Step | Hyp | Ref
| Expression |
1 | | eqidd 2732 |
. 2
β’ (π β (Baseβπ) = (Baseβπ)) |
2 | | eqidd 2732 |
. 2
β’ (π β (+gβπ) = (+gβπ)) |
3 | | prdscmnd.y |
. . 3
β’ π = (πXsπ
) |
4 | | prdscmnd.i |
. . 3
β’ (π β πΌ β π) |
5 | | prdscmnd.s |
. . 3
β’ (π β π β π) |
6 | | prdscmnd.r |
. . . 4
β’ (π β π
:πΌβΆCMnd) |
7 | | cmnmnd 19707 |
. . . . 5
β’ (π β CMnd β π β Mnd) |
8 | 7 | ssriv 3986 |
. . . 4
β’ CMnd
β Mnd |
9 | | fss 6734 |
. . . 4
β’ ((π
:πΌβΆCMnd β§ CMnd β Mnd) β
π
:πΌβΆMnd) |
10 | 6, 8, 9 | sylancl 585 |
. . 3
β’ (π β π
:πΌβΆMnd) |
11 | 3, 4, 5, 10 | prdsmndd 18693 |
. 2
β’ (π β π β Mnd) |
12 | 6 | 3ad2ant1 1132 |
. . . . . 6
β’ ((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β π
:πΌβΆCMnd) |
13 | 12 | ffvelcdmda 7086 |
. . . . 5
β’ (((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β§ π β πΌ) β (π
βπ) β CMnd) |
14 | | eqid 2731 |
. . . . . 6
β’
(Baseβπ) =
(Baseβπ) |
15 | 5 | elexd 3494 |
. . . . . . . 8
β’ (π β π β V) |
16 | 15 | 3ad2ant1 1132 |
. . . . . . 7
β’ ((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β π β V) |
17 | 16 | adantr 480 |
. . . . . 6
β’ (((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β§ π β πΌ) β π β V) |
18 | 4 | elexd 3494 |
. . . . . . . 8
β’ (π β πΌ β V) |
19 | 18 | 3ad2ant1 1132 |
. . . . . . 7
β’ ((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β πΌ β V) |
20 | 19 | adantr 480 |
. . . . . 6
β’ (((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β§ π β πΌ) β πΌ β V) |
21 | 6 | ffnd 6718 |
. . . . . . . 8
β’ (π β π
Fn πΌ) |
22 | 21 | 3ad2ant1 1132 |
. . . . . . 7
β’ ((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β π
Fn πΌ) |
23 | 22 | adantr 480 |
. . . . . 6
β’ (((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β§ π β πΌ) β π
Fn πΌ) |
24 | | simpl2 1191 |
. . . . . 6
β’ (((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β§ π β πΌ) β π β (Baseβπ)) |
25 | | simpr 484 |
. . . . . 6
β’ (((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β§ π β πΌ) β π β πΌ) |
26 | 3, 14, 17, 20, 23, 24, 25 | prdsbasprj 17423 |
. . . . 5
β’ (((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β§ π β πΌ) β (πβπ) β (Baseβ(π
βπ))) |
27 | | simpl3 1192 |
. . . . . 6
β’ (((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β§ π β πΌ) β π β (Baseβπ)) |
28 | 3, 14, 17, 20, 23, 27, 25 | prdsbasprj 17423 |
. . . . 5
β’ (((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β§ π β πΌ) β (πβπ) β (Baseβ(π
βπ))) |
29 | | eqid 2731 |
. . . . . 6
β’
(Baseβ(π
βπ)) = (Baseβ(π
βπ)) |
30 | | eqid 2731 |
. . . . . 6
β’
(+gβ(π
βπ)) = (+gβ(π
βπ)) |
31 | 29, 30 | cmncom 19708 |
. . . . 5
β’ (((π
βπ) β CMnd β§ (πβπ) β (Baseβ(π
βπ)) β§ (πβπ) β (Baseβ(π
βπ))) β ((πβπ)(+gβ(π
βπ))(πβπ)) = ((πβπ)(+gβ(π
βπ))(πβπ))) |
32 | 13, 26, 28, 31 | syl3anc 1370 |
. . . 4
β’ (((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β§ π β πΌ) β ((πβπ)(+gβ(π
βπ))(πβπ)) = ((πβπ)(+gβ(π
βπ))(πβπ))) |
33 | 32 | mpteq2dva 5248 |
. . 3
β’ ((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β (π β πΌ β¦ ((πβπ)(+gβ(π
βπ))(πβπ))) = (π β πΌ β¦ ((πβπ)(+gβ(π
βπ))(πβπ)))) |
34 | | simp2 1136 |
. . . 4
β’ ((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β π β (Baseβπ)) |
35 | | simp3 1137 |
. . . 4
β’ ((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β π β (Baseβπ)) |
36 | | eqid 2731 |
. . . 4
β’
(+gβπ) = (+gβπ) |
37 | 3, 14, 16, 19, 22, 34, 35, 36 | prdsplusgval 17424 |
. . 3
β’ ((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β (π(+gβπ)π) = (π β πΌ β¦ ((πβπ)(+gβ(π
βπ))(πβπ)))) |
38 | 3, 14, 16, 19, 22, 35, 34, 36 | prdsplusgval 17424 |
. . 3
β’ ((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β (π(+gβπ)π) = (π β πΌ β¦ ((πβπ)(+gβ(π
βπ))(πβπ)))) |
39 | 33, 37, 38 | 3eqtr4d 2781 |
. 2
β’ ((π β§ π β (Baseβπ) β§ π β (Baseβπ)) β (π(+gβπ)π) = (π(+gβπ)π)) |
40 | 1, 2, 11, 39 | iscmnd 19704 |
1
β’ (π β π β CMnd) |