MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntrcmnd Structured version   Visualization version   GIF version

Theorem cntrcmnd 19754
Description: The center of a monoid is a commutative submonoid. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypothesis
Ref Expression
cntrcmnd.z 𝑍 = (𝑀s (Cntr‘𝑀))
Assertion
Ref Expression
cntrcmnd (𝑀 ∈ Mnd → 𝑍 ∈ CMnd)

Proof of Theorem cntrcmnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝑀) = (Base‘𝑀)
21cntrss 19243 . . 3 (Cntr‘𝑀) ⊆ (Base‘𝑀)
3 cntrcmnd.z . . . 4 𝑍 = (𝑀s (Cntr‘𝑀))
43, 1ressbas2 17149 . . 3 ((Cntr‘𝑀) ⊆ (Base‘𝑀) → (Cntr‘𝑀) = (Base‘𝑍))
52, 4mp1i 13 . 2 (𝑀 ∈ Mnd → (Cntr‘𝑀) = (Base‘𝑍))
6 fvex 6835 . . 3 (Cntr‘𝑀) ∈ V
7 eqid 2731 . . . 4 (+g𝑀) = (+g𝑀)
83, 7ressplusg 17195 . . 3 ((Cntr‘𝑀) ∈ V → (+g𝑀) = (+g𝑍))
96, 8mp1i 13 . 2 (𝑀 ∈ Mnd → (+g𝑀) = (+g𝑍))
10 eqid 2731 . . . . 5 (Cntz‘𝑀) = (Cntz‘𝑀)
111, 10cntrval 19231 . . . 4 ((Cntz‘𝑀)‘(Base‘𝑀)) = (Cntr‘𝑀)
12 ssid 3952 . . . . 5 (Base‘𝑀) ⊆ (Base‘𝑀)
131, 10cntzsubm 19250 . . . . 5 ((𝑀 ∈ Mnd ∧ (Base‘𝑀) ⊆ (Base‘𝑀)) → ((Cntz‘𝑀)‘(Base‘𝑀)) ∈ (SubMnd‘𝑀))
1412, 13mpan2 691 . . . 4 (𝑀 ∈ Mnd → ((Cntz‘𝑀)‘(Base‘𝑀)) ∈ (SubMnd‘𝑀))
1511, 14eqeltrrid 2836 . . 3 (𝑀 ∈ Mnd → (Cntr‘𝑀) ∈ (SubMnd‘𝑀))
163submmnd 18721 . . 3 ((Cntr‘𝑀) ∈ (SubMnd‘𝑀) → 𝑍 ∈ Mnd)
1715, 16syl 17 . 2 (𝑀 ∈ Mnd → 𝑍 ∈ Mnd)
18 simp2 1137 . . 3 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → 𝑥 ∈ (Cntr‘𝑀))
19 simp3 1138 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → 𝑦 ∈ (Cntr‘𝑀))
202, 19sselid 3927 . . 3 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → 𝑦 ∈ (Base‘𝑀))
21 eqid 2731 . . . 4 (Cntr‘𝑀) = (Cntr‘𝑀)
221, 7, 21cntri 19244 . . 3 ((𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
2318, 20, 22syl2anc 584 . 2 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ (Cntr‘𝑀) ∧ 𝑦 ∈ (Cntr‘𝑀)) → (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
245, 9, 17, 23iscmnd 19706 1 (𝑀 ∈ Mnd → 𝑍 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  +gcplusg 17161  Mndcmnd 18642  SubMndcsubmnd 18690  Cntzccntz 19227  Cntrccntr 19228  CMndccmn 19692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-cntz 19229  df-cntr 19230  df-cmn 19694
This theorem is referenced by:  cntrabl  19755  cntrcrng  33050
  Copyright terms: Public domain W3C validator