MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsmcmn Structured version   Visualization version   GIF version

Theorem xrsmcmn 20609
Description: The "multiplicative group" of the extended reals is a commutative monoid (even though the "additive group" is not a semigroup, see xrsmgmdifsgrp 20623.) (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xrsmcmn (mulGrp‘ℝ*𝑠) ∈ CMnd

Proof of Theorem xrsmcmn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (mulGrp‘ℝ*𝑠) = (mulGrp‘ℝ*𝑠)
2 xrsbas 20602 . . . . 5 * = (Base‘ℝ*𝑠)
31, 2mgpbas 19714 . . . 4 * = (Base‘(mulGrp‘ℝ*𝑠))
43a1i 11 . . 3 (⊤ → ℝ* = (Base‘(mulGrp‘ℝ*𝑠)))
5 xrsmul 20604 . . . . 5 ·e = (.r‘ℝ*𝑠)
61, 5mgpplusg 19712 . . . 4 ·e = (+g‘(mulGrp‘ℝ*𝑠))
76a1i 11 . . 3 (⊤ → ·e = (+g‘(mulGrp‘ℝ*𝑠)))
8 xmulcl 12995 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) ∈ ℝ*)
983adant1 1129 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) ∈ ℝ*)
10 xmulass 13009 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧)))
1110adantl 482 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*)) → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧)))
12 1re 10963 . . . . 5 1 ∈ ℝ
13 rexr 11009 . . . . 5 (1 ∈ ℝ → 1 ∈ ℝ*)
1412, 13mp1i 13 . . . 4 (⊤ → 1 ∈ ℝ*)
15 xmulid2 13002 . . . . 5 (𝑥 ∈ ℝ* → (1 ·e 𝑥) = 𝑥)
1615adantl 482 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ*) → (1 ·e 𝑥) = 𝑥)
17 xmulid1 13001 . . . . 5 (𝑥 ∈ ℝ* → (𝑥 ·e 1) = 𝑥)
1817adantl 482 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ*) → (𝑥 ·e 1) = 𝑥)
194, 7, 9, 11, 14, 16, 18ismndd 18395 . . 3 (⊤ → (mulGrp‘ℝ*𝑠) ∈ Mnd)
20 xmulcom 12988 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) = (𝑦 ·e 𝑥))
21203adant1 1129 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) = (𝑦 ·e 𝑥))
224, 7, 19, 21iscmnd 19387 . 2 (⊤ → (mulGrp‘ℝ*𝑠) ∈ CMnd)
2322mptru 1546 1 (mulGrp‘ℝ*𝑠) ∈ CMnd
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1539  wtru 1540  wcel 2106  cfv 6427  (class class class)co 7268  cr 10858  1c1 10860  *cxr 10996   ·e cxmu 12835  Basecbs 16900  +gcplusg 16950  *𝑠cxrs 17199  CMndccmn 19374  mulGrpcmgp 19708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-1st 7821  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-er 8486  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-nn 11962  df-2 12024  df-3 12025  df-4 12026  df-5 12027  df-6 12028  df-7 12029  df-8 12030  df-9 12031  df-n0 12222  df-z 12308  df-dec 12426  df-uz 12571  df-xneg 12836  df-xmul 12838  df-fz 13228  df-struct 16836  df-sets 16853  df-slot 16871  df-ndx 16883  df-base 16901  df-plusg 16963  df-mulr 16964  df-tset 16969  df-ple 16970  df-ds 16972  df-xrs 17201  df-mgm 18314  df-sgrp 18363  df-mnd 18374  df-cmn 19376  df-mgp 19709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator