MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdscmnd Structured version   Visualization version   GIF version

Theorem prdscmnd 19775
Description: The product of a family of commutative monoids is commutative. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdscmnd.y 𝑌 = (𝑆Xs𝑅)
prdscmnd.i (𝜑𝐼𝑊)
prdscmnd.s (𝜑𝑆𝑉)
prdscmnd.r (𝜑𝑅:𝐼⟶CMnd)
Assertion
Ref Expression
prdscmnd (𝜑𝑌 ∈ CMnd)

Proof of Theorem prdscmnd
Dummy variables 𝑐 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2734 . 2 (𝜑 → (Base‘𝑌) = (Base‘𝑌))
2 eqidd 2734 . 2 (𝜑 → (+g𝑌) = (+g𝑌))
3 prdscmnd.y . . 3 𝑌 = (𝑆Xs𝑅)
4 prdscmnd.i . . 3 (𝜑𝐼𝑊)
5 prdscmnd.s . . 3 (𝜑𝑆𝑉)
6 prdscmnd.r . . . 4 (𝜑𝑅:𝐼⟶CMnd)
7 cmnmnd 19711 . . . . 5 (𝑎 ∈ CMnd → 𝑎 ∈ Mnd)
87ssriv 3934 . . . 4 CMnd ⊆ Mnd
9 fss 6672 . . . 4 ((𝑅:𝐼⟶CMnd ∧ CMnd ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
106, 8, 9sylancl 586 . . 3 (𝜑𝑅:𝐼⟶Mnd)
113, 4, 5, 10prdsmndd 18680 . 2 (𝜑𝑌 ∈ Mnd)
1263ad2ant1 1133 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶CMnd)
1312ffvelcdmda 7023 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → (𝑅𝑐) ∈ CMnd)
14 eqid 2733 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
155elexd 3461 . . . . . . . 8 (𝜑𝑆 ∈ V)
16153ad2ant1 1133 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑆 ∈ V)
1716adantr 480 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑆 ∈ V)
184elexd 3461 . . . . . . . 8 (𝜑𝐼 ∈ V)
19183ad2ant1 1133 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝐼 ∈ V)
2019adantr 480 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝐼 ∈ V)
216ffnd 6657 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
22213ad2ant1 1133 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑅 Fn 𝐼)
2322adantr 480 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑅 Fn 𝐼)
24 simpl2 1193 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑎 ∈ (Base‘𝑌))
25 simpr 484 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑐𝐼)
263, 14, 17, 20, 23, 24, 25prdsbasprj 17378 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → (𝑎𝑐) ∈ (Base‘(𝑅𝑐)))
27 simpl3 1194 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → 𝑏 ∈ (Base‘𝑌))
283, 14, 17, 20, 23, 27, 25prdsbasprj 17378 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → (𝑏𝑐) ∈ (Base‘(𝑅𝑐)))
29 eqid 2733 . . . . . 6 (Base‘(𝑅𝑐)) = (Base‘(𝑅𝑐))
30 eqid 2733 . . . . . 6 (+g‘(𝑅𝑐)) = (+g‘(𝑅𝑐))
3129, 30cmncom 19712 . . . . 5 (((𝑅𝑐) ∈ CMnd ∧ (𝑎𝑐) ∈ (Base‘(𝑅𝑐)) ∧ (𝑏𝑐) ∈ (Base‘(𝑅𝑐))) → ((𝑎𝑐)(+g‘(𝑅𝑐))(𝑏𝑐)) = ((𝑏𝑐)(+g‘(𝑅𝑐))(𝑎𝑐)))
3213, 26, 28, 31syl3anc 1373 . . . 4 (((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐𝐼) → ((𝑎𝑐)(+g‘(𝑅𝑐))(𝑏𝑐)) = ((𝑏𝑐)(+g‘(𝑅𝑐))(𝑎𝑐)))
3332mpteq2dva 5186 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑐𝐼 ↦ ((𝑎𝑐)(+g‘(𝑅𝑐))(𝑏𝑐))) = (𝑐𝐼 ↦ ((𝑏𝑐)(+g‘(𝑅𝑐))(𝑎𝑐))))
34 simp2 1137 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑎 ∈ (Base‘𝑌))
35 simp3 1138 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑏 ∈ (Base‘𝑌))
36 eqid 2733 . . . 4 (+g𝑌) = (+g𝑌)
373, 14, 16, 19, 22, 34, 35, 36prdsplusgval 17379 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g𝑌)𝑏) = (𝑐𝐼 ↦ ((𝑎𝑐)(+g‘(𝑅𝑐))(𝑏𝑐))))
383, 14, 16, 19, 22, 35, 34, 36prdsplusgval 17379 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑏(+g𝑌)𝑎) = (𝑐𝐼 ↦ ((𝑏𝑐)(+g‘(𝑅𝑐))(𝑎𝑐))))
3933, 37, 383eqtr4d 2778 . 2 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g𝑌)𝑏) = (𝑏(+g𝑌)𝑎))
401, 2, 11, 39iscmnd 19708 1 (𝜑𝑌 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  wss 3898  cmpt 5174   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  Xscprds 17351  Mndcmnd 18644  CMndccmn 19694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-prds 17353  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-cmn 19696
This theorem is referenced by:  prdsabld  19776  pwscmn  19777  prdsgsum  19895  prdscrngd  20242
  Copyright terms: Public domain W3C validator