![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntrcmnd | Structured version Visualization version GIF version |
Description: The center of a monoid is a commutative submonoid. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
Ref | Expression |
---|---|
cntrcmnd.z | β’ π = (π βΎs (Cntrβπ)) |
Ref | Expression |
---|---|
cntrcmnd | β’ (π β Mnd β π β CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
2 | 1 | cntrss 19237 | . . 3 β’ (Cntrβπ) β (Baseβπ) |
3 | cntrcmnd.z | . . . 4 β’ π = (π βΎs (Cntrβπ)) | |
4 | 3, 1 | ressbas2 17187 | . . 3 β’ ((Cntrβπ) β (Baseβπ) β (Cntrβπ) = (Baseβπ)) |
5 | 2, 4 | mp1i 13 | . 2 β’ (π β Mnd β (Cntrβπ) = (Baseβπ)) |
6 | fvex 6904 | . . 3 β’ (Cntrβπ) β V | |
7 | eqid 2731 | . . . 4 β’ (+gβπ) = (+gβπ) | |
8 | 3, 7 | ressplusg 17240 | . . 3 β’ ((Cntrβπ) β V β (+gβπ) = (+gβπ)) |
9 | 6, 8 | mp1i 13 | . 2 β’ (π β Mnd β (+gβπ) = (+gβπ)) |
10 | eqid 2731 | . . . . 5 β’ (Cntzβπ) = (Cntzβπ) | |
11 | 1, 10 | cntrval 19225 | . . . 4 β’ ((Cntzβπ)β(Baseβπ)) = (Cntrβπ) |
12 | ssid 4004 | . . . . 5 β’ (Baseβπ) β (Baseβπ) | |
13 | 1, 10 | cntzsubm 19244 | . . . . 5 β’ ((π β Mnd β§ (Baseβπ) β (Baseβπ)) β ((Cntzβπ)β(Baseβπ)) β (SubMndβπ)) |
14 | 12, 13 | mpan2 688 | . . . 4 β’ (π β Mnd β ((Cntzβπ)β(Baseβπ)) β (SubMndβπ)) |
15 | 11, 14 | eqeltrrid 2837 | . . 3 β’ (π β Mnd β (Cntrβπ) β (SubMndβπ)) |
16 | 3 | submmnd 18731 | . . 3 β’ ((Cntrβπ) β (SubMndβπ) β π β Mnd) |
17 | 15, 16 | syl 17 | . 2 β’ (π β Mnd β π β Mnd) |
18 | simp2 1136 | . . 3 β’ ((π β Mnd β§ π₯ β (Cntrβπ) β§ π¦ β (Cntrβπ)) β π₯ β (Cntrβπ)) | |
19 | simp3 1137 | . . . 4 β’ ((π β Mnd β§ π₯ β (Cntrβπ) β§ π¦ β (Cntrβπ)) β π¦ β (Cntrβπ)) | |
20 | 2, 19 | sselid 3980 | . . 3 β’ ((π β Mnd β§ π₯ β (Cntrβπ) β§ π¦ β (Cntrβπ)) β π¦ β (Baseβπ)) |
21 | eqid 2731 | . . . 4 β’ (Cntrβπ) = (Cntrβπ) | |
22 | 1, 7, 21 | cntri 19238 | . . 3 β’ ((π₯ β (Cntrβπ) β§ π¦ β (Baseβπ)) β (π₯(+gβπ)π¦) = (π¦(+gβπ)π₯)) |
23 | 18, 20, 22 | syl2anc 583 | . 2 β’ ((π β Mnd β§ π₯ β (Cntrβπ) β§ π¦ β (Cntrβπ)) β (π₯(+gβπ)π¦) = (π¦(+gβπ)π₯)) |
24 | 5, 9, 17, 23 | iscmnd 19704 | 1 β’ (π β Mnd β π β CMnd) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1086 = wceq 1540 β wcel 2105 Vcvv 3473 β wss 3948 βcfv 6543 (class class class)co 7412 Basecbs 17149 βΎs cress 17178 +gcplusg 17202 Mndcmnd 18660 SubMndcsubmnd 18705 Cntzccntz 19221 Cntrccntr 19222 CMndccmn 19690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-cntz 19223 df-cntr 19224 df-cmn 19692 |
This theorem is referenced by: cntrabl 19753 cntrcrng 32485 |
Copyright terms: Public domain | W3C validator |