![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntrcmnd | Structured version Visualization version GIF version |
Description: The center of a monoid is a commutative submonoid. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
Ref | Expression |
---|---|
cntrcmnd.z | ⊢ 𝑍 = (𝑀 ↾s (Cntr‘𝑀)) |
Ref | Expression |
---|---|
cntrcmnd | ⊢ (𝑀 ∈ Mnd → 𝑍 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . . 4 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | 1 | cntrss 19299 | . . 3 ⊢ (Cntr‘𝑀) ⊆ (Base‘𝑀) |
3 | cntrcmnd.z | . . . 4 ⊢ 𝑍 = (𝑀 ↾s (Cntr‘𝑀)) | |
4 | 3, 1 | ressbas2 17226 | . . 3 ⊢ ((Cntr‘𝑀) ⊆ (Base‘𝑀) → (Cntr‘𝑀) = (Base‘𝑍)) |
5 | 2, 4 | mp1i 13 | . 2 ⊢ (𝑀 ∈ Mnd → (Cntr‘𝑀) = (Base‘𝑍)) |
6 | fvex 6909 | . . 3 ⊢ (Cntr‘𝑀) ∈ V | |
7 | eqid 2725 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
8 | 3, 7 | ressplusg 17279 | . . 3 ⊢ ((Cntr‘𝑀) ∈ V → (+g‘𝑀) = (+g‘𝑍)) |
9 | 6, 8 | mp1i 13 | . 2 ⊢ (𝑀 ∈ Mnd → (+g‘𝑀) = (+g‘𝑍)) |
10 | eqid 2725 | . . . . 5 ⊢ (Cntz‘𝑀) = (Cntz‘𝑀) | |
11 | 1, 10 | cntrval 19287 | . . . 4 ⊢ ((Cntz‘𝑀)‘(Base‘𝑀)) = (Cntr‘𝑀) |
12 | ssid 3999 | . . . . 5 ⊢ (Base‘𝑀) ⊆ (Base‘𝑀) | |
13 | 1, 10 | cntzsubm 19306 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ (Base‘𝑀) ⊆ (Base‘𝑀)) → ((Cntz‘𝑀)‘(Base‘𝑀)) ∈ (SubMnd‘𝑀)) |
14 | 12, 13 | mpan2 689 | . . . 4 ⊢ (𝑀 ∈ Mnd → ((Cntz‘𝑀)‘(Base‘𝑀)) ∈ (SubMnd‘𝑀)) |
15 | 11, 14 | eqeltrrid 2830 | . . 3 ⊢ (𝑀 ∈ Mnd → (Cntr‘𝑀) ∈ (SubMnd‘𝑀)) |
16 | 3 | submmnd 18778 | . . 3 ⊢ ((Cntr‘𝑀) ∈ (SubMnd‘𝑀) → 𝑍 ∈ Mnd) |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝑀 ∈ Mnd → 𝑍 ∈ Mnd) |
18 | simp2 1134 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → 𝑥 ∈ (Cntr‘𝑀)) | |
19 | simp3 1135 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → 𝑦 ∈ (Cntr‘𝑀)) | |
20 | 2, 19 | sselid 3974 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → 𝑦 ∈ (Base‘𝑀)) |
21 | eqid 2725 | . . . 4 ⊢ (Cntr‘𝑀) = (Cntr‘𝑀) | |
22 | 1, 7, 21 | cntri 19300 | . . 3 ⊢ ((𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) |
23 | 18, 20, 22 | syl2anc 582 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) |
24 | 5, 9, 17, 23 | iscmnd 19766 | 1 ⊢ (𝑀 ∈ Mnd → 𝑍 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ⊆ wss 3944 ‘cfv 6549 (class class class)co 7419 Basecbs 17188 ↾s cress 17217 +gcplusg 17241 Mndcmnd 18702 SubMndcsubmnd 18747 Cntzccntz 19283 Cntrccntr 19284 CMndccmn 19752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17189 df-ress 17218 df-plusg 17254 df-0g 17431 df-mgm 18608 df-sgrp 18687 df-mnd 18703 df-submnd 18749 df-cntz 19285 df-cntr 19286 df-cmn 19754 |
This theorem is referenced by: cntrabl 19815 cntrcrng 32871 |
Copyright terms: Public domain | W3C validator |