Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrsmcmn | Structured version Visualization version GIF version |
Description: The "multiplicative group" of the extended reals is a commutative monoid (even though the "additive group" is not a semigroup, see xrsmgmdifsgrp 20623.) (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
xrsmcmn | ⊢ (mulGrp‘ℝ*𝑠) ∈ CMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (mulGrp‘ℝ*𝑠) = (mulGrp‘ℝ*𝑠) | |
2 | xrsbas 20602 | . . . . 5 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
3 | 1, 2 | mgpbas 19714 | . . . 4 ⊢ ℝ* = (Base‘(mulGrp‘ℝ*𝑠)) |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → ℝ* = (Base‘(mulGrp‘ℝ*𝑠))) |
5 | xrsmul 20604 | . . . . 5 ⊢ ·e = (.r‘ℝ*𝑠) | |
6 | 1, 5 | mgpplusg 19712 | . . . 4 ⊢ ·e = (+g‘(mulGrp‘ℝ*𝑠)) |
7 | 6 | a1i 11 | . . 3 ⊢ (⊤ → ·e = (+g‘(mulGrp‘ℝ*𝑠))) |
8 | xmulcl 12995 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) ∈ ℝ*) | |
9 | 8 | 3adant1 1129 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) ∈ ℝ*) |
10 | xmulass 13009 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧))) | |
11 | 10 | adantl 482 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*)) → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧))) |
12 | 1re 10963 | . . . . 5 ⊢ 1 ∈ ℝ | |
13 | rexr 11009 | . . . . 5 ⊢ (1 ∈ ℝ → 1 ∈ ℝ*) | |
14 | 12, 13 | mp1i 13 | . . . 4 ⊢ (⊤ → 1 ∈ ℝ*) |
15 | xmulid2 13002 | . . . . 5 ⊢ (𝑥 ∈ ℝ* → (1 ·e 𝑥) = 𝑥) | |
16 | 15 | adantl 482 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ*) → (1 ·e 𝑥) = 𝑥) |
17 | xmulid1 13001 | . . . . 5 ⊢ (𝑥 ∈ ℝ* → (𝑥 ·e 1) = 𝑥) | |
18 | 17 | adantl 482 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ*) → (𝑥 ·e 1) = 𝑥) |
19 | 4, 7, 9, 11, 14, 16, 18 | ismndd 18395 | . . 3 ⊢ (⊤ → (mulGrp‘ℝ*𝑠) ∈ Mnd) |
20 | xmulcom 12988 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) = (𝑦 ·e 𝑥)) | |
21 | 20 | 3adant1 1129 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) = (𝑦 ·e 𝑥)) |
22 | 4, 7, 19, 21 | iscmnd 19387 | . 2 ⊢ (⊤ → (mulGrp‘ℝ*𝑠) ∈ CMnd) |
23 | 22 | mptru 1546 | 1 ⊢ (mulGrp‘ℝ*𝑠) ∈ CMnd |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1086 = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 ‘cfv 6427 (class class class)co 7268 ℝcr 10858 1c1 10860 ℝ*cxr 10996 ·e cxmu 12835 Basecbs 16900 +gcplusg 16950 ℝ*𝑠cxrs 17199 CMndccmn 19374 mulGrpcmgp 19708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-1o 8285 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-fin 8725 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-nn 11962 df-2 12024 df-3 12025 df-4 12026 df-5 12027 df-6 12028 df-7 12029 df-8 12030 df-9 12031 df-n0 12222 df-z 12308 df-dec 12426 df-uz 12571 df-xneg 12836 df-xmul 12838 df-fz 13228 df-struct 16836 df-sets 16853 df-slot 16871 df-ndx 16883 df-base 16901 df-plusg 16963 df-mulr 16964 df-tset 16969 df-ple 16970 df-ds 16972 df-xrs 17201 df-mgm 18314 df-sgrp 18363 df-mnd 18374 df-cmn 19376 df-mgp 19709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |