Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntrcmnd | Structured version Visualization version GIF version |
Description: The center of a monoid is a commutative submonoid. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
Ref | Expression |
---|---|
cntrcmnd.z | ⊢ 𝑍 = (𝑀 ↾s (Cntr‘𝑀)) |
Ref | Expression |
---|---|
cntrcmnd | ⊢ (𝑀 ∈ Mnd → 𝑍 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . 4 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | 1 | cntrss 18880 | . . 3 ⊢ (Cntr‘𝑀) ⊆ (Base‘𝑀) |
3 | cntrcmnd.z | . . . 4 ⊢ 𝑍 = (𝑀 ↾s (Cntr‘𝑀)) | |
4 | 3, 1 | ressbas2 16893 | . . 3 ⊢ ((Cntr‘𝑀) ⊆ (Base‘𝑀) → (Cntr‘𝑀) = (Base‘𝑍)) |
5 | 2, 4 | mp1i 13 | . 2 ⊢ (𝑀 ∈ Mnd → (Cntr‘𝑀) = (Base‘𝑍)) |
6 | fvex 6774 | . . 3 ⊢ (Cntr‘𝑀) ∈ V | |
7 | eqid 2737 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
8 | 3, 7 | ressplusg 16944 | . . 3 ⊢ ((Cntr‘𝑀) ∈ V → (+g‘𝑀) = (+g‘𝑍)) |
9 | 6, 8 | mp1i 13 | . 2 ⊢ (𝑀 ∈ Mnd → (+g‘𝑀) = (+g‘𝑍)) |
10 | eqid 2737 | . . . . 5 ⊢ (Cntz‘𝑀) = (Cntz‘𝑀) | |
11 | 1, 10 | cntrval 18869 | . . . 4 ⊢ ((Cntz‘𝑀)‘(Base‘𝑀)) = (Cntr‘𝑀) |
12 | ssid 3944 | . . . . 5 ⊢ (Base‘𝑀) ⊆ (Base‘𝑀) | |
13 | 1, 10 | cntzsubm 18886 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ (Base‘𝑀) ⊆ (Base‘𝑀)) → ((Cntz‘𝑀)‘(Base‘𝑀)) ∈ (SubMnd‘𝑀)) |
14 | 12, 13 | mpan2 687 | . . . 4 ⊢ (𝑀 ∈ Mnd → ((Cntz‘𝑀)‘(Base‘𝑀)) ∈ (SubMnd‘𝑀)) |
15 | 11, 14 | eqeltrrid 2842 | . . 3 ⊢ (𝑀 ∈ Mnd → (Cntr‘𝑀) ∈ (SubMnd‘𝑀)) |
16 | 3 | submmnd 18396 | . . 3 ⊢ ((Cntr‘𝑀) ∈ (SubMnd‘𝑀) → 𝑍 ∈ Mnd) |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝑀 ∈ Mnd → 𝑍 ∈ Mnd) |
18 | simp2 1135 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → 𝑥 ∈ (Cntr‘𝑀)) | |
19 | simp3 1136 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → 𝑦 ∈ (Cntr‘𝑀)) | |
20 | 2, 19 | sselid 3920 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → 𝑦 ∈ (Base‘𝑀)) |
21 | eqid 2737 | . . . 4 ⊢ (Cntr‘𝑀) = (Cntr‘𝑀) | |
22 | 1, 7, 21 | cntri 18881 | . . 3 ⊢ ((𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) |
23 | 18, 20, 22 | syl2anc 583 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) |
24 | 5, 9, 17, 23 | iscmnd 19343 | 1 ⊢ (𝑀 ∈ Mnd → 𝑍 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2107 Vcvv 3427 ⊆ wss 3888 ‘cfv 6423 (class class class)co 7260 Basecbs 16856 ↾s cress 16885 +gcplusg 16906 Mndcmnd 18329 SubMndcsubmnd 18373 Cntzccntz 18865 Cntrccntr 18866 CMndccmn 19330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-cnex 10874 ax-resscn 10875 ax-1cn 10876 ax-icn 10877 ax-addcl 10878 ax-addrcl 10879 ax-mulcl 10880 ax-mulrcl 10881 ax-mulcom 10882 ax-addass 10883 ax-mulass 10884 ax-distr 10885 ax-i2m1 10886 ax-1ne0 10887 ax-1rid 10888 ax-rnegex 10889 ax-rrecex 10890 ax-cnre 10891 ax-pre-lttri 10892 ax-pre-lttrn 10893 ax-pre-ltadd 10894 ax-pre-mulgt0 10895 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6259 df-on 6260 df-lim 6261 df-suc 6262 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-riota 7217 df-ov 7263 df-oprab 7264 df-mpo 7265 df-om 7693 df-2nd 7810 df-frecs 8073 df-wrecs 8104 df-recs 8178 df-rdg 8217 df-er 8461 df-en 8697 df-dom 8698 df-sdom 8699 df-pnf 10958 df-mnf 10959 df-xr 10960 df-ltxr 10961 df-le 10962 df-sub 11153 df-neg 11154 df-nn 11920 df-2 11982 df-sets 16809 df-slot 16827 df-ndx 16839 df-base 16857 df-ress 16886 df-plusg 16919 df-0g 17096 df-mgm 18270 df-sgrp 18319 df-mnd 18330 df-submnd 18375 df-cntz 18867 df-cntr 18868 df-cmn 19332 |
This theorem is referenced by: cntrabl 19388 cntrcrng 31264 |
Copyright terms: Public domain | W3C validator |