| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdscmnd | Structured version Visualization version GIF version | ||
| Description: The product of a family of commutative monoids is commutative. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| prdscmnd.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
| prdscmnd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| prdscmnd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| prdscmnd.r | ⊢ (𝜑 → 𝑅:𝐼⟶CMnd) |
| Ref | Expression |
|---|---|
| prdscmnd | ⊢ (𝜑 → 𝑌 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2732 | . 2 ⊢ (𝜑 → (Base‘𝑌) = (Base‘𝑌)) | |
| 2 | eqidd 2732 | . 2 ⊢ (𝜑 → (+g‘𝑌) = (+g‘𝑌)) | |
| 3 | prdscmnd.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
| 4 | prdscmnd.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | prdscmnd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 6 | prdscmnd.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶CMnd) | |
| 7 | cmnmnd 19707 | . . . . 5 ⊢ (𝑎 ∈ CMnd → 𝑎 ∈ Mnd) | |
| 8 | 7 | ssriv 3938 | . . . 4 ⊢ CMnd ⊆ Mnd |
| 9 | fss 6667 | . . . 4 ⊢ ((𝑅:𝐼⟶CMnd ∧ CMnd ⊆ Mnd) → 𝑅:𝐼⟶Mnd) | |
| 10 | 6, 8, 9 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
| 11 | 3, 4, 5, 10 | prdsmndd 18675 | . 2 ⊢ (𝜑 → 𝑌 ∈ Mnd) |
| 12 | 6 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶CMnd) |
| 13 | 12 | ffvelcdmda 7017 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → (𝑅‘𝑐) ∈ CMnd) |
| 14 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 15 | 5 | elexd 3460 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ V) |
| 16 | 15 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑆 ∈ V) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑆 ∈ V) |
| 18 | 4 | elexd 3460 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ V) |
| 19 | 18 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝐼 ∈ V) |
| 20 | 19 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝐼 ∈ V) |
| 21 | 6 | ffnd 6652 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
| 22 | 21 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑅 Fn 𝐼) |
| 23 | 22 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑅 Fn 𝐼) |
| 24 | simpl2 1193 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑎 ∈ (Base‘𝑌)) | |
| 25 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑐 ∈ 𝐼) | |
| 26 | 3, 14, 17, 20, 23, 24, 25 | prdsbasprj 17373 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → (𝑎‘𝑐) ∈ (Base‘(𝑅‘𝑐))) |
| 27 | simpl3 1194 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → 𝑏 ∈ (Base‘𝑌)) | |
| 28 | 3, 14, 17, 20, 23, 27, 25 | prdsbasprj 17373 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → (𝑏‘𝑐) ∈ (Base‘(𝑅‘𝑐))) |
| 29 | eqid 2731 | . . . . . 6 ⊢ (Base‘(𝑅‘𝑐)) = (Base‘(𝑅‘𝑐)) | |
| 30 | eqid 2731 | . . . . . 6 ⊢ (+g‘(𝑅‘𝑐)) = (+g‘(𝑅‘𝑐)) | |
| 31 | 29, 30 | cmncom 19708 | . . . . 5 ⊢ (((𝑅‘𝑐) ∈ CMnd ∧ (𝑎‘𝑐) ∈ (Base‘(𝑅‘𝑐)) ∧ (𝑏‘𝑐) ∈ (Base‘(𝑅‘𝑐))) → ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐)) = ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐))) |
| 32 | 13, 26, 28, 31 | syl3anc 1373 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) ∧ 𝑐 ∈ 𝐼) → ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐)) = ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐))) |
| 33 | 32 | mpteq2dva 5184 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑐 ∈ 𝐼 ↦ ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐))) = (𝑐 ∈ 𝐼 ↦ ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐)))) |
| 34 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑎 ∈ (Base‘𝑌)) | |
| 35 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → 𝑏 ∈ (Base‘𝑌)) | |
| 36 | eqid 2731 | . . . 4 ⊢ (+g‘𝑌) = (+g‘𝑌) | |
| 37 | 3, 14, 16, 19, 22, 34, 35, 36 | prdsplusgval 17374 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g‘𝑌)𝑏) = (𝑐 ∈ 𝐼 ↦ ((𝑎‘𝑐)(+g‘(𝑅‘𝑐))(𝑏‘𝑐)))) |
| 38 | 3, 14, 16, 19, 22, 35, 34, 36 | prdsplusgval 17374 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑏(+g‘𝑌)𝑎) = (𝑐 ∈ 𝐼 ↦ ((𝑏‘𝑐)(+g‘(𝑅‘𝑐))(𝑎‘𝑐)))) |
| 39 | 33, 37, 38 | 3eqtr4d 2776 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g‘𝑌)𝑏) = (𝑏(+g‘𝑌)𝑎)) |
| 40 | 1, 2, 11, 39 | iscmnd 19704 | 1 ⊢ (𝜑 → 𝑌 ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 ↦ cmpt 5172 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 Xscprds 17346 Mndcmnd 18639 CMndccmn 19690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-hom 17182 df-cco 17183 df-0g 17342 df-prds 17348 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-cmn 19692 |
| This theorem is referenced by: prdsabld 19772 pwscmn 19773 prdsgsum 19891 prdscrngd 20238 |
| Copyright terms: Public domain | W3C validator |