MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntrcmnd Structured version   Visualization version   GIF version

Theorem cntrcmnd 19358
Description: The center of a monoid is a commutative submonoid. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypothesis
Ref Expression
cntrcmnd.z 𝑍 = (𝑀s (Cntr‘𝑀))
Assertion
Ref Expression
cntrcmnd (𝑀 ∈ Mnd → 𝑍 ∈ CMnd)

Proof of Theorem cntrcmnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝑀) = (Base‘𝑀)
21cntrss 18851 . . 3 (Cntr‘𝑀) ⊆ (Base‘𝑀)
3 cntrcmnd.z . . . 4 𝑍 = (𝑀s (Cntr‘𝑀))
43, 1ressbas2 16875 . . 3 ((Cntr‘𝑀) ⊆ (Base‘𝑀) → (Cntr‘𝑀) = (Base‘𝑍))
52, 4mp1i 13 . 2 (𝑀 ∈ Mnd → (Cntr‘𝑀) = (Base‘𝑍))
6 fvex 6769 . . 3 (Cntr‘𝑀) ∈ V
7 eqid 2738 . . . 4 (+g𝑀) = (+g𝑀)
83, 7ressplusg 16926 . . 3 ((Cntr‘𝑀) ∈ V → (+g𝑀) = (+g𝑍))
96, 8mp1i 13 . 2 (𝑀 ∈ Mnd → (+g𝑀) = (+g𝑍))
10 eqid 2738 . . . . 5 (Cntz‘𝑀) = (Cntz‘𝑀)
111, 10cntrval 18840 . . . 4 ((Cntz‘𝑀)‘(Base‘𝑀)) = (Cntr‘𝑀)
12 ssid 3939 . . . . 5 (Base‘𝑀) ⊆ (Base‘𝑀)
131, 10cntzsubm 18857 . . . . 5 ((𝑀 ∈ Mnd ∧ (Base‘𝑀) ⊆ (Base‘𝑀)) → ((Cntz‘𝑀)‘(Base‘𝑀)) ∈ (SubMnd‘𝑀))
1412, 13mpan2 687 . . . 4 (𝑀 ∈ Mnd → ((Cntz‘𝑀)‘(Base‘𝑀)) ∈ (SubMnd‘𝑀))
1511, 14eqeltrrid 2844 . . 3 (𝑀 ∈ Mnd → (Cntr‘𝑀) ∈ (SubMnd‘𝑀))
163submmnd 18367 . . 3 ((Cntr‘𝑀) ∈ (SubMnd‘𝑀) → 𝑍 ∈ Mnd)
1715, 16syl 17 . 2 (𝑀 ∈ Mnd → 𝑍 ∈ Mnd)
18 simp2 1135 . . 3 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → 𝑥 ∈ (Cntr‘𝑀))
19 simp3 1136 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → 𝑦 ∈ (Cntr‘𝑀))
202, 19sselid 3915 . . 3 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → 𝑦 ∈ (Base‘𝑀))
21 eqid 2738 . . . 4 (Cntr‘𝑀) = (Cntr‘𝑀)
221, 7, 21cntri 18852 . . 3 ((𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
2318, 20, 22syl2anc 583 . 2 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
245, 9, 17, 23iscmnd 19314 1 (𝑀 ∈ Mnd → 𝑍 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  +gcplusg 16888  Mndcmnd 18300  SubMndcsubmnd 18344  Cntzccntz 18836  Cntrccntr 18837  CMndccmn 19301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-cntz 18838  df-cntr 18839  df-cmn 19303
This theorem is referenced by:  cntrabl  19359  cntrcrng  31224
  Copyright terms: Public domain W3C validator