MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsmcmn Structured version   Visualization version   GIF version

Theorem xrsmcmn 20114
Description: The "multiplicative group" of the extended reals is a commutative monoid (even though the "additive group" is not a semigroup, see xrsmgmdifsgrp 20128.) (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xrsmcmn (mulGrp‘ℝ*𝑠) ∈ CMnd

Proof of Theorem xrsmcmn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . . 5 (mulGrp‘ℝ*𝑠) = (mulGrp‘ℝ*𝑠)
2 xrsbas 20107 . . . . 5 * = (Base‘ℝ*𝑠)
31, 2mgpbas 19238 . . . 4 * = (Base‘(mulGrp‘ℝ*𝑠))
43a1i 11 . . 3 (⊤ → ℝ* = (Base‘(mulGrp‘ℝ*𝑠)))
5 xrsmul 20109 . . . . 5 ·e = (.r‘ℝ*𝑠)
61, 5mgpplusg 19236 . . . 4 ·e = (+g‘(mulGrp‘ℝ*𝑠))
76a1i 11 . . 3 (⊤ → ·e = (+g‘(mulGrp‘ℝ*𝑠)))
8 xmulcl 12654 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) ∈ ℝ*)
983adant1 1127 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) ∈ ℝ*)
10 xmulass 12668 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧)))
1110adantl 485 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*)) → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧)))
12 1re 10630 . . . . 5 1 ∈ ℝ
13 rexr 10676 . . . . 5 (1 ∈ ℝ → 1 ∈ ℝ*)
1412, 13mp1i 13 . . . 4 (⊤ → 1 ∈ ℝ*)
15 xmulid2 12661 . . . . 5 (𝑥 ∈ ℝ* → (1 ·e 𝑥) = 𝑥)
1615adantl 485 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ*) → (1 ·e 𝑥) = 𝑥)
17 xmulid1 12660 . . . . 5 (𝑥 ∈ ℝ* → (𝑥 ·e 1) = 𝑥)
1817adantl 485 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ*) → (𝑥 ·e 1) = 𝑥)
194, 7, 9, 11, 14, 16, 18ismndd 17925 . . 3 (⊤ → (mulGrp‘ℝ*𝑠) ∈ Mnd)
20 xmulcom 12647 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) = (𝑦 ·e 𝑥))
21203adant1 1127 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) = (𝑦 ·e 𝑥))
224, 7, 19, 21iscmnd 18911 . 2 (⊤ → (mulGrp‘ℝ*𝑠) ∈ CMnd)
2322mptru 1545 1 (mulGrp‘ℝ*𝑠) ∈ CMnd
Colors of variables: wff setvar class
Syntax hints:  w3a 1084   = wceq 1538  wtru 1539  wcel 2111  cfv 6324  (class class class)co 7135  cr 10525  1c1 10527  *cxr 10663   ·e cxmu 12494  Basecbs 16475  +gcplusg 16557  *𝑠cxrs 16765  CMndccmn 18898  mulGrpcmgp 19232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-xneg 12495  df-xmul 12497  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-mulr 16571  df-tset 16576  df-ple 16577  df-ds 16579  df-xrs 16767  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-cmn 18900  df-mgp 19233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator