Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlsrgcmnd Structured version   Visualization version   GIF version

Theorem idlsrgcmnd 31129
 Description: The ideals of a ring form a commutative monoid. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypothesis
Ref Expression
idlsrgmnd.1 𝑆 = (IDLsrg‘𝑅)
Assertion
Ref Expression
idlsrgcmnd (𝑅 ∈ Ring → 𝑆 ∈ CMnd)

Proof of Theorem idlsrgcmnd
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idlsrgmnd.1 . . 3 𝑆 = (IDLsrg‘𝑅)
2 eqid 2798 . . 3 (LIdeal‘𝑅) = (LIdeal‘𝑅)
31, 2idlsrgbas 31118 . 2 (𝑅 ∈ Ring → (LIdeal‘𝑅) = (Base‘𝑆))
4 eqid 2798 . . 3 (LSSum‘𝑅) = (LSSum‘𝑅)
51, 4idlsrgplusg 31119 . 2 (𝑅 ∈ Ring → (LSSum‘𝑅) = (+g𝑆))
61idlsrgmnd 31128 . 2 (𝑅 ∈ Ring → 𝑆 ∈ Mnd)
7 ringabl 19347 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
873ad2ant1 1130 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ Abel)
92lidlsubg 20002 . . . 4 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 𝑖 ∈ (SubGrp‘𝑅))
1093adant3 1129 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 𝑖 ∈ (SubGrp‘𝑅))
112lidlsubg 20002 . . . 4 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 𝑗 ∈ (SubGrp‘𝑅))
12113adant2 1128 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 𝑗 ∈ (SubGrp‘𝑅))
134lsmcom 18992 . . 3 ((𝑅 ∈ Abel ∧ 𝑖 ∈ (SubGrp‘𝑅) ∧ 𝑗 ∈ (SubGrp‘𝑅)) → (𝑖(LSSum‘𝑅)𝑗) = (𝑗(LSSum‘𝑅)𝑖))
148, 10, 12, 13syl3anc 1368 . 2 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (𝑖(LSSum‘𝑅)𝑗) = (𝑗(LSSum‘𝑅)𝑖))
153, 5, 6, 14iscmnd 18932 1 (𝑅 ∈ Ring → 𝑆 ∈ CMnd)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ‘cfv 6332  (class class class)co 7145  SubGrpcsubg 18286  LSSumclsm 18772  CMndccmn 18919  Abelcabl 18920  Ringcrg 19311  LIdealclidl 19956  IDLsrgcidlsrg 31114 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-z 11990  df-dec 12107  df-uz 12252  df-fz 12906  df-struct 16497  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-ress 16503  df-plusg 16590  df-mulr 16591  df-sca 16593  df-vsca 16594  df-ip 16595  df-tset 16596  df-ple 16597  df-0g 16727  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-submnd 17969  df-grp 18118  df-minusg 18119  df-sbg 18120  df-subg 18289  df-cntz 18460  df-lsm 18774  df-cmn 18921  df-abl 18922  df-mgp 19254  df-ur 19266  df-ring 19313  df-subrg 19547  df-lmod 19650  df-lss 19718  df-lsp 19758  df-sra 19958  df-rgmod 19959  df-lidl 19960  df-rsp 19961  df-idlsrg 31115 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator