| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdscmnd | Structured version Visualization version GIF version | ||
| Description: The product of a family of commutative monoids is commutative. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| prdscmnd.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
| prdscmnd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| prdscmnd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| prdscmnd.r | ⊢ (𝜑 → 𝑅:𝐼⟶CMnd) |
| Ref | Expression |
|---|---|
| prdscmnd | ⊢ (𝜑 → 𝑌 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . 2 ⊢ (𝜑 → (Base‘𝑌) = (Base‘𝑌)) | |
| 2 | eqidd 2730 | . 2 ⊢ (𝜑 → (+g‘𝑌) = (+g‘𝑌)) | |
| 3 | prdscmnd.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
| 4 | prdscmnd.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | prdscmnd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 6 | prdscmnd.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶CMnd) | |
| 7 | cmnmnd 19694 | . . . . 5 ⊢ (𝑎 ∈ CMnd → 𝑎 ∈ Mnd) | |
| 8 | 7 | ssriv 3941 | . . . 4 ⊢ CMnd ⊆ Mnd |
| 9 | fss 6672 | . . . 4 ⊢ ((𝑅:𝐼⟶CMnd ∧ CMnd ⊆ Mnd) → 𝑅:𝐼⟶Mnd) | |
| 10 | 6, 8, 9 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
| 11 | 3, 4, 5, 10 | prdsmndd 18662 | . 2 ⊢ (𝜑 → 𝑌 ∈ Mnd) |
| 12 | 6 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶CMnd) |
| 13 | 12 | ffvelcdmda 7022 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → (𝑅‘𝑐) ∈ CMnd) |
| 14 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 15 | 5 | elexd 3462 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ V) |
| 16 | 15 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑆 ∈ V) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑆 ∈ V) |
| 18 | 4 | elexd 3462 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ V) |
| 19 | 18 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝐼 ∈ V) |
| 20 | 19 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝐼 ∈ V) |
| 21 | 6 | ffnd 6657 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
| 22 | 21 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑅 Fn 𝐼) |
| 23 | 22 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑅 Fn 𝐼) |
| 24 | simpl2 1193 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑎 ∈ (Base‘𝑌)) | |
| 25 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑐 ∈ 𝐼) | |
| 26 | 3, 14, 17, 20, 23, 24, 25 | prdsbasprj 17394 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → (𝑎‘𝑐) ∈ (Base‘(𝑅‘𝑐))) |
| 27 | simpl3 1194 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑏 ∈ (Base‘𝑌)) | |
| 28 | 3, 14, 17, 20, 23, 27, 25 | prdsbasprj 17394 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → (𝑏‘𝑐) ∈ (Base‘(𝑅‘𝑐))) |
| 29 | eqid 2729 | . . . . . 6 ⊢ (Base‘(𝑅‘𝑐)) = (Base‘(𝑅‘𝑐)) | |
| 30 | eqid 2729 | . . . . . 6 ⊢ (+g‘(𝑅‘𝑐)) = (+g‘(𝑅‘𝑐)) | |
| 31 | 29, 30 | cmncom 19695 | . . . . 5 ⊢ (((𝑅‘𝑐) ∈ CMnd ∧ (𝑎‘𝑐) ∈ (Base‘(𝑅‘𝑐)) ∧ (𝑏‘𝑐) ∈ (Base‘(𝑅‘𝑐))) → ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐)) = ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐))) |
| 32 | 13, 26, 28, 31 | syl3anc 1373 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐)) = ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐))) |
| 33 | 32 | mpteq2dva 5188 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑐 ∈ 𝐼 ↦ ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐))) = (𝑐 ∈ 𝐼 ↦ ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐)))) |
| 34 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑎 ∈ (Base‘𝑌)) | |
| 35 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑏 ∈ (Base‘𝑌)) | |
| 36 | eqid 2729 | . . . 4 ⊢ (+g‘𝑌) = (+g‘𝑌) | |
| 37 | 3, 14, 16, 19, 22, 34, 35, 36 | prdsplusgval 17395 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g‘𝑌)𝑏) = (𝑐 ∈ 𝐼 ↦ ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐)))) |
| 38 | 3, 14, 16, 19, 22, 35, 34, 36 | prdsplusgval 17395 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑏(+g‘𝑌)𝑎) = (𝑐 ∈ 𝐼 ↦ ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐)))) |
| 39 | 33, 37, 38 | 3eqtr4d 2774 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g‘𝑌)𝑏) = (𝑏(+g‘𝑌)𝑎)) |
| 40 | 1, 2, 11, 39 | iscmnd 19691 | 1 ⊢ (𝜑 → 𝑌 ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 ↦ cmpt 5176 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 Xscprds 17367 Mndcmnd 18626 CMndccmn 19677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-prds 17369 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-cmn 19679 |
| This theorem is referenced by: prdsabld 19759 pwscmn 19760 prdsgsum 19878 prdscrngd 20225 |
| Copyright terms: Public domain | W3C validator |