![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsmcmn | Structured version Visualization version GIF version |
Description: The "multiplicative group" of the extended reals is a commutative monoid (even though the "additive group" is not a semigroup, see xrsmgmdifsgrp 21444.) (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
xrsmcmn | ⊢ (mulGrp‘ℝ*𝑠) ∈ CMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . 5 ⊢ (mulGrp‘ℝ*𝑠) = (mulGrp‘ℝ*𝑠) | |
2 | xrsbas 21419 | . . . . 5 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
3 | 1, 2 | mgpbas 20167 | . . . 4 ⊢ ℝ* = (Base‘(mulGrp‘ℝ*𝑠)) |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → ℝ* = (Base‘(mulGrp‘ℝ*𝑠))) |
5 | xrsmul 21421 | . . . . 5 ⊢ ·e = (.r‘ℝ*𝑠) | |
6 | 1, 5 | mgpplusg 20165 | . . . 4 ⊢ ·e = (+g‘(mulGrp‘ℝ*𝑠)) |
7 | 6 | a1i 11 | . . 3 ⊢ (⊤ → ·e = (+g‘(mulGrp‘ℝ*𝑠))) |
8 | xmulcl 13335 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) ∈ ℝ*) | |
9 | 8 | 3adant1 1130 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) ∈ ℝ*) |
10 | xmulass 13349 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧))) | |
11 | 10 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*)) → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧))) |
12 | 1re 11290 | . . . . 5 ⊢ 1 ∈ ℝ | |
13 | rexr 11336 | . . . . 5 ⊢ (1 ∈ ℝ → 1 ∈ ℝ*) | |
14 | 12, 13 | mp1i 13 | . . . 4 ⊢ (⊤ → 1 ∈ ℝ*) |
15 | xmullid 13342 | . . . . 5 ⊢ (𝑥 ∈ ℝ* → (1 ·e 𝑥) = 𝑥) | |
16 | 15 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ*) → (1 ·e 𝑥) = 𝑥) |
17 | xmulrid 13341 | . . . . 5 ⊢ (𝑥 ∈ ℝ* → (𝑥 ·e 1) = 𝑥) | |
18 | 17 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ*) → (𝑥 ·e 1) = 𝑥) |
19 | 4, 7, 9, 11, 14, 16, 18 | ismndd 18794 | . . 3 ⊢ (⊤ → (mulGrp‘ℝ*𝑠) ∈ Mnd) |
20 | xmulcom 13328 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) = (𝑦 ·e 𝑥)) | |
21 | 20 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) = (𝑦 ·e 𝑥)) |
22 | 4, 7, 19, 21 | iscmnd 19836 | . 2 ⊢ (⊤ → (mulGrp‘ℝ*𝑠) ∈ CMnd) |
23 | 22 | mptru 1544 | 1 ⊢ (mulGrp‘ℝ*𝑠) ∈ CMnd |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1087 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 1c1 11185 ℝ*cxr 11323 ·e cxmu 13174 Basecbs 17258 +gcplusg 17311 ℝ*𝑠cxrs 17560 CMndccmn 19822 mulGrpcmgp 20161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-xneg 13175 df-xmul 13177 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-tset 17330 df-ple 17331 df-ds 17333 df-xrs 17562 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-cmn 19824 df-mgp 20162 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |