MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsmcmn Structured version   Visualization version   GIF version

Theorem xrsmcmn 20091
Description: The "multiplicative group" of the extended reals is a commutative monoid (even though the "additive group" is not a semigroup, see xrsmgmdifsgrp 20105.) (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xrsmcmn (mulGrp‘ℝ*𝑠) ∈ CMnd

Proof of Theorem xrsmcmn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2799 . . . . 5 (mulGrp‘ℝ*𝑠) = (mulGrp‘ℝ*𝑠)
2 xrsbas 20084 . . . . 5 * = (Base‘ℝ*𝑠)
31, 2mgpbas 18811 . . . 4 * = (Base‘(mulGrp‘ℝ*𝑠))
43a1i 11 . . 3 (⊤ → ℝ* = (Base‘(mulGrp‘ℝ*𝑠)))
5 xrsmul 20086 . . . . 5 ·e = (.r‘ℝ*𝑠)
61, 5mgpplusg 18809 . . . 4 ·e = (+g‘(mulGrp‘ℝ*𝑠))
76a1i 11 . . 3 (⊤ → ·e = (+g‘(mulGrp‘ℝ*𝑠)))
8 xmulcl 12352 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) ∈ ℝ*)
983adant1 1161 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) ∈ ℝ*)
10 xmulass 12366 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧)))
1110adantl 474 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*)) → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧)))
12 1re 10328 . . . . 5 1 ∈ ℝ
13 rexr 10374 . . . . 5 (1 ∈ ℝ → 1 ∈ ℝ*)
1412, 13mp1i 13 . . . 4 (⊤ → 1 ∈ ℝ*)
15 xmulid2 12359 . . . . 5 (𝑥 ∈ ℝ* → (1 ·e 𝑥) = 𝑥)
1615adantl 474 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ*) → (1 ·e 𝑥) = 𝑥)
17 xmulid1 12358 . . . . 5 (𝑥 ∈ ℝ* → (𝑥 ·e 1) = 𝑥)
1817adantl 474 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ*) → (𝑥 ·e 1) = 𝑥)
194, 7, 9, 11, 14, 16, 18ismndd 17628 . . 3 (⊤ → (mulGrp‘ℝ*𝑠) ∈ Mnd)
20 xmulcom 12345 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) = (𝑦 ·e 𝑥))
21203adant1 1161 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) = (𝑦 ·e 𝑥))
224, 7, 19, 21iscmnd 18520 . 2 (⊤ → (mulGrp‘ℝ*𝑠) ∈ CMnd)
2322mptru 1661 1 (mulGrp‘ℝ*𝑠) ∈ CMnd
Colors of variables: wff setvar class
Syntax hints:  w3a 1108   = wceq 1653  wtru 1654  wcel 2157  cfv 6101  (class class class)co 6878  cr 10223  1c1 10225  *cxr 10362   ·e cxmu 12192  Basecbs 16184  +gcplusg 16267  *𝑠cxrs 16475  CMndccmn 18508  mulGrpcmgp 18805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-xneg 12193  df-xmul 12195  df-fz 12581  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-plusg 16280  df-mulr 16281  df-tset 16286  df-ple 16287  df-ds 16289  df-xrs 16477  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-cmn 18510  df-mgp 18806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator