Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpbi2and | Structured version Visualization version GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
mpbi2and.1 | ⊢ (𝜑 → 𝜓) |
mpbi2and.2 | ⊢ (𝜑 → 𝜒) |
mpbi2and.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) |
Ref | Expression |
---|---|
mpbi2and | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbi2and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | mpbi2and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | mpbi2and.3 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) | |
5 | 3, 4 | mpbid 231 | 1 ⊢ (𝜑 → 𝜃) |
Copyright terms: Public domain | W3C validator |