MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntrcmnd Structured version   Visualization version   GIF version

Theorem cntrcmnd 19387
Description: The center of a monoid is a commutative submonoid. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypothesis
Ref Expression
cntrcmnd.z 𝑍 = (𝑀s (Cntr‘𝑀))
Assertion
Ref Expression
cntrcmnd (𝑀 ∈ Mnd → 𝑍 ∈ CMnd)

Proof of Theorem cntrcmnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (Base‘𝑀) = (Base‘𝑀)
21cntrss 18880 . . 3 (Cntr‘𝑀) ⊆ (Base‘𝑀)
3 cntrcmnd.z . . . 4 𝑍 = (𝑀s (Cntr‘𝑀))
43, 1ressbas2 16893 . . 3 ((Cntr‘𝑀) ⊆ (Base‘𝑀) → (Cntr‘𝑀) = (Base‘𝑍))
52, 4mp1i 13 . 2 (𝑀 ∈ Mnd → (Cntr‘𝑀) = (Base‘𝑍))
6 fvex 6774 . . 3 (Cntr‘𝑀) ∈ V
7 eqid 2737 . . . 4 (+g𝑀) = (+g𝑀)
83, 7ressplusg 16944 . . 3 ((Cntr‘𝑀) ∈ V → (+g𝑀) = (+g𝑍))
96, 8mp1i 13 . 2 (𝑀 ∈ Mnd → (+g𝑀) = (+g𝑍))
10 eqid 2737 . . . . 5 (Cntz‘𝑀) = (Cntz‘𝑀)
111, 10cntrval 18869 . . . 4 ((Cntz‘𝑀)‘(Base‘𝑀)) = (Cntr‘𝑀)
12 ssid 3944 . . . . 5 (Base‘𝑀) ⊆ (Base‘𝑀)
131, 10cntzsubm 18886 . . . . 5 ((𝑀 ∈ Mnd ∧ (Base‘𝑀) ⊆ (Base‘𝑀)) → ((Cntz‘𝑀)‘(Base‘𝑀)) ∈ (SubMnd‘𝑀))
1412, 13mpan2 687 . . . 4 (𝑀 ∈ Mnd → ((Cntz‘𝑀)‘(Base‘𝑀)) ∈ (SubMnd‘𝑀))
1511, 14eqeltrrid 2842 . . 3 (𝑀 ∈ Mnd → (Cntr‘𝑀) ∈ (SubMnd‘𝑀))
163submmnd 18396 . . 3 ((Cntr‘𝑀) ∈ (SubMnd‘𝑀) → 𝑍 ∈ Mnd)
1715, 16syl 17 . 2 (𝑀 ∈ Mnd → 𝑍 ∈ Mnd)
18 simp2 1135 . . 3 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → 𝑥 ∈ (Cntr‘𝑀))
19 simp3 1136 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → 𝑦 ∈ (Cntr‘𝑀))
202, 19sselid 3920 . . 3 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → 𝑦 ∈ (Base‘𝑀))
21 eqid 2737 . . . 4 (Cntr‘𝑀) = (Cntr‘𝑀)
221, 7, 21cntri 18881 . . 3 ((𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
2318, 20, 22syl2anc 583 . 2 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
245, 9, 17, 23iscmnd 19343 1 (𝑀 ∈ Mnd → 𝑍 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2107  Vcvv 3427  wss 3888  cfv 6423  (class class class)co 7260  Basecbs 16856  s cress 16885  +gcplusg 16906  Mndcmnd 18329  SubMndcsubmnd 18373  Cntzccntz 18865  Cntrccntr 18866  CMndccmn 19330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7571  ax-cnex 10874  ax-resscn 10875  ax-1cn 10876  ax-icn 10877  ax-addcl 10878  ax-addrcl 10879  ax-mulcl 10880  ax-mulrcl 10881  ax-mulcom 10882  ax-addass 10883  ax-mulass 10884  ax-distr 10885  ax-i2m1 10886  ax-1ne0 10887  ax-1rid 10888  ax-rnegex 10889  ax-rrecex 10890  ax-cnre 10891  ax-pre-lttri 10892  ax-pre-lttrn 10893  ax-pre-ltadd 10894  ax-pre-mulgt0 10895
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3429  df-sbc 3717  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6259  df-on 6260  df-lim 6261  df-suc 6262  df-iota 6381  df-fun 6425  df-fn 6426  df-f 6427  df-f1 6428  df-fo 6429  df-f1o 6430  df-fv 6431  df-riota 7217  df-ov 7263  df-oprab 7264  df-mpo 7265  df-om 7693  df-2nd 7810  df-frecs 8073  df-wrecs 8104  df-recs 8178  df-rdg 8217  df-er 8461  df-en 8697  df-dom 8698  df-sdom 8699  df-pnf 10958  df-mnf 10959  df-xr 10960  df-ltxr 10961  df-le 10962  df-sub 11153  df-neg 11154  df-nn 11920  df-2 11982  df-sets 16809  df-slot 16827  df-ndx 16839  df-base 16857  df-ress 16886  df-plusg 16919  df-0g 17096  df-mgm 18270  df-sgrp 18319  df-mnd 18330  df-submnd 18375  df-cntz 18867  df-cntr 18868  df-cmn 19332
This theorem is referenced by:  cntrabl  19388  cntrcrng  31264
  Copyright terms: Public domain W3C validator