd) | |
7 | cmnmnd 19186 | . . . . 5 ⊢ (𝑎 ∈ CMnd → 𝑎 ∈ Mnd) | |
8 | 7 | ssriv 3905 | . . . 4 ⊢ CMnd ⊆ Mnd |
9 | fss 6562 | . . . 4 ⊢ ((𝑅:𝐼⟶CMnd ∧ CMnd ⊆ Mnd) → 𝑅:𝐼⟶Mnd) | |
10 | 6, 8, 9 | sylancl 589 | . . 3 ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
11 | 3, 4, 5, 10 | prdsmndd 18206 | . 2 ⊢ (𝜑 → 𝑌 ∈ Mnd) |
12 | 6 | 3ad2ant1 1135 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶CMnd) |
13 | 12 | ffvelrnda 6904 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → (𝑅‘𝑐) ∈ CMnd) |
14 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
15 | 5 | elexd 3428 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ V) |
16 | 15 | 3ad2ant1 1135 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑆 ∈ V) |
17 | 16 | adantr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑆 ∈ V) |
18 | 4 | elexd 3428 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ V) |
19 | 18 | 3ad2ant1 1135 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝐼 ∈ V) |
20 | 19 | adantr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝐼 ∈ V) |
21 | 6 | ffnd 6546 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
22 | 21 | 3ad2ant1 1135 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑅 Fn 𝐼) |
23 | 22 | adantr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑅 Fn 𝐼) |
24 | simpl2 1194 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑎 ∈ (Base‘𝑌)) | |
25 | simpr 488 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑐 ∈ 𝐼) | |
26 | 3, 14, 17, 20, 23, 24, 25 | prdsbasprj 16977 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → (𝑎‘𝑐) ∈ (Base‘(𝑅‘𝑐))) |
27 | simpl3 1195 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑏 ∈ (Base‘𝑌)) | |
28 | 3, 14, 17, 20, 23, 27, 25 | prdsbasprj 16977 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → (𝑏‘𝑐) ∈ (Base‘(𝑅‘𝑐))) |
29 | eqid 2737 | . . . . . 6 ⊢ (Base‘(𝑅‘𝑐)) = (Base‘(𝑅‘𝑐)) | |
30 | eqid 2737 | . . . . . 6 ⊢ (+g‘(𝑅‘𝑐)) = (+g‘(𝑅‘𝑐)) | |
31 | 29, 30 | cmncom 19187 | . . . . 5 ⊢ (((𝑅‘𝑐) ∈ CMnd ∧ (𝑎‘𝑐) ∈ (Base‘(𝑅‘𝑐)) ∧ (𝑏‘𝑐) ∈ (Base‘(𝑅‘𝑐))) → ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐)) = ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐))) |
32 | 13, 26, 28, 31 | syl3anc 1373 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐)) = ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐))) |
33 | 32 | mpteq2dva 5150 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑐 ∈ 𝐼 ↦ ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐))) = (𝑐 ∈ 𝐼 ↦ ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐)))) |
34 | simp2 1139 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑎 ∈ (Base‘𝑌)) | |
35 | simp3 1140 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑏 ∈ (Base‘𝑌)) | |
36 | eqid 2737 | . . . 4 ⊢ (+g‘𝑌) = (+g‘𝑌) | |
37 | 3, 14, 16, 19, 22, 34, 35, 36 | prdsplusgval 16978 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g‘𝑌)𝑏) = (𝑐 ∈ 𝐼 ↦ ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐)))) |
38 | 3, 14, 16, 19, 22, 35, 34, 36 | prdsplusgval 16978 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑏(+g‘𝑌)𝑎) = (𝑐 ∈ 𝐼 ↦ ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐)))) |
39 | 33, 37, 38 | 3eqtr4d 2787 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g‘𝑌)𝑏) = (𝑏(+g‘𝑌)𝑎)) |
40 | 1, 2, 11, 39 | iscmnd 19183 | 1 ⊢ (𝜑 → 𝑌 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ⊆ wss 3866 ↦ cmpt 5135 Fn wfn 6375 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 +gcplusg 16802 Xscprds 16950 Mndcmnd 18173 CMndccmn 19170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-struct 16700 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-hom 16826 df-cco 16827 df-0g 16946 df-prds 16952 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-cmn 19172 |
This theorem is referenced by: prdsabld 19247 pwscmn 19248 prdsgsum 19366 prdscrngd 19631 |
Copyright terms: Public domain | W3C validator |